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ABSTRACT

The necessity of recognizing a person from a low-resolution non-frontal image is a challenging problem in video 
surveillance. In order to alleviate the problem of recognition in the low-resolution image, the literature presents 
different techniques for face recognition after converting the low-resolution image to high resolution. Accordingly, 
this paper presents a technique for multi-view face video super resolution using the tangential and exponential 
kernel weighted regression model. In this paper, a new hybrid kernel is proposed to perform non-parametric kernel 
regression model for estimation of a neighbor pixel in the super resolution after the face detection is performed using 
Viola-Jones algorithm. The experimentation is performed with the UCSD face video databases, and the quantitative 
results are analyzed using the SDME with the existing techniques. From the resulting outcome, we prove that the 
maximum SDME of 77.3db is obtained for the proposed technique as compared to the existing techniques like nearest 
interpolation, bicubic interpolation, and bilinear interpolation. 

Keywords: Super resolution, face video, face detection, kernel, Viola-Jones algorithm, a second-derivative-like 
measure of enhancement (SDME).

INTRODUCTION

In recent years, the intelligent surveillance system is widely applied in several fields, which include security and 
protection camera, where the resolution of the required face in the picture is very low and so it cannot provide the 
desired information. Moreover, there are some constraints in the imaging conditions in certain situations, and so 
acquiring face images with high resolution is not always possible. Consequently, the face images captured by the 
camera may miss many facial feature details the human needs to be identified. So, image resolution enhancement 
techniques, particularly, human face resolution called face super resolution, are getting more attention (Qu et al.,  
2014).  Face super resolution (SR), which is also called face hallucination, means hallucinating the high-resolution 
(HR) face image from its low-resolution (LR) image. Baker and Kanade proposed the term face hallucination (Baker 
& Kanade, 2000).

 In general, face super resolution techniques (Li  et al., 2010; Kim & Kown, 2010) are mainly classified into two 
general categories, that is, learning-based techniques (Zhuang  et al., 2007; Chang  et al., 2004) and reconstruction-
based techniques (Park & Lee, 2008; Farsiu  et al., 2004). In learning-based techniques, the prior information about 
the deviation of the high-resolution images from the low-resolution images is used to construct the model, and the 
constructed model is used in performing face super resolution. Here, the main problem in learning based super 
resolution method is using precise prior information for the reconstructing high-resolution image. To overcome this 
issue, reconstruction-based techniques are used. There are two approaches in reconstruction based techniques, that is, 
global approach and local patch based approach.  Here, the images are divided into overlapped patches and for each 
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patch, the nearest neighbors are used as the prior to creating the required high-resolution patches. In global approach 
method, the whole face images are considered as a global model and in local approach method, the faces for arranged 
patches are considered as a local model. In simulation, these methods achieve good results when applied to very low-
resolution faces  (Lu  et al., 2013a). 

The local approach has good subjective quality than the global approach due to the smooth face image (Tao et al., 
2012; Jiang et al., 2014). As the local image patches are similar in local approach, one image patch can be represented 
using a few neighbor patches, which result in a local representation of image patches. Furthermore, there is no noise in 
locality based representation as the noisy image patch is replaced with a similar clear image patch without synthesizing 
the noisy image patch as in LSR and SR (Jiang et al., 2014). Traditional parametric super resolution methods are based 
on a certain model of the signal of interest and try to calculate the model parameters in the presence of noise (Takeda et 
al., 2007). Then, a generative model based on the estimated parameters is generated as the best estimate of the original 
image. On the contrary, nonparametric methods are based on the data itself to explain the structure of the model, 
and this model is referred to as a regression function (Wand & Jones, 1995). Due to the arrival of recent machine 
learning techniques, kernel methods are becoming more popular and most commonly used for pattern detection and 
discrimination problems (Yee & Haykin, 1993).

In this paper, we have presented a new hybrid kernel for non-parametric estimation of pixels using local patching 
process. The proposed technique performs multi-view face video super resolution using tangential and exponential 
weighted regression model. At first, the input face video is read out, and the frames are extracted from the face 
video. Once the frames are extracted, the face detection is performed using Viola-Jones algorithm, which contains the 
important process of rectangular feature extraction, training, and testing of AdaBoost classifier. Once the face region 
is detected, the low-resolution face part is given to the final step where the multi-kernel regression model is applied 
to obtain super resolution of the face part. The super resolution image is then analyzed with the evaluation called 
SDME. 

