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Abstract

Saturation-pressure measurements are essential for all hydrocarbon reservoir fluids. Gas reaches
a critical saturation, below the crude oil saturation pressure; then, a two-phase flow takes place and
this action results in decreasing oil production and recovery. One of the reservoir engineers goals
is to optimize the production of oil and to maximize oil recovery; to reach this goal, the reservoir
pressure must be retained very close to the initial reservoir saturation pressure. Saturation pressure
is normally measured by using a bottom-hole samples or samples that are recombination of gas
and oil at surface. In most cases, real samples are unavailable at elevated pressures; therefore,
saturation pressure needs to be estimated either by simulation or computation methods.

A set of crude oil saturation pressure and composition measurements including data from
the literature and newly measured data were used to develop two practical models to predict the
saturation pressure of a 214 crude oils. The first developed model uses the extended compositions
of hydrocarbons up to the heptane plus fraction in addition to non-hydrocarbons. The second model
utilizes the lumping criteria for compositions of light components, intermediate components, and
heavy components in addition to non-hydrocarbon components as an input. The models’ performance
is also compared to the Soave-Redlich-Kwong and Peng-Robinson equation-of-states in addition to
published methods that use compositions as an input. The comparison indicates that the proposed
models are easier to implement and more accurate than the other computational methods.

Keywords: Saturation pressure (Ps); bubble-point pressure (BPP); equation of state (EOS);
correlations; PVT data.

Introduction

Reservoir fluid properties are an essential source of information for all calculations
on hydrocarbon reserves. Accurate estimation of the pressure-volume-temperature (PVT)
measurement is crucial. Of all the PVT properties, saturation pressure (Ps) is considered the most
important parameter. It is well known that gas starts to flow once the reservoir pressure drops
below the bubble point pressure, and the gas saturation reaches a critical value. To minimize the
gas flow and maximize the oil recovery, it is very important to maintain the reservoir pressure close
to the original bubble point pressure. Although the PVT properties are experimentally measured in
laboratories and provide reliable results, this process is expensive, time consuming, and sometimes
unavailable; therefore, measured field data (separator gas oil ratio, separator pressure, stock-tank
oil specific gravity, and reservoir temperature) or reservoir fluid compositions are used to estimate
the bubble point pressure.
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There are two methods in the petroleum industry to estimate the saturation pressure of crude oil
when experimental data is unavailable, either using production data or compositional data.

Methods based on production data (composition is unavailable)

Numerous attempts have been made since the 1940s to develop correlations to estimate the
saturation pressure from production data, such as producing gas oil ratio, oil gravity, gas gravity,
reservoir pressure, and temperature.

Methods based on compositional data

Many authors have reported that the application of any correlation in other regions results in
serious errors. These conclusions arise from the fact that regional crude oils represent a physical-
chemical trend; therefore, all attempts to develop a general correlation using field measured
parameters to estimate the saturation pressure from a large data bank have failed. For this reason,
Elsharkawy (2003) made the first attempt to correlate the saturation pressure to the reservoir fluid
composition instead of using the production data. In recent years, there have been several attempts
to estimate the saturation pressure of oil reservoirs, which will be one of the tasks of this paper.

Elsharkawy presented a correlation of the bubble point pressure for the oil reservoir using the
same input data needed for the equation-of-state (EOS) calculations, that is, the compositional
data and the reservoir temperature. Elsharkawy’s model is based on the saturation pressure
measurements of 60 crude oil samples from the Middle East and 75 collected from the literature.

AlQuraishi (2009) attempted to model the saturation pressure using Elsharkawy’s data. The
model was developed using linear genetic programming. He correlated the saturation pressure to the
formation temperature, methane content, and heptanes plus molecular weight. Thus, AlQuraishi’s
model neglected the effect of the intermediate and heptane plus content on the saturation pressure.
The error analysis reported by AlQuraishi indicates that his model has a 5.8% error compared to
7.7% by Elsharkawy, 9.9% using the SRK-EOS, and10.1% using the PR-EOS.

Bandyopadhyay and Sharma (2011) presented a model to predict the bubble point pressure,
using temperature and fluid composition. They used 129 experimental and literature data originally
published by Elsharkawy (2003) to develop their model. The model introduced a temperature
interaction parameter that depends on compositions. The proposed model has a set of 24 coefficients
and the estimated bubble point pressure is calculated as the sum of the series calculations. They
reported an average absolute error (AAR) of 7.83% using their model compared to 8.3% using
Elsharkawy’s simple model (2003), 10.15% using SRK-EOS, and 10.58%using the PR-EOS.

Farasat et al. (2013) presented a new mathematical approach to calculate the crude oil saturation
pressure as a function of the temperature and the reservoir fluid composition. The model developed
by Farasat et al. used 130 experimental data, which were originally published by Elsharkawy
(2003). Farasat used a support vector machine (SVM) to model the saturation pressure. They did
not clearly demonstrate how to calculate the saturation pressure from the SVM model. Moreover,
they did not indicate the overall average absolute deviation (AAD) for their model compared to
other published models and both the PR-EOS and SRK-EOS.
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Ahmadi et al. (2014) also presented an ANN technique called gene expression programming
(GEP) to determine the bubble point pressure of the oil samples. Similar to Farasat et al. (2013),
Ahmadi’s model used most of the data previously published by Elsharkawy (2003) to construct
a non-linear equation using reservoir fluid compositions and temperatures as input parameters.
The proposed model is highly complicated and consists of 8 equations that have several constants
compared to the one simple equation proposed by Elsharkawy (2003). They compared the
performance of their proposed model to the SRK-EOS and PR-EOS; however, their paper does not
mention how the heptanes plus fraction was treated and characterized for the EOS calculations.
They reported an AAD of 4% using the proposed model compared to 8% using Elsharkawy’s
model (2003), 10.9% by PR-EOS, 10.5% by SRK-EOS, and 15% by Bandyopadhyay and Sharma
(2011).

