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ABSTRACT

Geostatistical techniques are commonly used for converting field measurements into 

continuous surface.The objective of this study was to show the better use of them in 

the interpolations of the topsoil and subsoil variables in an agricultural catchment.This 

study was conducted in a watershed basin in Tokat, Turkey in 2011. As an example, 

the spatial variability of pH, and two important heavy metal concentrations, Fe and 

Cu were examined. The soil samples were taken and analyzed at two depths (0-30 

and 30-60 cm). After checking normality, stationary and outliers, the ordinary kriging 

and isotropic cokriging methods were conducted to infer the spatial distribution of 

variables selected by using training data set that contains 115 sample points and test 

data set that contain 27 sample points.The proposed method (cokriging), in which two 

or more variables are used, were compared with the method (kriging) in which one 

variable is used. The results showed that the approach, had higher accuracy statistics 

than the conventional kriging mapping method.

Keywords:Co-kriging; geostatistics; GIS; kriging; spatial variability

INTRODUCTION

Geostatistical analysis is the method commonly used by different disciplines in GIS 

environment to interpolate field data, especially the point samples into a continuous 

form such as grid or raster data formats. 

It is well known that micronutrients such as Iron (Fe) and Copper (Cu) are essential 

elements for plant growth and yield (Soon & Bates, 1982). The concentration of 

heavy metals in soil solution plays a critical role in controlling the availability of 

ions to plants (Lorenz et al., 1994). The solubility and therefore the bioavailability 

of heavy-metal ions vary widely since many factors influence their concentration 

in soil solution. pH is one of the most important factors affecting metal availability 
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in soil (Anderson & Christensen, 1988). The variability of soil properties within 

catchments is often described by a classical method, which assumes that variation is 

randomly distributed within mapping units. Soil variability is the outcome of many 

processes acting and interacting across a continuum of spatial and temporal scales 

and is inherently scale dependent (Parkin, 1993).

Geostatistics provides a tool for improving sampling design by utilizing the spatial 

dependence of soil properties within a sampling region and is useful to illustrate spatial 

inter-relationship of collected data and it reduces error, biasedness and increases 

accuracy of estimations for kriging (Myers, 1997). Geostatistical analyses have been 

used to estimate spatial variability of soil physical properties (Lascano & Hatfield, 

1992), soil biochemical properties (Bonmatiet al., 1991;Sutherlandet al., 1991) 

and soil microbiological process (Aikenet al., 1991; Rochetteet al., 1991). Kriging 

methods for constructing prediction surface maps by using field measurements are 

widely used geostatistical techniques, which are used by different disciplines of 

science such as geomatic, agriculture, geology, and public health. Spatial variability 

patterns of soil properties withinan agricultural field or a pasture are useful tools for 

making effective management practices, defining relations among soil properties, and 

also for evaluating disruptive factors affecting these properties (Aksakalet al., 2011). 

As has been known, precision agriculture within GIS requires higher standards for the 

accuracy of spatial data. In classical statistics, parameters such as standard deviation, 

coefficient of variation, and standard error from the mean are frequently used to 

characterize spatial variability of a given property.

The aim of this study, by using the combination of the GIS and geostatistical 

analysis, was to determinethe best prediction method for pH, Fe and Cu of topsoil (TS) 

and subsoil (SS), to create thematic maps, and then to analyze spatial variability of 

these soil variables in the study area. In addition, to develop a database for monitoring 

the variability of these soil properties for future use in the catchment of Çelikli, Tokat, 

Turkey is another objective of this study.

MATERIALS

This study was conducted in 2011 in anagricultural basin, named Çelikli. It is located 

in Tokat city, which is in the North Central Anatolia of the Middle Black Sea region 

(Figure1).
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Fig. 1. Location of the study area with soil sampling points

The catchment is 7.5 ha, and has an average altitude of 1300 m. The soils are 
Entisols, Mollisols, and Alfisols, which are moderate-to-well drained soils with slope 
of 1.5° to 6.5°. The land covertypes in the catchment are farmland, grassland, and 
forestland. The major land use is farmland, covered 68% of the catchment. The mean 
annual temperature is 8°C, and the annual precipitation mean is 536mm. Table 1 shows 
some general charactetistics of TS and SS in the study area in detail. Average values of 
CaCO

3 
are 7.85% and 8.55% for topsoil and subsoil respectively. The clay content of 

the TS has changed between 4.08%- 47.88%, and the CV level has become 30%. On 
the other hand, the clay content of the SS has changed between 10.73% and 53.39%. 
The CV level has become 28%. 