The major contribution of this paper is given as follows:

A novel hybrid kernel• : The hybrid kernel matrix is the usage of both the exponential kernel and the tangential 
kernel, which is designed to perform the video super resolution using the non-parametric regression model that 
is based on the weights of the neighboring pixels. The tangential kernel preserves the singularity within the disc 
resolved in the shape, whereas the exponential kernel estimates the pixels.

The paper is organized as follows. Section 2 presents the review of the literature and Section 3 presents the 
motivation behind the approach. Section 4 discusses the multi-kernel based regression model face multi-view face 
super resolution. Section 5 presents the detailed experimentation and comparative results. Finally, the conclusion is 
given in section 6.

LITERATURE REVIEW

Table 1 reviews the recent literature related to face super resolution. Most of the techniques utilized the local 
neighbourhood-based estimation (Qu  et al.,  2014; Jiang et al., 2014; Hu  et al., 2010) to perform the super resolution. 
Some techniques (Wang et al., 2014;  Lu  et al., 2013b) utilize the nonnegative matrix factorization to estimate the 
pixel even though it is an overhead computation process. Also, some methods (Tao et al., 2012) utilize the learning 
algorithm for estimation of super resolution image even though the image prior information is required. From the 
literature, we identify that the estimation technique without the need of image prior and the efficient computational 
algorithms can be a better choice to proceed further in face video super resolution.

Xiao Zeng and Hua Huang (2012) have proposed a regression based method for face super resolution. It has 
better subjective quality due to more smooth face image but it requires accurate prior for high-resolution image 
reconstruction. Lu Tao et al. (2012) have proposed shape clustering and subspace learning-based model for face super 
resolution. It is robust to noise but it maintains the shape in the reconstruction process, which is a problem worth to 
explore in the future. Shenming Qu et al. (2014) have proposed a method for face super resolution. The position-based 
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patch neighborhood considers the spatial distance to obtain improved quality but finding the distinct patch requires 
more time. Xiaofeng (Wang et al., 2014) have proposed a non-negative matrix factorization for face super resolution. 
This method maintains the relation between high-resolution residue and low-resolution residue to better preserve high 
frequency details but selecting NMF basis images corresponding to specific face parts is more challenging.

Xiang Ma et al. (2015) have developed a face super resolution by considering the redundant transformation with 
diagonal loading. It offers robustness when dealing with the inputs that have different expressions, head poses, and 
illuminations but this approach is computationally intensive and sensitive to training examples. Junjun Jiang et al. 
(2014) have proposed a locality-constrained representation for face super resolution, and it is very robust against 
noise in real surveillance scenarios but fails to discover the intrinsic geometrical structure of the data set. Tao Lu et al. 
(2013b) have proposed a nonnegative matrix factorization for face image super resolution. It has a better performance 
on local facial detailed features due to nonnegative part-based features but factorization requires much computational 
effort. Yu Hu et al. (2010) have proposed a local pixel structure-based method for face super resolution, and it exhibits 
an impressive ability to infer the fine facial details and to generate plausible HR facial images from very small LR 
input but it requires reference samples for HR estimation.

Table 1. Literature review.

Author Method Advantages Disadvantages

Xiao Zeng and Hua Huang 
(2012)

Regression based method Has better subjective quality 
due to the more smooth face 
image

Require accurate prior 
for high-resolution image 
reconstruction

Lu Tao et al. (2012) Shape clustering and subspace 
learning

Robust to noise Maintain the shape in the 
reconstruction process is a 
problem worth to explore in 
future.

Shenming Qu et al. (2014) Position patch neighborhood 
preserving

Considering spatial distance 
helps to obtain improved 
quality

finding the distinct patch 
requires more time

Xiaofeng Wang et al. (2014) Non-negative matrix
factorization

The relation between high-
resolution residue and low-
resolution residue to better 
preserve high frequency 
details

Selecting NMF basis images 
corresponding to specific face 
parts is more challenging

Xiang Ma et al. (2015) Redundant transformation 
with diagonal loading

Offers robustness when 
dealing with the inputs that 
have different expressions, 
head poses, and illuminations

This approach is 
computationally intensive and 
sensitive to training examples

Junjun Jiang et al. (2014) Locality-constrained 
Representation

It is very robust against noise 
in real surveillance scenarios

Fails to discover the intrinsic 
geometrical structure of the 
data set

Tao Lu et al. (2013b) Nonnegative matrix
factorization

Better performance on local 
facial detailed features due
to nonnegative part-based 
features

Factorization requires much  
computational effort

Yu Hu et al. (2010) Local pixel structure-based 
method

Exhibits an impressive ability
to infer the fine facial details 
and to generate plausible HR 
facial images from very small 
LR input

Require reference samples of 
HR estimation
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Junjun Jiang et al. (2016) SR-based face
image super resolution 
approach

It exhibits better performance 
both quantitatively and 
qualitatively even in the 
presence of high level of noise 
in the input LR face

Takes huge time to represent 
and reconstruct the overlap 
patch and this method lacks 
parallel computation

Junjun Jiang et al. (2016)     Missing intensity 
interpolation method
based on smooth regression 
with local structure prior 
(LSP),
named SRLSP

Facilitates parallel 
computation that reconstructs 
the HR patch of the target 
independently.