Gholami et al. (2014) estimated the bubble point pressure using a “support vector regression
SVR and a supervised learning algorithm SLT based on the statistical learning theory”, and then
the ACE was used. The model used reservoir fluid compositions and temperature to estimate
the bubble point pressure. Gholami et al. (2014) used the same data originally published by
Elsharkawy (2003). They presented three attempts based on genetic programming to correlate the
bubble point pressure: SVR, ACE, and power-law committee machine (PLCM). The ACE-based
method resulted in a set of three equations with a matrix of [8 by14] constants. Gholami et al.
(2014) compared the accuracy of their model to the SRK-EOS and PR-EOS predictions reported
by Elsharkawy (2003). Based on their AARD analysis, the PLCM model has the lowest errors
followed by the SVR model, Elsharkawy’s model, ACE model, PR-EOS, and SRK-EOS.

Lately, Jarrahian et al. (2015) presented two empirical models to estimate the saturation pressure
of black oils. The first model is based on production information. The second model is based
on compositional information mostly from Elsharkawyl (2003) and Heidaryan and Moghadasi
(2011). They have not presented a comparison of the accuracy of their model to Farasat (2013)
model, Ahmadi (2014) model, and Gholami (2014) model.

This paper is concerned with the estimation of saturation pressure using compositional data.
Therefore, the objective is to develop a simple, yet robust model to estimate the saturation pressure
for various types of reservoir oils using a larger data bank than that used by other published studies.
The accuracy of the proposed models is compared to previously published models as well as SRK-
EOS and PR-EOS.

Data bank

This paper uses 231 data sets of crude oil saturation pressure and compositions measurements.
The data set consists of 130 data sets originally reported by Elsharkawy (2003) in addition to
others collected from the literature, 94 new data sets that have not been published; as well as 7
newly measured samples at the Petroleum Fluid Research Center (PFRC) in Kuwait University.
These data represent a wide range of compositions, such as volatile oils, black oils, and heavy oils.
The data range of pressure is from 537 to 5065 psia and temperatures ranging from 58 to 3190F,
crude oil compositions from C1 to C7+, non-hydrocarbons, such as N2, H2S, and CO2, and the
molecular weight and the specific gravity of the heptane plus fraction.
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Data classification and screening

The compositions and the saturation pressure measurements in the data bank are subjected to
a meticulous screening process to check the validity of the data. Our screening criteria uses the
following steps: the sum of the molar compositions of all the components must add up to one;
otherwise, the sample is eliminated.

After filtering, data were reduced to 214 and divided into 179 measurements used to develop
the new models, and 35 data sets are used for the blind test of the robustness of the proposed
models. Statistical analysis of the input variables of the data set used in training and testing the
extended and the lumped models are illustrated in Table 1.

Table 1. Description of the data used to develop and test the extended model.

Input 179) Tr?]gl;;g model (Data 28) Testing rzzivpzl)ri;l;f;::;‘;;

Min Ave Max | Min Ave Max Min Ave Max

N2 0 0.35 1.67 0 0.27 1.67 0.10 0.26 0.35
CcO2 0 1.27 11.37 0 1.17 11.37 | 0.14 041 0.83
H2S 0 0.15 3.68 0 0.15 322 0.00 0.00 0.00
Cl1 13.16 | 33.86 | 74.18 | 19.50 | 34.79 | 7336 | 20.64 | 28.25 | 42.79
C2 3.36 8.07 1371 | 4.64 8.26 11.63 | 6.69 7.88 10.82
C3 0.89 6.59 1187 | 246 6.76 | 1203 | 6.05 6.59 7.10
C4 095 4.46 84 1.66 441 6.58 4.03 5.05 5.93
C5 0.40 321 5.95 1.00 3.11 5.23 3.36 433 5.52
Cc6 0.00 3.14 6.37 0.99 3.15 546 2.88 374 433
+C7 10.72 | 38.89 | 57.73 | 11.18 | 37.88 | 51.22 | 27.61 | 4349 | 51.31
+SG.C7 0.74 087 | 0959 | 0.70 0.86 093 0.85 0.89 0.92

+MWC7 134 240 368.9 105 223 292 216 262 298

T,oF 58 156 319 58 165 261 121 157 230
Ps, psia 537 2198 | 5065 1025 | 2307 | 5000 1227 1779 | 3344

Several of the reported compositional data have extended analysis up to (C, ). The following

20+
techniques are used for lumping or regrouping the extended analysis into single pseudo-fractions
(C,,). “The mole fraction (X,) of the individual components of the extended analysis is equal to

the plus fraction” (Ahmad, 2011).

XC7+=2XI. 1=7,8 ...n (1)

The molecular weight average (Mw) of the single component of model is equal to the molecular
weight of the heptanes plus fraction.

o X, Mw, -_
ch7+=E— 1=7,8...n )

=7 XC7+
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The density of the total heptane plus-fraction (g,,) can be calculated as follows:

=1 7 =7,8 ...
NX . Mw. o ! 3)

= Vi

It is important to note the significance of the density of plus fraction because its density
determines its paraffinic naphthenic aromatic (PNA) content.