Table 1. Descriptive statistics of sample points for TS and SS variables 

Topsoil

Variable Minimum Maximum Mean SD CV%

CaCO
3
(%) 1.94 47.14 7.85 7.13 91

Sand(%) 28.27 74.84 46.54 9.58 21

Silt(%) 12.91 33.20 23.45 3.94 17

Clay(%) 4.08 47.88 30.01 9.07 30

OM(%) 0.41 4.33 1.61 0.65 40

pH 6.37 8.63 7.460 0.480 6.43

Fe(ppm) 2.202 20.572 9.533 4.234 44.41

Cu(ppm) 0.460 5.026 1.936 0.887 45.81
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Subsoil

CaCO
3
(%) 1.55 50.7 8.55 7.66 90

Sand(%) 26.72 76.39 44.62 9.96 22

Silt(%) 12.86 30.19 21.82 3.48 16

Clay(%) 10.73 53.39 32.54 9.01 28

OM(%) 0.15 2.31 1.11 0.46 41

pH 6.37 8.30 7.55 0.42 5.56

Fe(ppm) 2.570 20.496 8.699 3.852 44.28

Cu(ppm) 0.168 3.828 1.734 0.824 47.52

OM=organic matter; SD=Standard deviation; CV% = Coefficient of variability, (Wilding, 1985) described 
a classification scheme for identifying the extent of variability for soil properties based on their CV% 
values, in which CV% values of 0 - 15, 16 - 35 and > 36% indicate low (least), moderate and high 
variability, respectively.

As can be seen in the Table 1, the clay content of the TS has a higher variability. 
The variability in the subsoilhas resulted from the formation of the soil of the study 
area from different main materials. Monoculture farming is being practiced in the 
study area, and microelement fertalization is not applied. The differences in the main 
materials and the high level of variability of the clay content of the SS have not caused 
a significant effect in the Fe content of the TS and SS; however, they resulted in more 
variations in the Cu contents of the SS. The Cu content in Çelikli catcment soils ranges 
from 0.4 to 5ppm. The critical level required for normal crop production is around 
0.5ppm. Soils with Cu concentrations in excess of 20 ppm may occur in areas, where 
copper fungicides or poultry and swine wastes have been applied (Tucker, 1999). The 
mean value (9.11ppm) of Fe content in the soil samples was higher than the sufficent 
value (2ppm) (Chen & Barak, 1982).

Simple correlation coefficients between general characterictics and pH, Fe and Cu 
contents of TS and SS in the study area were shown in table 2.

Table 2. Spearman’s correlations(r) between soil characteristics and pH, Fe and Cu

Sand Silt Clay Organic Matter

Topsoil

pH -0.07 0.07 0.04 -0.25

Fe 0.00 0.00 0.00 0.24

Cu -0.18 0.11 0.14 -0.01

Subsoil

pH 0.11 -0.02 -0.11 -0.35

Fe -0.24 -0.15 0.31 0.25

Cu 0.00 -0.28 0.11 -0.05
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ArcMAP 10.0 GIS software package supplied with geostatistical analyst module 
was used to establish GIS database, to determine descriptive statistics, to visualize 
spatial analysis and to estimate prediction maps (ESRI,2010). The location of the 
sample points were recorded with a Global Positioning System (GPS).