Not applicable for real time 
face recognition and 3D face 
synthesis as they consume 
large amount of time.

Junjun Jiang et al. (2016) A face SR method based 
on Tikhonov regularized 
neighbor representation 
(TRNR)

Enables the relevant selection 
of the patches even under the 
presence of the noise.

Did not concentrate on 
recovering the frontal HR 
face image and did not enable 
parallel computation.

Junjun Jiang et al. (2016) Super resolution via Locally
Regularized Anchored 
Neighborhood Regression
and Nonlocal Means

Possess the capacity to 
generate the output with 
the sharp edges and rich 
textures. Highly reliable SR 
construction.

Requires the filter to improve 
the SR-output.

Zhiliang Zhu et al. (2014) Super resolution via Self-
Example
Learning and Sparse 
Representation

Does not require HR training 
set and hence, it exploits 
image patches within a 
single image and sparse 
representation, using a single 
learned dictionary. This 
method is more practical.

The performance of this 
method is similar to the 
existing SR approaches in 
terms of the visual effect.

MOTIVATION BEHIND THE APPROACH
Problem definition

The main objective of this paper is to perform the super resolution on the face region, which is obtained from the 
face video. So, the input for the proposed system is the face video, which contains multiple of frames. Every frame 
is given to the face detection process, which detects the face region. Once the face region is extracted, the super 
resolution process is performed on the face region to increase the number of pixels based on the upscaling factor 
without compromising the visual quality. As such, the input video iV  is represented as N frames as

From every frame of the video, the face region should be identified and extracted. 

where  is the function to extract the face region. The extracted face regions can be represented as

where nm×  is the size of the face region. The problem considered here is to perform the super resolution of the 
face region by increasing the size of the region ( nm× ) to ( rnrm ** × ), where r  is the upscaling factor. The image 
obtained after performing super resolution is given as follows:
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Challenges
Face super resolution is an active area of research due to the wide applicability of the method in video surveillance 

system, especially for security. When analyzing the recent works available in the literature for face super resolution 
(Hu et al., 2010; Viola & Jones, 2004), the following challenges are identified. 

Most of the super resolution frameworks require accurate image prior for high-resolution image reconstruction. 
This poses a challenge of identifying the accurate training face samples for performing effective learning task.

Utilizing the shape metrics for reconstruction can have good performance but the storing and maintaining of shape 
metrics are very difficult to handle.

Selecting the suitable size of neighbourhoods and shape of the neighbourhoods is a challenging problem in super 
resolution because it is directly related to the estimating behaviour of the pixels.

Even though most of the methods are a face image super resolution, the important challenge in the surveillance 
camera is constructing super resolved faces from the low-resolution videos because the face should be detected 
correctly from multiple views, and the estimated super resolved face should be useful for improving the performance 
of face recognition task.

PROPOSED METHODOLOGY: TANGENTIAL AND EXPONENTIAL 
KERNEL WEIGHTED REGRESSION MODEL FOR MULTI-VIEW FACE 

VIDEO SUPER RESOLUTION
This section presents the multi-view face video super resolution using tangential and exponential kernel weighted 

regression model. Here, local patch estimation and the multi-kernel weighted regression model are included for 
generating super resolved pixels. Overall, the proposed technique consists of three major steps. In the first step, the 
video is directly read out, and it is converted into a set of frames. In the second step, every frame is serially taken, 
and the face part is detected using Viola–Jones object detection (Viola & Jones, 2004),  which is one of the popular 
methods applied for face detection. Once the face part is detected for the input frame, the resolution of the face detected 
part is improved using the proposed face super resolution method in the third step. The proposed super resolution 
method integrates the process of the multi-kernel weighted regression model and local patching process. Here, based 
on the scaling factor, the local patch size is decided, and the estimation of pixels is performed using the exponentially 
weighted regression model. This step is repeated for every frame, and the super resolved faces are separately stored for 
the analysis part. The block diagram of the proposed multi-view face video super resolution is given in Figure 1.

Fig. 1. Block diagram of the proposed multi-view face video super resolution.