Equation-of-state calculations

The EOS calculation of the saturation pressure is compared with the newly developed
models as well as the other methods. The two EOS calculations considered in this paper are
the ones most considered and widely used in the petroleum industry to evaluate the volumetric
and phase behavior of reservoir fluid properties: the (Soave-Redlich-Kwong, 1972) EOS (SRK-
EOS) and the (Peng-Robinson, 1976) EOS (PR-EOS). It should be noted that the accuracy
of any EOS calculation of the saturation pressure largely depends on the number of pseudo-
components and the splitting schemes used to divide the heptane plus fraction. Therefore, both
calculations using EOS to estimate the saturation pressure will not lead to similar results, even
though the number of pseudo-components, characterization of the pseudo-components, and
binary interaction parameters were the same. Appendix A is given to show details of the EOS
calculation, splitting the hydrocarbon fraction, characterization of the sub-fractions and the
binary interaction numbers.

Model development

As previously stated, the objective of this work is to provide the petroleum reservoir engineer
with a simple, yet accurate tool to estimate the saturation pressure for a variety of crude oils
using compositional data when experimental is unavailable. Two models are presented in this
study to calculate the saturation pressure of the crude oil samples. The first model uses all input
parameters, such as the molar compositions of the hydrocarbon and non-hydrocarbon components
similar to the EOS models. This model is referred to as the extended model. The second model
uses fewer input parameters in which some of the hydrocarbon components have been lumped
into a single group; this is designated as the lumped model. Both models are simpler than all
published correlations, physically correct, and have an acceptable accuracy compared with the
well-known EOS.

Figure 1 shows a correlation matrix of all the data available under consideration. This figure
also indicates the relative importance of each of the input variables into the first proposed model.
It agrees with most published correlations and the EOS that the methane content, heptane plus
content, and temperatures have the greatest impact on the saturation pressure, followed by the
intermediate content. The data understudy indicates that the non-hydrocarbon has the smallest
impact. This result is simply a reflection of the molar contribution of each component comprising
the crude oil composition.
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Figure 1. Correlation matrix for all the variables in the oil data bank.

Model I- extended model

The extended model uses 13 variables comprising the molar compositions of the pure
components, heptane plus properties, and reservoir temperatures, which are similar to the input
parameters for the EOS. Figure 2 shows the correlation coefficient graph of all the input parameters
in the extended model. Thus, the elimination of the intermediate effect has a negative impact on
the accuracy of the predictive model. Our proposed extended model has the following form:

Ps =124.72N,+ 17.57CO, + 22.55H,S + 64.22C; - 9.80C; - 52.49C5 + 6.16C4- 19.22C5 - 23.63Cs

-21.43C7++4353 lgers + 1.14Mwc7+ +4.29T (4)

where T is the temperature in °F, Ps is the saturation pressure in psia, and the hydrocarbon and
non-hydrocarbon compositions are expressed in mole percent.
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Temp
MWC7+
GR.C7+

C6
c5
ca
c3
c2
c1
H2S
Cco2
N2

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

Figure 2. Correlation coefficient for all the variables in the training model (179 data).

Model II-lumped model

The second model (lumped model) is much simpler and uses only 7 variables. Several lumping
schemes are adapted in the petroleum industry for phase behavior modeling and reservoir simulation
of the petroleum reservoir fluids (Ahmed, 2011). Hydrocarbon components are grouped into a
pseudo fraction based on their molecular weight (Whitson, 1980), the similarity of their physical-
chemical properties (Lee, 1979), their carbon number, their true boiling point, or their number of
families based on the chemical structure (Becker et al., 2015). Emera and Samara (2005) proposed
lumping the hydrocarbon components into volatile (C,+N,), intermediate (CO,, H,S, C, to C,) and
heavy categories (C,,) to calculate the minimum miscibility pressure. Duan et al. (2013) proposed
lumping several components into a single carbon number (SCN) with predetermined values for
properties, such as critical pressure, temperature, and eccentric factor. Others have proposed
optimal lumping schemes based on the objectives (Lin et al., 2008). In lumped model, C,+N,, C,,
CO,, and H,S, the intermediate (C,to C,), heptanes plus (C_,) and its properties, and temperature
are the input variables. The correlation matrixes of the lumped components are provided in Figure
3. Even though the non-hydrocarbon has the least effect, their contribution is important, especially
the H2S in the case of sour crudes.

Temp., F
C7/Sg*mw
C3-C6

H2S

co2

Cc2

C1+N2

-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

Figure 3. Correlation matrix for the lumped model (179 data).
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Both models presented by AlQuraishi (2009) and Bandyopadhyay and Sharma (2011) have
eliminated the effect of H2S. The proposed model has the following form:

Ps= 82.115(C1+N2)-11.635C,+39.158CO,+ 38.244H,S -1.217(Cs...Co) ~890.701(C7:/MW+:*y7,) +

4.217T-1042 )

where T is the temperature in °F, Ps is the saturation pressure in psia, and the hydrocarbon and
non-hydrocarbon compositions are expressed in mole percent.

Result and discussion
Model accuracy

The accuracy of the two proposed models used to estimate the saturation pressures of the
previously described crude oil samples is shown in Table 2 using new compositional and saturation
pressure data. This table shows the average relative error, average absolute relative error, standard
deviation, and the correlation coefficients for all the methods considered in this study. Details of
the equations used are given in Appendix B. Table 2 also reports the accuracy of the PR-EOS,
SRK-EOS, Elsharkawy’s (2003) model, AlQuraishi’s (2009) model, Bandyopadhyayand Sharma’s
(2011) model, and Jarrahian’s (2015) model. The methods proposed by Gholami et al. (2014),
Ahmadi et al. (2014), and Jarrahian et al. (2015) are included in Table 2, even though they produce
an unreasonable estimate of the saturation pressures, as explained in appendix C.

Table 2. Error analysis of the proposed models in comparison with all the investigated methods.