METHODS

Soil sampling and analysis

Soil samples were randomly taken from 142 sites at TS (0-0.30m) and SS (0.30-
0.60m), based on the similar type of slope, soil, and visual properties of the landscape 
in the catchment. Minimum sampling distance was 125m. After removing stones 
and large plant roots or debris by air-drying, each sample was thoroughly mixed and 
pulverized to pass through a 2-mm sieve and then stored in a plastic container prior to 
analysis. Soil pH was determined using 1:2.5 soil water suspension (adequate to wet 
the electrode) using a pH meter (IITA, 1982). The soil samples were then analyzed 
for soil pH in 1:2 soil: water suspension (McLean, 1982). Fe and Cu concentrations 
were measured with atomic absorption spectrophotometer, using standards made in 
the diethylene triamine penta acetic acid (DTPA) solution.

Geostatistical analysis

Geostatistical methods are optimal when data are normally distributed and stationary 
(mean and variance do not vary significantly in space). Significant deviations from 
normality and stationarity can cause problems, so it is always best to begin by looking 
at a histogram or similar plot to check for normality. Therefore, statistical parameters 
of mean, maximum, minimum, standard deviation, coefficient of variation, skewness, 
and kurtosis were calculated for pH, Fe and Cu contents for TS and SS. Estimation was 
performed using kriging and co-kriging for the three different soil variables. Estimation 
with co-kriging can be done with more than one covariable, but we have included only 
one soil variable as co-variable for simplicity. Comparison of the estimation results 
were done using prediction variances, calculated by cross validation and validation 
procedure.

The semivariogram

Spatial variability of any variableis described by a semivariogram. It is calculated as 
half of the average squared difference between paired data values. It is a graphical 
representation of spatial self-correlation by plotting the semi variance against several 
distance intervals. An estimator of the semivariogram is:

                                  

(1)

where, γ(h) is the estimated semivariogram, z(x
i
) and z(x

i
+h) are the values of a 
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variable separated by the lag h, and N(h) is the number of data pairs in the corresponding 
lag. Directional influences (anisotropy) for each dataset were checked by calculating 
the empirical semivariogram (Equation 1) for different directions (00, 450, 900 and 
1350). The anisotropy ratios were not significantly different from one another and no 
significant anisotropy could be seen. No data were detrended because none of them 
showed trends.

The semivariogram describing spatial dependence for one variable is called auto-
semivariogram. A spatial relation between two or more variables at the same location 
is called as co-regionalised. The cross-dependence between two variables (z

1
 and z

2
) 

can be expressed by the cross-semivariogram with the estimator:

 
,            (2)

with definitions as in Equation 1. 

The empirical semivariogram Equation (1) and Equation (2) are characterised 
by three parameters; the nugget variance, sill and range. The nugget variance is a 
discontinuity at lag zero (i.e. h=0) due to both measurement error and variation within 
the distance sampling interval. The range of influence indicates the distance, where 
observations are spatially uncorrelated, and the sill is the maximum constant variance 
at distances exceeding the range of influence.

A model can be usually fit to the empirical auto- and cross-semivariogram using, 
e.g. a spherical, exponential orgaussian equation. For a detailed description of models 
and parameters see e.g. Isaaks & Srivastava (1989).The spherical model was used to 
describe the spatial variability from Equations 1 and 2:

                                           (3)

where γ(h) is the semivariance and C
0
 is the nugget variance. The maximum 

semivariance was defined as the sill (C
0
 + C).

Prediction methods

The values of studied soil variables were used for predicting of values at unknown 
points by using the kriging interpolation methods. The interpolation methods used are 
explained shortly since discussions in detail about interpolation techniques could be 
found in books written by (Journel & Huijbregts, 1991; Isaaks & Srivastava, 1989; 
Burrough & McDonnel, 1998).
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Kriging

Kriging is a spatial estimation procedure that provides the best linear unbiased 
estimator with minimum variance. The estimated value of a regionalised variable at 
location x

0
 is a weighted average of available data:

                                                
(4)

where N is the number of observations z(x
i
) and λ

i
 are the weights assigned to the 

sampling points. The kriging variance at location x
0
 is:

                                        
(5)

where γ(x
0
, x

i
) are auto-semivariograms and ψ is a Lagrange multiplier.