Video reading and frame extraction
The input for the proposed multi-view face video super resolution is the video that is represented as the multiple 

frames. The video, V, is directly read out and every frame Vi is taken out to find the face region. The input video may 
be in any of the file formats like AVI, MPEG, 3GPP, and so on. The reading of video is performed by constructing 
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VideoReader object and extracting one frame at a time associated with. Here, i denotes the frame index and N represents 
the number of frames in the input video.  

Face detection by Viola-Jones algorithm
The second step of the proposed multi-kernel weighted regression model is to detect the faces from every frame 

using Viola-Jones algorithm (Viola & Jones, 2004), which is the popular method for face detection. Even though many 
different methods are presented in the literature (Fleuret & Geman, 2001; Roth et al., 2000), the Viola-Jones algorithm 
is taken here for the face detection because it can detect the multi-view faces effectively. This algorithm performs the 
face detection process using three important steps, that is, i) feature extraction, ii) training of AdaBoost classifier, and 
iii) detection of the face region.

i) Feature extraction: At first, the input frame ( )baI ,  is given to the feature extraction step, which finds the 
rectangular features using an integral frame. The integral frame is computed by finding the summation of the pixels 
intensity from the above and left parts of the location of the pixels. The process of finding the integral frame is given 
as follows:

where  is the integral frame and ( )baI ,  is the original frame. Using the following pair of recurrences,

where  is the cumulative row sum,  and , the integral frame can be computed in one 
pass over the original frame. This integral frame is computed for every rectangular part of the images, and it is stored 
as rectangular features. The dimension of the rectangular feature is usually high, so the feature selection is important 
to avoid the computational overhead.  Here, AdaBoost classifier (Freund & Schapire, 1995) is utilized to select the 
important features and further to perform the classification task.

ii) Training of AdaBoost classifier: Once the features are extracted, the learning algorithm, called AdaBoost 
classifier (Freund & Schapire, 1995), is trained based on the positive and negative samples. The training of classifier 
is performed by updating the weights of every iteration towards reaching the minimum error value. The error values 
are computed from the original class information with the ground truth label. The step behind the training of classifier 
is as shown below:

a) Initialization: Initialize weights 
 
for  , respectively, where p and q are the negative and 

positive numbers, respectively.

b) Normalization: Normalize the weights,  .

c) Selection of weights: Select the best weak classifier with respect to the weighted error

where  and  are the minimizers of .

d) Update the weights: 
 
where  if example  is classified correctly,  otherwise, and 
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The above step is repeated for the required number of iterations, and the final weight is selected to perform the 
classification task. The classification of the input rectangular feature is performed using the following equation.

where 
 
. After performing the above process, face regions are extracted from every frame. The detected 

face region can be represented as

where nm×  is the size of the face region.

Face super resolution by tangential and exponential kernel weighted regression model
This section represents the tangential and exponential kernel weighted regression model for face super resolution. 

The process of super resolution is first performed by deriving the multi-kernel matrix based on the weights to be 
assigned for the neighbouring pixel values. Then, the derived kernel matrix is given for performing the face super 
resolution. The reason behind the selection of kernel methods is that it is well known and regularly used for pattern 
detection and discrimination problems (Tao et al., 2012). Even though the kernel regression methods are familiar in 
data mining works, image and video processing literature did not much utilize these methods. Also, kernel regression 
is the nonparametric estimation that allows for tailoring the estimation problem to the local characteristics of the data, 
whereas the standard parametric model is intended as a more global fit. Second, in the estimation of the local structure, 
higher weight is given to the nearby data as compared to samples that are farther away from the centre of the analysis 
window. Also, this approach does not specifically require the data to follow a regular or equally spaced sampling 
structure (Takeda et al., 2007). 

A precise kernel is more significant than a sophisticated prior for image super resolution. The one-pass convolution 
with small kernels is very efficient for reconstruction and restoration, and also it improves the resolution and fidelity 
[41]. In super resolution, the restoration and reconstruction can be decreased by means of constraining the spatial 
support of the filter to a small kernel. Besides, small kernel approach capitulates major quantitative and qualitative 
improvements [43]. The steering kernel regression preserves the restore details with minimal assumptions on noise 
models and local signal. Moreover, steering kernel weights effectively take local image structures and capture the 
local signal structures, which include both spatial and temporal edges [42]. The super resolution for image and video 
restoration in the non-local kernel regression process combines both the local structural regularity and non-local 
self-similarity. The non-local kernel regression framework is robust, and it is applied to several images and video 
restoration tasks. In multidimensional kernel regression, each pixel in the video sequence captures the essential local 
behavior of the spatiotemporal neighborhood. The kernels used in the super resolution context are an alternative to 
the bicubic kernel for interpolation, and they are used in many algorithms [44]. Moreover, kernels used in many super 
resolutions play an important role in the final super-resolved HR images. Even though various kernel functions are 
presented for super resolution, exponential and tangential kernel functions played a major role for face resolution. The 
exponential kernel is directly associated with the Gaussian kernel, with only the square of the norm being left out, 
and it is also known as a radial basis function kernel. Generally, the exponential kernel is acquired from the spectral 
representation with the spectral density. In kernel machine fields, the squared exponential is very smooth, and it is the 
most widely used kernel [45]. The tangential kernel preserves the singularity within the disc resolved in the shape. 
The tangential kernel estimates the first and second order derivative factors using the tangential acceleration functions 
[50], which can easily estimate the neighbour pixels.
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a) Generation of multi kernel matrix
The first step in the regression process is to build up the kernel matrix, which does not rely on the sample’s location 