Method %ARE %AARE SEE %R2
PR-EOS 6.24 10.19 14.13 92.65
SRK-EOS 3.12- 10.36 1591 92.80
(2003) Elsharkawy 0.85 8.57 14.10 93.58
(2009) AlQuraishi 9.36- 11.37 17.52 90.61
(2011) Bandyopadhyay 8.05 12.28 17.83 90.82
(2014) .Gholami et al ? ? ? ?

(2014) .Ahmadi et al ? ? ? ?

(2015) Jarrahian et al 3552 35.56 38.68 27.38
New Extended Model 0.11 7.84 12.08 95.37
New Lumped Model 0.19 7.81 12.24 94.90

This table indicates that the extended and the lumped models have an AARE in the order of
7.84% and 7.81%, respectively. It should be noted that the complications in the Bandyopadhyay
and Sharma (2011) model did not improve the accuracy of the saturation pressure, because it
had a large error. It is also noted that Jarrahian et al. (2015) model produces an average error of
36%. Compared with the EOS, the lumped model has a few constants and eliminates the splitting,
characterizing the pseudo-components and binary interaction parameters necessary for the EOS
calculations. The lumped model as well as the extended model is very simple and requires one-step
calculations compared with all the other methods reported in Table 3.
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A cross-plot of the calculated saturation pressure using the extended model based on the
training data versus the measured data is illustrated in Figure 4A. This figure indicates that most
of the data falls on the unit slope line, and there is no over-fit.
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Figure 4A. Cross plot of the extended model using 179 training data.

This trend is supported by the high correlation of regression of the model (95.4%) presented
in Table 2. Figure 4B shows a cross-plot of the testing data (28 from the literature and 7 new
measured in PFRC at Kuwait University).
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Figure 4B. Cross-plot of the extended model using 35-testing data.
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The extended model indicates an excellent agreement with all of the 28 data sets chosen at
random, with the exception of a few data points at higher pressures. Additionally, the model has a
good match for the 7 newly measured samples.

Figure 5A shows the performance of the lumped training-model for capturing the measured
saturation pressure for most of the 179 samples.
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Figure 5A. Cross-plot of the lumped model using 179 training data.

A cross-plot of the calculated saturation pressure using the lumped model based on the training
data versus measured data is depicted in Figure 5B.
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Figure 5B. Cross-plot of testing data for the lumped model.
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This figure indicates that most of the data scatters fall into the unit slope line. The lumped
model also has a high coefficient of regression of 95%, which is indicated in Table 2.

Models validity

The accuracy and validity of the two newly introduced models to estimate saturation pressures
of various types of oil are reported in Table 3. This table illustrates the capability of the newly
proposed models to predict the saturation pressure for volatile oils, and black oils. Table 3 provides
the compositions, properties of the heptane plus fraction, temperature, and measured saturation
pressures of the samples. Additionally, the calculated saturation pressure using the PR-EOS
(1976) model, SRK-EOS (1972) model, Elsharkawy’s (2003) model, AlQuraishi’s (2009) model,
Bandyopadhyay and Sharmas (2011) model, and Jarrahian et al. (2009); and the extended and
lumped models are provided in Table 3. It is clear from this table that the proposed models have
a wide range of applications regardless of the crude oil types. We have also included information
regarding the 7 newly measured data sets, at the PFRC, compositional, and saturation pressure.
At the bottom of Table 4, we have provided the unpublished data of the compositions and the
saturation pressures at low temperatures. It is well known that the saturation pressure of a crude
sample is measured at low temperatures in addition to the reservoir temperature as a method to
check the quality of the sample.
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Table 3. Comparing model accuracy for calculations of saturation pressures for various crude oils.

Volatile-Oil-Samples (C7+<30)

Fluid Source | index | N2 | CO2 | H2S | C1 | C2 | C3 | C4 | C5 | C6 | C7+ | GRC7+ | MWC7+ | T,F | Ps,psi | SRK | PR | Elsh | Alqg | Bandy | Jarr | Extd | Lump

Rosenegger 7 [003{839| 0 |474]103 612 | 42 | 289 (205|186 | 083 180 295 | 4000 | 3933 | 3879 | 4460 | 4420 | 4165 | 3317 | 4128 | 4178

Vogel-80 13 1065(002( 0 45 | 125|893 | 6.03 | 3.02 | 1.44 | 224 | 081 184 140 | 3002 | 2624 | 2548 | 2742 | 2895 | 2643 | 1812 | 3008 | 299

Dansh-92 18 0 0 0 | 468|877 | 744 | 401 | 2.56 | 402 | 264 | 077 158 212 | 2941 | 2550 | 2594 | 3248 | 3617 | 3269 | 1944 | 3269 | 3374

Middle East 31 | 044038 | 0 [491| 76 |613|384 |25 2 28 | 084 231 199 | 3739 | 3522 | 3507 | 3418 | 3951 | 3508 | 2309 | 3629 | 3644

Middle East 45 [003]097| 0 |416| 108|752 | 45 | 3 [243]291| 085 208 241 | 3069 | 3109 | 2979 | 3080 | 3513 | 3138 | 1962 | 3122 | 3140

Coats-86 51 | 055|103 0 [365]993(88 | 6 |378 356|304 | 084 200 234 | 2746 | 2537 | 2472 | 2714 | 2945 | 2643 | 1682 | 2696 | 2720

Black-Oil -Samples (35<C7+<55)

Fluid Source | index | N2 | CO2 | H2S | C1 | C2 | C3 | C4 | C5 | C6 | C7+ | GRC7+ | MWC7+ | T,°F | Ps,psi | SRK | PR | Elsh | Alq | Bandy | Jarr | Extd | Lump

Coats-86 73 | 164 (008 | 0 [284 716|105 | 84 |3.82 405 36 | 084 252 131 | 1694 | 1674 | 1618 | 1615 | 1738 | 1644 | 1084 | 1735 | 1713