Co-kriging

Co-kriging is an extension of kriging to situations where two (or more) variables are 
spatially intercorrelated. It is a weighted average of observed values of the primary 
variable z

1
 and the co-variable z

2
. The estimated value of the primary variable at 

location x
0
 is:

                               

(6)

where N
1
 and N

2
 are the number of neighbours of z

1
 and z

2
 ; λ

1i
 and λ

2j
 are the 

weights associated to each sampling point. The co-kriging variance at location x
0
 is 

given by:

                      (7)

where γ
11

(x
10

, x
1i
) and γ

22
(x

10
, x

2i
) are auto-semivariograms and ψ

1 
is the Lagrange 

multiplier. 

Prediction variance

The prediction variance was calculated by cross-validation as the average squared 
difference between actual and predicted values. In the cross-validation procedure an 
observation z(x

k
) is deleted and then predicted z

-k
(x

k
) by either kriging or co-kriging. 

This procedure is repeated for all observations (k=1 . . . N). The prediction variance 
σ

p
2 is calculated as (Weisberg, 1985):

                                     
(8)

where N is the number of observations, z(x
k
) is the actual value at location xk and 

ẑ-k(x
k
) is the predicted value at location x

k
 without z(x

k
).
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Validation procedure

Validation allows us to evaluate our predictions using a known data that was not 
involved in creating the prediction model. To validate interpolation techniques, we 
examined the difference between the known data and the predicted data using the root 
mean squared error(RMSE) Equation (9) and the standardized root mean square error 
(SRMSE) Equation (10). Generally, the best model is the one that has the smallest 
RMSE and and SRMSE nearest to one.

                                  (9)

                         (10)

where ẑ(x
i
) is the predicted value, z(x

i
) the observed (known) value, n the number 

of values in the dataset and σ2 isthe kriging variance for location x
i
(Webster, 2001).

RESULTS

Correlation is a measure of the similarity of variables. Strong correlationis expected 
for same variable of TS and SS. In other words, it is expected that pH at TS will relate 
strongly with pH at SS. Similarly for Fe and cu. Therefore correlation coefficients 
were generated between pH, Fe and cu levels at TS and SS. Figure 2 shows that there 
are strong correlations between the variables studied of TS and SS as expected.

Fig. 2. Correlations between pH, Fe and cu of TS and those of SS respectively

At the study area, the correlation coefficient between the pH, Fe and Cu contents 
of the TS and SS are given in the Figure 2. According to this figure, the relationships 
mentioned are all positive and significant (p<0.01).  

The spherical (Equation 3) model was mostly used to fit the empirical auto- 
and cross-semivariograms. By comparing the RMSE and SRMSE resulted from 
the semivariograms it is clear that the spherical model is the better in modelling of 
variables studied more accurately. The plots (Figure 3) below show semivariances 
versus 150m.lag. for six variables (pH, Fe, Cu for TS and SS respectively).
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Fig. 3. Experimental and theoretical semivariograms computed on datasets studied

The RMSE amounts resulted from spherical, guassian and exponantial models 
are found in Table 2. The spherical model exhibits linear behavior. For the auto-
semivariogram of Cu

SS 
the guassian model and for the cross-semivariogram of cu

SS
-

cu
TS 

were chosen exponantial, because they resulted in the minimum residual mean 
square error. Table 2 shows RMSE and SRMSE values for semivariograms of pH, Fe 
and Cu variables of TS and SS. 

Table 2. Comparison between the semivariogram models based on RMSE and SRMSE

Variable Model SRMSE SRMSE Variable Model RMSE SRMSE

Topsoil Subsoil

pH Spherical 0.375 1.080 pH Spherical 0.326 1.060

Guassian 0.376 1.088 Guassian 0.328 1.075

Exponantial 0.376 1.060 Exponantial 0.329 0.989

Fe Spherical 2.923 0.885 Fe Spherical 3.068 1.042

Guassian 2.996 1.154 Guassian 3.116 1.058

Exponantial 3.483 0.898 Exponantial 3.092 1.011

Cu Spherical 0.657 1.092 Cu Spherical 0.692 1.097

Guassian 0.653 1.181 Guassian 0.686 1.102

Exponantial 0.848 1.005 Exponantial 0.694 1.053

As there is no anisotropy evident in the directional semivariograms for variables 
studied, auto- and cross-semivariograms for all variables were assumed isotropic. The 
auto- and cross-semivariogram parameters for the soil variables are shown in Table 3. 
It shows the characteristics of variogram models that are fitted to data sets studied in 
catchment.
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Table 3. Geostatistical parameters for soil reaction (pH), iron (Fe) and copper (Cu)