and density. The shape of the regression kernel is square in size, and the size of the kernel fixed is based on the user 
specified parameters. Here, the size of the kernel is fixed based on the upscaling parameter given by the user. Then, the 
matrix F is constructed by filling up the distance integer from the centre pixel. Every element in this matrix consists of 
integers based on the distance from the centre pixel. The matrix F can be represented as follows:

The distance-based integer matrix is then given for the kernel model exponential and tangent function to convert 
the distance values into a kernel space. The exponential kernel function is represented as follows:

where h is a smoothing factor. The tangent kernel function is represented as follows:

These two kernel matrices are effectively combined with the weighted formulae using the parameter called alpha. 
The hybridization of two kernels is the new contribution proposed in this paper for kernel design. The advantage of the 
hybridized form of kernel ensures the advantage of exponential and tangent function in estimating the local neighbour 
values. The hybridized form of the kernel function is given as follows: 

where α is weighted constants

b) Generation of super resolution image
Once the multi-kernel matrix is designed, the super resolution is performed by doing the interpolation with the 

extracted face image. At first, every pixel belonging to the  is generated by finding the sub-image of  
corresponding to  the pixel. The size of this sub-image  is dependent on the size of the upscaling factor, 
and the pixels without having the intensities are filled out with the neighbouring values. Once the sub-image is found, 
the kernel matrix is multiplied with this sub-image and the summation is taken as the representative pixel of the super 
resolution image, . The equation used to find the pixel of the super resolution image is given as follows: 

where  , k1 and k2 are the size of the rows and columns of the sub-image. 

Algorithmic description: 
Get the input video i. V and the input parameters, α, h.

Extract the frames from the input video.ii. 

Detect the face using Viola-Jones algorithm, iii. Iface which is extracted face region.

Design multi-kernel matrix iv. K using exponential and tangent kernel, α, h.

Generate super resolution face image v. I s.

Repeat step 3 to 5 for every frame.vi. 
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RESULTS AND DISCUSSION
This section presents the experimental results and the detailed analysis of the proposed multi-kernel-based 

regression model of face super resolution.

Experimental setup
The proposed multi-view face video super resolution is implemented using MATLAB, and the performance of the 

proposed technique and the existing technique is validated using SDME (Panetta et al., 2011). Here, the performance 
comparison is done with the existing methods like nearest-neighbor interpolation, bicubic interpolation, and bilinear 
interpolation. For the nearest neighbor interpolation, the block uses the value of the nearby translated pixel values 
for the output pixel values in the super resolution image. For bilinear interpolation, the block uses the weighted 
average of two translated pixel values for each output pixel value. Bicubic interpolation is an extension of cubic 
interpolation for interpolating data points on a two-dimensional regular grid. The interpolated surface is smoother 
than the corresponding surfaces obtained by the bilinear interpolation or nearest-neighbor interpolation. Bicubic 
interpolation can be accomplished using Lagrange polynomials, cubic splines, or cubic convolution algorithm. 

Dataset description: The experimentation is performed with the face video database available in (SD  2014), 
which is UCSD face video database. From the database, we have taken two different videos, which have the multi-
view of a person. 

Evaluation metrics: The definition of SDME (Panetta et al., 2011) is given as follows:

where the super resolution image is divided into b1 × b2 blocks,  and  are the maximum and minimum 
values of the pixels in each block separately, and  is the intensity of the centre pixel in each block. Thus, the size 
of the blocks should be composed of an odd number of pixels such as 5 × 5, 7 × 7 or 9 × 9.  SDME is the enhanced 
parameter designed to overcome the disadvantages of the existing measures. The existing measures, such as EME 
(measure of enhancement), EMEE (measure of enhancement by entropy) (Agaian et al. 2001), AME (Michelson law 
measure of enhancement), and AMEE (Michelson law measure of enhancement by entropy) (Agaian et al. 2007), are 
very sensitive to the noise and steep edges in the images due to the measurement of the maximum and the minimum 
values of the blocks in the image. Thus, SDME serves as an advanced measure that integrates the idea of the second-
derivative-like visibility operator (S. DelMarco and S. Agaian, 2009) with the strengths of the existing measures.