Middle East | 88 | 0.08 | 137 [ 069 | 36 | 8.67 | 594 | 297 | 15 | 3.1 |39.7 | 09 274 168 | 2505 | 2710 | 2318 | 2247 | 2608 | 2321 | 1476 | 2455 | 2445

Middle East | 114 | 0.29 | 048 | 0 | 28.4 | 829 | 7.38 | 5.06 | 3.42 | 441 | 423 | 0.8 252 133 | 1632 | 1672 | 1477 | 1544 | 1748 | 1517 | 984 | 1595 | 1598

Middle East | 122 0 [125| 0 334924607 | 24 | 162|278 |433 | 085 252 230 | 2110 | 2313 | 2278 | 2424 | 2737 | 2438 | 1410 | 2392 | 2412

Middle East | 134 0 [017 | 0 |286|863| 743|381 261|411 447 | 086 249 134 | 1548 | 1551 | 1429 | 1477 | 1764 | 1433 | 937 | 1516 | 1567

Middle East | 146 | 044 | 083 | 0 | 278 | 754 | 69 | 461 | 3.1 | 311|457 | 09 272 133 | 1565 | 1799 | 1505 | 1558 | 1730 | 1528 | 1002 | 1607 | 1590

moharam-96 | 149 | 021 {034 | 0 20 793 8 | 66 |587 508|459 | 086 230 235 | 900 | 1353 | 1290 | 1531 | 1514 | 1225 | 773 | 1288 | 1294

Middle East | 162 | 035 [ 047 | 0 |[265 | 7.71 | 6.05 | 403 | 408 | 422 | 466 | 0.89 253 135 | 1500 | 1613 | 1380 | 1427 | 1631 | 1391 | 923 | 1464 | 1456

Middle East | 176 | 0.2 | 051 | 0 | 288 | 7.91 | 6.46 | 3.17 | 2.07 | 3.25 | 47.7 | 0.88 250 134 | 1615 | 1665 | 1476 | 1574 | 1783 | 1502 | 981 | 1581 | 1614

Middle East | 194 | 0.21 | 015 | 0 |27.8 | 7.68 | 6.19 | 3.41 | 1.81 | 2.84 | 49.9 | 0.86 228 134 | 1590 | 1532 | 1377 | 1545 | 1680 | 1426 | 923 | 1473 | 1493

Rosenegger | 207 | 037 | 002 | O |173 |6.11 | 823 (547|376 |39 | 548 | 085 242 156 | 537 | 938 | 888 | 914 | 1064 | 836 | 558 | 674 | 731

Newly-Measured Kuwait University Laboratory

Fluid Source | index | N2 | CO2 | H2S | C1 | C2 | C3 | C4 | C5 | C6 | C7+ | GRC7+ | MWC7+ | T,°F | Ps,psi | SRK | PR | Elsh | Alg | Bandy | Jarr | Extd | Lump

KU-1 209 | 033022 0 |[256 687 (639|561 468|433 | 46 | 0.879 m 133 | 1595 | 1360 | 1530 | 1442 | 1514 | 1394 | 860 | 1349 | 1337
KU-2 210 | 035 (047 | 0 |[265| 771 (605|403 |4.08 | 422|466 | 0.893 253 135 | 1500 | 1400 | 1620 | 1427 | 1631 | 1391 | 924 | 1465 | 1456
KU-3 211 | 027|074 | 0 |231| 72 | 645|593 |466 |4.16 475 | 0906 290 138 | 1283 | 1140 | 1360 | 1284 | 1448 | 1296 | 800 | 1269 | 1219
KU-4 212 | 022 ({026 | 0 |[206|669 (665|511 |552 | 36 |513 | 0919 298 171 | 1227 | 1120 | 1300 | 1188 | 1415 | 1170 | 742 | 1155 | 1131
KU-5 213 | 019|014 | 0 |278|837|688 528|433 385|432 | 089 278 121 | 1524 | 1300 | 1560 | 1402 | 1659 | 1409 | 928 | 1524 | 1489
KU-6 214 | 033|024 | 0 |313|748|658 |48 | 37 (317 |43| 09 274 171 | 1978 | 1800 | 2200 | 1975 | 2242 | 1985 | 1224 | 2052 | 2026
KU-7 215 | 01 | 083 | O |[428|108 | 7.1 | 451|336 |28 |276| 08 216 230 | 3344 | 3070 | 3400 | 3083 | 3568 | 3139 | 2003 | 3204 | 3200

Low-Temperature Oil Samples (59°F<T<71°F)

Fluid Source | index | N2 | CO2 [ H2S | C1 | C2 | C3 | C4 | C5 | C6 | C7+ | GRC7+ | MWC7+ | T,°F | Ps,psi | SRK | PR | Elsh | Alqg | Bandy | Jarr | Extd | Lump

Middle East 101 0 | 112|021 27 | 108|923 | 497 | 2.62 | 3.33 | 408 | 0.88 249 7 1247 | 1090 | 1033 | 1040 | 1235 | 564 | 808 | 1167 | 1205

Middle East 117 | 036 [ 017 | 0 |27.2 | 893 | 86 | 6.07 | 3.71 | 2.55 | 424 | 0.88 271 68 1130 | 1028 | 1245 | 1094 | 1248 | 766 | 820 | 1230 | 1228

Middle East 135 0 | 017 | 0 | 286|863 | 743|381 |261|411|447 | 086 249 70 1270 | 1055 | 1255 | 1130 | 1311 | 783 | 826 | 1242 | 1297