Variable Depth Model Co Co + C r NE% SD

Auto-Semivariograms

pH
TS

0 - 30 Spherical 0.0720 0.2095 695 34.39 M

pH
SS

30 - 60 Spherical 0.0475 0.1615 594 29.46 M

Fe
TS

0 - 30 Spherical 5.1544 11.161 1108 46.18 M

Fe
SS

30 - 60 Spherical 5.3501 11.988 736 44.62 M

Cu
TS

0 - 30 Spherical 0.1240 0.8705 1325 14.25 S

Cu
SS

30 - 60 Gaussian 0.3390 0.7546 2963 44.93 M

PV-SV cross –semivariograms

pH
TS

 - pH
SS

0 - 30 Spherical 0.0652 0.2067 590 31.56 M

pH
SS

 - pH
TS

30 - 60 Spherical 0.0063 0.0217 587 29.13 M

Fe
TS

 - Fe
SS

0 - 30 Spherical 3.6942 10.624 649 34.77 M

Fe
SS

 - Fe
TS

30 - 60 Spherical 0.5645 1.1940 689 47.27 M

Cu
TS

 - Cu
SS

0 - 30 Spherical 0.0638 0.4114 1252 15.51 S

Cu
SS

 - Cu
TS

30 - 60 Exponential 0.1187 0.7267 1229 16.33 S

C = Structural variance; C
0 
= nugget variance; r = range; NE% = C

o
/(C

o
+C); SD = spatial dependency; 

S = strong (NE%<25% was highly space-dependent), M = moderately (between NE% = 25% and NE% 
= 50% moderately space-dependent), and W = weak (above NE%>75% weakly space-dependent), 
Cambardellaetal. (1994). PV = Primary Variable, SV = Secondary variable

The semivariograms have been extended to 1,800 m, which is less than the shortest 
axis of the study area, as suggested by Rossi et al., 1992. They were divided in to 
12 lag distance classes separated by an average of 150 m. Each lag distance class 
contained at least 30 pairs of points. Based on the results from the cross validation 
procedure, a search ellipse with a radius of 250 m was used in both kriging and co-
kriging estimations, and a minimum of four and a maximum of eight data values 
within the search ellipse were included in the estimations. The spherical model, except 
for Cu content of SS, produced the satisfactory results for all variables studied. A 
Gaussian model provided a good fit to Cu for SS. 

The range value of a variogram model shows the degree of spatial autocorrelation. 
Samples separated by distances closer than the range value are related spatially, and 
those separated by distances greater than the range value are not spatially related. The 
range values at auto-semivariograms showed considerable dissimilarity between same 
variable of topsoil and subsoil. Conversely, the range values at cross – semivariograms 
showed conciderable similarity for both topsoil and subsoil variables. For instance, at 
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auto-semivariogram, pH has range values of 695m and 594m at topsoil and subsoil 
respectively. Same values at cross-semivariogram for pH variable are 590m and 587m 
for topsoil and subsoil respectively.  This result indicates that same type of variables 
at topsoil and subsoil are related to one another.    

The semivariance at h=0 nugget is called to nugget (Webster 2001). It represents 
variabilities that are undetectable at the scale of sampling.  There are nuggets associated 
with all of the models. The nugget semivariance expressed as a percentage of the 
total semivariance enables comparision of the relative size of the nugget effect among 
soil properties (Trangmaret al., 1985). This ratio was used to define distinct classes 
of spatial dependence for the soil variables. Except for Cu, all the variables studied 
exhibited moderate spatial dependency.  There were strong spatial correlations for Cu 
in TS and SS. 

For aquantitative comparison the prediction variances are presented in Table 4. As 
expected, the prediction variance decreased with co-kriging. 