The definition of PSNR (peak signal to noise ratio (PSNR) is given as follows:

where  is the maximum possible pixel value of the image I ; I and K are the input and output images.

The definition of SSIM (Structural similarity index) is calculated on various windows of an image. The measure 
between two windows x and y of common size N×N is given as follows:

where x and y denote the measurement between the two windows,  is the average of x ;  is the average of y;  
is the variance of x ;  is the variance of y ;  is the covariance of x and y ;  and  are two variables to stabilize 
the division with weak denominator;  is the dynamic range of the pixel values.
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Parameters to be fixed: The proposed face super resolution contains three important parameters, that is,  smoothing 
factor h, weighted constant α, and upscaling factor r. These parameters are extensively analyzed in the following 
section to find the best parametric value.

Experimental results
This section represents the experimental results of the proposed face super resolution technique. Figure.2 shows 

the intermediate results of video 1 for the straight position. Here, figure 2.a is the frame extracted from the input video, 
and figure 2.b shows the face detected from the output of the Viola–Jones algorithm. Figure 2.c is the extracted face 
region from the frame, and figure 2.d is the outcome of the super resolution for the upscaling factor of three using the 
methods using the nearest method, bicubic, bilinear, and the proposed multi-kernel-based regression model. Similarly, 
the frame extracted from video 1 in the side view position is given in figure 3.a. Figure 3.b shows the face detected 
image through Viola–Jones algorithm, and figure 3.c represents the extracted face region from the frame. Finally, the 
output image of the face super resolution using the nearest method, bicubic, bilinear, and the proposed multi-kernel-
based regression model, is given in figures 3.d, 3.e, 3.f, and 3.g.

a) Original Image b) Face detected frame c) Extracted Face

d) Super resolution 
Image using nearest 

method.

e) Super resolution 
Image using bicubic 

method.

f) Super resolution 
Image using bilinear 

method.

g) Super resolution Image using multi-kernel regression method.

Fig. 2. Intermediate results of video 1 for straight position using the scaling factor, .
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a) Original Image b) Face detected frame c) Extracted Face

d) Super resolution 
Image using nearest 

method.

e) Super resolution 
Image using bicubic 

method.

f) Super resolution 
Image using bilinear 

method.

g) Super resolution Image using multi-kernel regression method.

Fig. 3. Intermediate result of video 2 using the scaling factor, .

Performance evaluation
This section presents the performance evaluation of the proposed multi-kernel regression model. Here, two 

parameters related to the proposed technique are analyzed to identify the best value for comparative analysis. The 
first parameter, called alpha, is taken, and the values are changed from 0.2 to 1 to find the optimal value. Figure 4.a 
shows the performance analysis of the proposed face super resolution method based on alpha for video 1. Here, the 
upscaling factor is fixed from 2 to 6, and the results are evaluated. When analyzing Figure 4, we understand that the 
better performance is achieved when the upscaling factor is increased. For the upscaling factor of five, the proposed 
technique obtained the SDME value of 75.7db. Also, for the upscaling factor of two, the proposed technique obtained 
the SDME value of 60.18db. A similar type of behaviour can be seen in Figure 4.b. From Figure 4.b, the proposed 
technique obtained the maximum SDME when the upscaling factor is fixed to five. Until the alpha is equivalent to 0.8, 
the SDME value is decreased when the alpha is increased. After that, the performance is increased. For the alpha value 
of 1, the proposed technique obtains the SDME value of 70.01db for the upscaling factor of five.
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(a) (b)

Fig. 4. Performance analysis based on alpha, a) video 1, b) video 2.

Figure 5.a shows the performance analysis of the proposed technique for the global smoothing factor of video 
1. From the results, we understand that when the smoothing factor is increased, the performance is also increased 
until a specific value. After that, the performance is decreased even though the smoothing factor has increased. From 
the figure, we have seen that the performance in terms of SDME is increased until the factor is equal to five for the 
upscaling factor of five. After that, the performance is decreased slightly. So, the global smoothing factor can be fixed 
to five to get the maximum results when the upscaling is equal to five. Similarly, the performance in terms of SDME is 
plotted in figure 5.b. From the figure, we understand that the performance behaviour is almost similar in both videos. 
The maximum performance is achieved when the upscaling factor is equal to five and the smoothing factor is equal 
to 0.5.