Middle East 138 [ 014|054 | 0 | 294 |79 | 619 |39 | 325|384 |447 | 09 290 59 1265 | 1065 | 1350 | 1191 | 1301 | 880 | 894 | 1401 | 1390

Middle East 147 | 044 | 083 | 0 |27.8 | 754 | 69 | 461 | 3.1 | 311|457 | 09 272 67 1320 | 1125 | 1400 | 1201 | 1268 | 921 | 879 | 1324 | 1312

Middle East 173 | 006 | 081 | O | 313 | 742|568 |282| 163|264 |476 | 089 270 68 1460 | 1215 | 1535 | 1441 | 1463 | 1026 | 975 | 1550 | 1576

Middle East 193 (016 | 03 0 | 247 | 751|692 | 476|265 (343|496 | 088 239 71 1050 | 975 | 1156 | 1008 | 1107 | 701 | 714 | 969 | 986

Elsh: Elsharkawy?! (2003) Alg: AlQuraishi® (2009) Band: Bandyopadhyay and Sharma* (2011) Jarr: Jarrahian et. al.? (2015)
Extd: Extended model Lump: Lumped model
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Figure 6A reports the error of all the methods considered in this paper to predict the saturation
pressure for volatile oils (heptane plus content below 30%).

Lumped

Extended

Jarrahian (2015)
Bandyopadhyay(2011)
Alquraishi (2009)
Elsharkawy(2003)

PR (1976)

SRK (1972)

0% 5% 10% 15% 20% 25% 30% 35% 40%
ARE, %

Figure 6A. Comparison of all the models’ accuracy for the volatile oil samples.

Both the extended and the lumped models have an AARE of nearly 4% followed by
Bandyopadhyay and Sharma’s model (2011) and Elsharkawy’s (2003) model; the SRK-EOS has
nearly twice the AARE of the newly proposed model. AlQuraishi’s (2009) model has an AARE
of 12% because the model is based on methane and neglects the effect of heavy and intermediate
components, whose contribution is highly significant in the reservoir and production performance
of volatile crudes. Jarrahian et al. (2015) model is not suitable for volatile oils; it shows a 34%
error in the estimated saturation pressure.

The performance of the extended and lumped models compared to the various methods for the
black oil samples (35< C7+<55%) is provided in Figure 6B. The newly proposed models have an
AARE close to 10%, followed by Bandyopadhyay and Sharma’s (2011) model 14%, the SRK-EOS
and PR-EOS 16%, and Elsharkawy (2003) model 17%. AlQuraishi’s (2009) model has an AARE
of 23%. Jarrahian et al. (2015) model shows a 33% error in estimated saturation pressure even
though the authors claim that the model is suitable for black oils.
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Figure 6B. Comparison of all the models’ accuracy for the black oil samples.

Figure 6C shows the error level of all the methods as well as the proposed models for the newly
measured crude oil samples at Kuwait University using the PFRC. Again, Jarrahian et al. (2015)
model shows a 40% error in estimated saturation pressure.

Lumped [

Extended

Jarrahian (2015)
Bandyopadhyay(2011)
Alquraishi (2009)
Elsharkawy(2003)

PR (1976)

SRK (1972)

0% 5% 10% 15% 20% 25% 30% 35% 40% 45%
ARE, %

Figure 6C. Comparison of all the models’ accuracy for the newly measured samples at KU.

The performance of all published models at low temperature (59oF < T < 710F) is illustrated
in Figure 6D. The low-temperature calculation indicates that Bandyopadhyay and Sharma’s4
model has accuracy problems and is not valid at low temperatures because the authors proposed a
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temperature-composition related coefficient. Also, Jarrahain et al. (2015) model is not suitable at
low temperature. It shows a 32% error in the estimated saturation pressure.

Lumped |

Extended

Jarrahian (2015)
Bandyopadhyay(2011)
Alquraishi (2009)
Elsharkawy(2003)

PR (1976)

SRK (1972)

0% 5% 10% 15% 20% 25% 30% 35%  40%
ARE, %

Figure 6D. Comparison of all the models’ accuracy for low-temperature oil samples.

The ability of the proposed models to capture the thermodynamic is thoroughly checked against
its independent variables. In order to check the validity of the model, the predicted values are
compared to the experimental data as well as the predictions by other methods. The model is able
to capture the change of the saturation pressure as a function of temperature as illustrated in Figure
7. Two main points are observed; first, the model follows the physical trend predicted by the
EOS’s. Second, it matches the measured saturation pressures much better than the other methods.

=== \leasured, Ps = @ll= Ps-SRK ceeheec PS-PR
==é==E|sharkawy === Alqurishi ==@-=Bandyopadhyay
=== :Extended Lumped === ¢ Jarrahian

3000
2800
2600
2400
2200
2000
1800
1600
1400
1200
1000 T T T T T T

110 130 150 170 190 210 230 250

Temperature, °F

Figure 7. Changes in saturation pressure as a function of temperature for the different models (Sample #70).
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Conclusion

In this paper, two models are offered to estimate the saturation pressure of a variety of
crude oils when measurements are unreliable or samples are unavailable. The two models are
developed using compositional data and saturation pressure measurements from a large data
bank of a 231 crude oil samples comprising literature data, and newly measured and reported
data. The input parameters in the first model are the extended hydrocarbon and non-hydrocarbon
molar percentages and reservoir temperatures. The lumped model uses hydrocarbon fractions of
intermediate, and heptane plus fractions in addition to its properties, and the reservoir temperature
as input parameters. The accuracy of the two models has been tested and compared to published
correlations as well as the SRK-EOS and the PR-EOS, in which all models use compositional data
as the input parameters. The comparison indicates that the two models are much more accurate than
all the published methods. The validity of both models has also been tested using various types of
crude oils samples and compared to experimentally measured saturation pressures and estimates
using the EOS as well as the published correlations. The proposed models are physically correct
and much simpler than all the published methods. The models do not require tedious computations
and eliminate splitting of the plus fraction, characterization of the pseudo-components that are
required for the EOS calculations.
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Nomenclature
Ps Saturation pressure
BPP Bubble-point pressure
EOS Equation of state
AARE Average absolute relative error
AAR Average absolute error
X; The mole fraction
SEE Standard Error of Estimation
R2 Correlation Coefficient
Mw Average molecular weight
Y7+ Heptanes plus-fraction