Table 4. Prediction variance andimprovement by co-kriging in %

Prediction variance Improvement by co-kriging

Variable Kriging Co-kriging (%)

pH
TS

0.14 0.09 64

Cu
TS

0.41 0.06 14

Fe
TS

8.82 5.90 67

pH
SS

0.12 0.07 58

Cu
SS

0.42 0.18 43

Fe
SS

9.42 5.90 63

A comparison between kriging and co-kriging shows 14-64 % improvements with co-kriging.

Table 5. RMSE and improvement by co-kriging in %

RMSE-SRMSE Improvement by co-kriging

Variable Kriging Co-kriging (%)

pH
TS

0.38 – 1.08 0.30 - 0.91 79

cu
TS

0.64 – 1.19 0.52 – 1.09 81

Fe
TS

2.97 – 1.05 2.43 – 0.96 82

pH
SS

0.35 – 1.13 0.27 - 0.96 77

cu
SS

0.65 – 1.03 0.43 -0.94 66

Fe
SS

3.07 – 1.02 2.43 – 0.95 79

For a quantitative comparison the RMSEs are presented in Table 5. The comparison between kriging 
and co-kriging shows 66-81 % improvements with co-kriging. The validation analysis revealed that the 
prediction errors were smaller than those by kriging.
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Spatial distributions of pH are presented in Figure 4. It illustrates the spatial 
distribution of pH for TS and SS respectively. The maps showed that > 50% of the 
study area were slightly alkaline for both depths. At TS, pH were found moderately 
alkaline in 1.04 ha, slightly alkaline in 4.27 ha, neutral in 2.24 ha; and slightly asid in 
0.01 ha, while at SS, it was moderately alkaline in 1.59 ha, slightly alkaline in 4.42 
ha, neutral in 1.55 ha. Most crops grow best when the pH is at or near neutral, which 
is 7.0. In the study area, pH values were found around neutral so it is proper for crop 
productions.

Fig. 4. Spatial variability maps of pH of TS and SS, respectively.

Fig. 5. Spatial variability maps of Fe of TS and SS, respectively.
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Figure 5 illustrates the spatial distribution of Fe in TS and SS, respectively. Spatial 
distribution of Fe is divided in two main regions. The maps showed that Fe was 
generally low in both TS (5.97 ha) and SS (6.6 ha). Iron deficiency is one of the major 
limiting factors effecting crop yields, food quality, and human nutrition. The World 
Health Organization estimates that globally some two billion people are affected 
by iron deficiency and that some 750 million people suffer from iodine deficiency 
(WHO,2006). In most of the catchment soils, iron added fertilizers should be used.  
However, there are some areas at the north and south region in which Fe is sufficient 
in TS and SS.

Fig. 6. Spatial variability maps of Cu of TS and SS, respectively.

Figure 6 illustrates the spatial distributions of Cu for TS and SS respectively. Maps 
for the Cu content showed that Cu contents of both TS and SS were changing high 
to very high while some Cu deficient areas exist. The study catchment is consisting 
of mostly cropland and, main crop is wheat. Wheat is probably the most sensitive 
cereal to Cu deficiency (McAndrewet al., 1984). For that reason in the study area, Cu 
fertilization should be done only at the areas where Cu is insufficient.

The results of this study demonstrate the advantages of using GIS with geostatistical 
analysis. The isotopic co-kriging definitely improved the mapping of TS and SS, in 
case TS and SS was used as auxiliary variable for each other. Spatial distribution 
of pH, Fe and Cu content were compared by means of the coefficient of variation 
of classical statistics and semivariogram analysis of geostatistic in order to evaluate 
their variability in a catchment with sloping landscapes. The variables were evaluated 
separately in the TS and in the SS. As a result, in generally, as there would be significant 
correlations between same variables of TS and SS, when the number of observations 
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is adequate, co-kriging technique seems to provide better fit in TS and SS content 
modeling in terms of realistic visualization of the results than ordinary kriging. The 
comparison of results shows 14-64 % improvement in prediction variance and 66-81 
% improvements in validation with co-kriging. More studies can be carried out to 
make better estimation for soil nutrients by using different soil properties or other 
factors, which affect variable interested, as a secondary variable.
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