(a) (b)
Fig. 5. Performance analysis based on global smoothing factor, a) video 1, b) video 2.

Comparative analysis
This section discusses the comparative analysis of the proposed regression model for super resolution with the 

existing methods, that is, nearest interpolation, bicubic interpolation, and bilinear interpolation. Figure 6.a shows the 
performance of the proposed technique with the existing methods for various values of an upscaling factor. For all the 
different values of the upscaling factor, the proposed technique shows better performance as compared to the existing 
technique. When the upscaling factor is fixed to 2, the SDME of the nearest interpolation, bicubic interpolation, 
bilinear interpolation, and proposed technique, is 50.8 dB, 54 dB, 55.5 dB, and 60.19 dB. Similarly, the performance 
of SDME for those techniques for the upscaling factor of six is 46.96 dB, 59.3 dB, 61.1 dB, and 71.57 dB. The 
performance of SDME in video 2 is plotted in figure 6.b. The similar kind of behaviour can be found in video 2 also. 
The better performance of 74.2 dB is achieved for the proposed technique when the upscaling factor is fixed to five. 
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The figure shows that the performance of the techniques is increased when the upscaling factor is increased until it 
reaches a specific value. After that, the performance is decreased even though the upscaling factor is increased. 

(a) (b)
Fig. 6. Comparative analysis based on upscaling factor, a) video 1, b) video 2.

Figure 7 shows the comparative analysis of four different techniques for the different size of blocks, which is the 
parameters in SDME. The block size is varied from five to nine, and the results are analyzed. For the block size of five, 
the SDME of the nearest interpolation, bicubic interpolation, bilinear interpolation, and proposed technique, is 50.8 
dB, 54 db, 55.5 dB, and 60.19 dB. Similarly, the nearest interpolation, bicubic interpolation, bilinear interpolation, and 
proposed technique, obtained the SDME of 51.48 dB, 52.76 dB, 54.08 dB, and 56.2 dB when the block size is equal to 
seven. The better performance in block size of nine for the proposed technique is 52.17 dB, which is higher than all the 
existing techniques. Similarly, for video 2, the performance is analyzed for all the techniques using SDME in Figure 
7.b. From the figure, the nearest interpolation, bicubic interpolation, bilinear interpolation, and proposed technique, 
obtained the SDME of 52.49 dB, 55.5 dB, 57.08 dB, and 61.39 dB when the block size is equal to five. Overall, the 
proposed technique outperformed the existing techniques for all different sizes of blocks.

(a) (b)
Fig. 7. Comparative analysis based on block size, a) video 1, b) video 2.

Comparative analysis with existing works
Table II illustrates the PSNR, SSIM, and SDME for different methods with the sampling factors 2, 3, 4, 5, and 6 

of video 1. Here, the upsampling factor is fixed from 2 to 6, and the results are evaluated. This section analyzes the 
performance of the proposed method with the existing works, that is, J. Yang et al. (2008), A. Marquina and S. J. Osher 
(2008), Weisheng Dong et al. (2011), and Victor may et al. (2016). Here, video 1 and video 2 are taken from UCSD 
video database. For the upsampling factor of 6, the PSNR, SSIM, and SDME values for the proposed multi-kernel 
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regression model are 42.5573 dB, 0.9612, and 73.71 dB. Similarly, PSNR, SSIM, and SDME values for J. Yang et 
al. at upsampling factor 6 is 32.12dB, 0.8221, and 65.8dB. From Table II, we clearly understand that our proposed 
method has greater PSNR, SSIM, and SDME values at all sampling factors.   

Table III indicates the PSNR, SSIM, and SDME for video 2 of different methods with different upsampling factors 
2, 3, 4, 5, and 6 of video 2. For the upsampling factor of 2, PSNR, SSIM, and SDME values for the proposed multi-
kernel regression method are 47.12dB, 0.9819, and 75.32dB for upsampling factor of 2, whereas for the other existing 
methods, the values of PSNR, SSIM, and SDME are less. From table III, we clearly understand that our proposed 
method has greater PSNR, SSIM, and SDME values at all the sampling factors.   

Table 2. Performance analysis based on upsampling factor of video 1.

Upsampling 
factor

Multi-
kernel 

regression

J. Yang, J. 
Wright et 

al. 
(2008)

A. 
Marquina 

and S. 
J. Osher 
(2008)

Weisheng 
Dong et 

al. (2011)

Victor 
may et al. 

(2016)

Ce Liu and 
Deqing 

Sun (2011)

Kappeler 
et al. 