? The method produces unreasonable results as indicated in the appendix.
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Appendix A

Equation of State Calculation

Many cubic equation of state are widely used for saturation pressure calculations. None of the
available EOSs can be singled out as the most superior to predict the saturation pressure61. The
accuracy of the EOS’s calculations depends on the following:

1. The type of EOS used, PR, SRK, etc.

2. The splitting scheme used to divide the heavy hydrocarbon fraction into sub-fractions.
3. The correlation used to estimate the critical properties of the sub-fraction.

4. The inclusion of the binary interaction number (Kid.).

In this study, two equations of state calculation of saturation pressure are considered, Soave-
Redlich-Kwong (SRK-EOS) and Peng-Robinson (PR-EOS).

SRK-EOS has the following from:

b= (VR—T b) - (V(I;Z i b))

where P is the pressure, V the molar volume, T the absolute temperature, and R the universal gas

constant. The parameter a is a dimensionless factor, which becomes unity at critical pressure. At
the bubble point pressure, the composition of the liquid phase (Xi) equals the overall composition
(Z,) of the reservoir fluids. This leads to the following expression:

EZL'*KL':l

where ki is the equilibrium ratio for the component calculated from the equation of state. Thus,
the saturation pressure (Pb) is calculated from the above equations using the following expression:

fil
Pi=)
d (p;;

where is the vapor fugacity coefficient and is the liquid fugacity of the ith component, which
is calculated from the equation of state.

PR-EOS has the following form:

b= (VR—Tb) - (V(V + b)afb(V — b))

The difference between SRK-EOS and PR-EOS lies in calculation of the parameters, a, b,
and a. This difference results in that the fugacity, fugacity coefficient, and compressibility factor
calculated from each of the equations of state are quite different. Therefore, the results from
calculating DPP using SRK-EOS and PR-EOS are not the same.
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Splitting the plus fraction

Hydrocarbon plus fraction that comprises a significant portion of the reservoir fluids creates
problems when predicting thermodynamic and phase behavior of these fluids using equation
of states. These problems arise from the difficulty of properly characterizing the plus fraction.
Several splitting schemes are proposed to divide the hydrocarbon plus fraction into sub-fraction,
(Pedersen et al., 1989), (Katz, Firoozabadi, 1978), and (Yarborough, 1978). The logarithmic
distribution proposed by Pedersen et al. (1989) is considered in this study.

Characterizing the sub-fraction

Equations of state calculations require critical pressure (P ), critical temperature (T ), and
eccentric factor (w) for every component forming the hydrocarbon fluid. Critical properties and
eccentric factor are well-documented for pure components. However, critical properties for the
sub-fraction are estimated from correlations. In this study (Pedersen et al., 1989), correlation is
used to calculate the critical properties of the sub-fraction.

Binary interaction

To use the SRK or PR equations of state to predict saturation pressure of complex hydrocarbon
mixture, it is necessary to correct for the binary interaction (Ki,j) between different components
by means of empirically derived interaction numbers. The use of binary interaction in equations
of state calculations is controversial. Some researchers neglected it for hydrocarbon components,
used standard values for EOS (Whitson and Brule, 2000), and others used binary interaction,
which are function of temperature (Varotsis et. al., 1986), pressure (Voros and Tassios, 1985),
or compositions (Bjorlykke and Firoozabadi, 1992). In this study, the objective is not to find the
optimum binary interaction that leads to accurate prediction of the saturation pressure. Therefore,
the interaction number is set to zero.

Appendix B

Statistical Analysis

To study of the proposed models against the other methods, the following statistical parameters
have been calculated. The average percent relative error (ARE):

Ng

100 p'exP _ ppalc
AREY% = Z ( : :
N, b

i=1

ARE% is a measure of bias; a value of zero indicates an unbiased distribution of the error.

The arithmetic average of the absolute values of the relative errors (AARE):

100 & [pEP — prate
AARE% = — Z(l TR >

= P;

The correlation determination R? a measure of the precision of the fit of the data:
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N exp 1c\2
24 (R — pfete)

N exp exp 2
Zizdl(pi ~ Pmean

The standard error of estimates (SEE) is the square root of the mean square error, which is the
variance of the true residuals. It is expressed as

Ny (Piexp_picalc) 2
Zi:l exp

R?=1-

0.5

P

SEE =

(Ng—v—1)

where v is the number of variables.

Appendix C

In this appendix, sample calculations are presented to show the deficiency of some of the
published methods.

Input parameters:

N, CO, | HyS C, C, C; Cy Cs Ce Crs GR.C7+ | MWC7+ | T,°F | Ps, psia

0.65 | 0.02 0 |45.02]|1245| 893 |6.033.02| 144 |2244| 0.8l 184 140 3002

(Ahmadi et al., 2014)

Ahmadi et al. proposed an 8-step calculation (copied from their paper) to estimate the BPP as
follows:

i . 1T 01512
BEP = A x My, —— +C x Vol /Intet +0 x SCes , e A= 14884650, % 1087 B4—mm " 4 1670.58+T
G- s T
F 245789 0° . G 634573  8.72883
Hiwe B e O e T ()
; 208647 176162  10°
41325 61977x10° 106393 x 10° S Mg, % 191963 —Mwiy, x 21.3427
= l tTx 13— (D) 128515 712613
Vol /lnter. © Mwi, T g T 477494500, x 953273 @)
T+
g
D= 105345 x 10+%5_ 130748 %107 o eos 0ug F—pa13s7 92891 10° o oo ona
MWC-,:‘ MW@-‘
1.20252 » 107 121782 o 191446 x 10°  3873.62 10
B T ~ Vol /Tnter. ) - T "Vl /Inter. ao
F=251471% 10°® 4T % 253325 0201256 x 23,9771 _ 103193 a2
347893 x 16° 244573 1 T
7 Vol /Tner. {

Ahmadi et al. define the Vol. /Inter. as the mole percentage ratio of the volatile (C,& N,) to the
intermediate components (C, to C,, CO,and H,S). Application of the above equations (6 through
12 and 5, respectively) uses the input parameters results in the following.
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Vol./Inter. A B C D E F G BPP

1.43211 | 1643.9 | 1545062 | -271.127 | 45122.71 | 23642.47 | 2.57E+08 | 11753 1,794,123

The calculated saturation pressure (BBP) from Eq.5 is 1,794,123 psia, which is unreasonable.
This indicates a deficiency in the model.

(Gholami et al., 2014)

Gholami et al. presented a three-step calculation to estimate the BPP. They proposed an
alternating conditional expectation (ACE) to correlate the bubble pint pressure to input variables
through approximating the optimal transformation of the input variables using their equation 15.

— \'5 i
T (M) = Xi-o BiM' (15)
where M is non-transformed input of model coefficients of Bo through BS5 for each input given
in Table 1 in their paper.

Table 1: Polynomial coefficients for determining optimal transformation of each input variables

M Bn B] Bz B} B4 BS

N, 0.0185030779 -0.2916633775 1.3819288142 -2.3399985776 1.5543841420 | -0.3601815110

CO, 0.0617156522 -0.0398373616 -0.0038619272 0 0 0
H,S 0.0506358597 -0.1258546745 -0.0132294174 0 0 0
C, 1.3087460313 -0.0396562495 0 0 0 0
C, 0.2231049163 0.0075432380 -0.0047256448 0 0 0
Cs 1.0696557789 -0.1702671404 0 0 0 0
Cy 0.1072162412 -0.0427491659 0.0060729584 -0.0004117921 0 0
Cs 0.5069895059 -0.1501134188 0.0062648526 -0.0015254204 0 0

Cs 0.3348331271 0.3124433847 -0.4085365491 0.1395671394 | -0.0202419290 | 0.00106663389

Cr 4.0459303201 -0.0994388167 0 0 0 0
SG7: | 239.7204527985 | -1175.42286924 | 2135.5051639487 | -1709.8467582 | 509.0285892159 0
MWy | 0.3722804910 -0.0134792734 0.0012182843 -0.0000004112 0.0000000004 0
T -2.7706165514 0.0346240882 -0.0001373443 0.0000001836 0 0

Application of Equation 15 and the compositional data of the previous example resulted in the
following coefficients for the input values.
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N, 0.00584
CO, 0.060917
H,S 0.050636
C,; -0.47658
C, -0.41547
C; -0.45083
Cy -0.02003
Cs 0.068769
Cs 0.273921
Cr 1.814523
SG.CT7+ -0.0197
MWCT7+ 37.03525
T.,F -0.11139

The sum of optimal transformations of input parameters is achieved from equation (16).

Tr(P,) = Tr(N,) + Tr(C0,) + Tr(H,S) + Tr(C,) + Tr(C,) + Tr(C5) + Tr(C,) + Tr(Cs) +

Tr(Ce) + Tr(Cry) + Tr(SGery) + Tr(MWes4) + Tr(T) (16)
Application of Equation (16) using the coefficient in the above table resulted in Tr(Pb) =
37.8159.

The bubble pint pressure is calculated from curve fitting, optimal formulation between sum of
transformations, and Pb, using equation (17).

P, = (57.0840387741 x(Tr(P,))?) + (1166.9102304199 x(Tr(P,))) + 2207.3573204358

7)

Application of Equation (17) resulted in saturation pressure (Pb) = 127,967 psia, which is

unreasonable, compared to the measured one is 3002 psia. This indicates that there is a deficiency
in the model.

(Jarrahian et al., 2015)
Jarrahian et al. proposed the Equation (18) to estimate the saturation pressure:

Poae = Aoexp(ArZy, + AzZco, + AsZy,s + AsZe" + Ag TS Ze, + ArZe2 yir MW +

7+ C74

Ay (T — 459.67)) (18)

where the coefficients AO through A11 are given in Table 2 in their paper.
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Table 2. coefficient of Eq. (18).
Coefficient Tuned Coefficient

Ao 8.76381902810839 x 10"
A 1.03542031515935 x 10!
A, 2.85220583982046 x 10
As 9.57159522979151 x 10
Ay 2.05038939147643 x 107
As 2.50151158241171 x 10!
Asg -1.83210325410041 x 10
A; 2.63492761796153 x 107
Ag -5.44923287210873 x 10™
Ao 4.23424455043480 x 10!
Ao -5.44298830074401 x 10
Ay 1.97788001541373 x 10™"

Application of Equation (18) resulted in saturation pressure (Ps) = 1812 psia, compared to the
measured one of 3002 psia. This indicates that model has inaccuracy problem. This inaccuracy has
been the pattern in all the crude oil samples shown in Table 2 and figures 6A through 6D.

Submitted: 06/12/2016
Revised :15/03/2017
Accepted :19/03/2017