(2016)

PSNR (dB) 2 47.3510 34.12 29.12 30.92 21.31 27.11 31.18

3 41.2137 34.00 29.10 30.54 21.03 27.01 31.02

4 42.0937 33.98 28.99 30.27 20.75 26.98 31.00

5 41.8749 32.96 28.68 30.06 20.11 26.87 30.94

6 42.5573 32.12 28.51 29.52 20.01 26.81 30.87

SSIM 2 0.9251 0.9122 0.9 0.8936 0.794 0.842 0.8951

3 0.9264 0.900 0.87 0.8871 0.7521 0.835 0.8864

4 0.9666 0.8997 0.82 0.8725 0.7495 0.825 0.8766

5 0.9623 0.8494 0.84 0.8233 0.7255 0.812 0.8523

6 0.9612 0.8221 0.82 0.8111 0.71 0.801 0.8112

SDME
(dB) 2 74.56 68.9 69.1 71.2 74.56 74.35 73.86

3 74.35 67.5 69.8 70.8 67.5 73.86 67.2

4 74.01 66.5 68.2 70.7 66.2 73.86 67.86

5 73.86 66.4 67.2 69.8 65.15 69.15 67.2

6 73.71 65.8 67.15 68.5 64.2 68.2 66.2

Time(in sec) - 50 121 131 100.5 59.5 57.8 61.1
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Table 3. Performance analysis based on upsampling factor of video 2.

Upsampling 
factor

Multi-kernel 
regression

J. Yang, J. 
Wright et 
al. (2008)

A. 
Marquina 

and S. 
J. Osher 
(2008) 

Weisheng 
Dong et 

al. (2011)

Victor 
may et al. 

(2016)

Ce Liu 
and 

Deqing 
Sun 

(2011)

Kappeler 
et al. 

(2016)

PSNR (dB) 2 47.12 33.12 29.12 30.92 21.92 26.99 31.08

3 46.1235 33 29.02 30.67 21.52 26.21 30.97

4 45.8874 32.68 28.99 29.65 21.02 26.01 30.54

5 43.8577 32.24 28.14 29.32 20.63 25.65 30.01

6 42.1247 31.87 28.02 28.96 19.15 25.24 29.58

SSIM 2 0.9899 0.9623 0.9512 0.9101 0.8857 0.833 0.8858

3 0.9455 0.9421 0.9412 0.9201 0.8824 0.821 0.8721

4 0.8965 0.9320 0.9401 0.8935 0.7891 0.801 0.801

5 0.8688 0.9122 0.9322 0.8962 0.7718 0.799 0.7891

6 0.8654 0.899 0.9222 0.8721 0.7611 0.769 0.7711

SDME
(dB) 2 75.32 68.19 59.1 61.27 74.56 64.312 63.86

3 75.12 67.45 59.012 60.81 67.5 63.812 57.211

4 74.32 66.55 58.21 60.97 66.2 63.834 57.823

5 72.18 66.44 57.28 60.82 65.15 62.154 57.221

6 71.11 65.238 57.157 58.51 64.2 61.56 56.223

Time(in sec) - 53.1 113.1 122.3 105.5 69.5 77.9 85.5

Tables II and III present the computational time of all the SR methods discussed in the paper. The time complexity 
of the proposed method is less when compared with all other methods. For video 1, the computational time is 50 secs 
for the proposed multi-kernel regression model, whereas for the existing methods, the computational time is greater. 
Similarly, the computational time of the proposed method for video 2 is 53.1 secs, which is less than that of the 
existing methods. 

CONCLUSION
This paper presented a tangential and exponential kernel weighted regression model for multi-view face video 

super resolution. The ultimate contribution we made in this work is to design a hybrid kernel for the designing of the 
regression model. The hybrid kernel utilizes the exponential and tangent functions with the weighted parameters. The 
designed hybrid kernel is then utilized to perform the super resolution of the face regions, which is extracted from the 
input video using Viola-Jones algorithm. The proposed face super resolution is experimented with UCSD face video 
dataset, and the performance is analyzed with the help of SDME. Also, the detailed parametric analysis is carried out 
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to find the better value to perform a comparative analysis with the existing techniques, that is, nearest interpolation, 
bicubic interpolation, and bilinear interpolation. From the results, we proved that the proposed techniques obtained 
the maximum SDME of 77.3db as compared to the existing techniques. In future, the optimization algorithms can be 
included to steer the regression model for better performance. The proposed method is applicable to the video-based 
face super resolution but the future work concentrates on improving the SR performance using the spatial temporal 
information of consecutive video frames.
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