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ABSTRACT

Antilock Braking Systems (ABSs) are brake controllers designed to maintain 
the wheel slip in desired level during braking and acceleration. Since the factors 
causing the wheel slip to change such as nature of road surface, vehicle mass etc are 
highly uncertain, the task of controlling has been a challenging one. In this paper, 
a modified PID controller called Set-Point Weighted PID (SPWPID) Controller has 
been designed to control the wheel slip. First, a Genetic Algorithm (GA) based fuzzy 
inference system (GAFSPWPID) is developed to determine the value of the weight 
that multiplies the set-point for the proportional action, based on the current output 
error and its derivative. It makes the controller more adaptive to external disturbances. 
Then, the GA is replaced by Firefly Algorithm (FA). Minimization of Integral Square 
Error (ISE) has been taken as objective for both cases. The performance of proposed 
Firefly Algorithm tuned Fuzzy Set-Point Weighted PID (FAFSPWPID) Controller 
is compared with SPWPID and GAFSPWPID controllers. Also, the performance of 
proposed controller is assessed for different initial conditions. A comparison has also 
been made with the controllers presented earlier in literature. Simulation results show 
that the proposed FAFSPWPID Controller performs better in both set-point tracking 
and adaptive to external disturbances than the other controllers.

Keywords:  Antilock brake system; firefly algorithm; fuzzy logic; PID controller; 
wheel slip control.

INTRODUCTION

Antilock Braking Systems (ABSs) are primarily designed to maintain the wheel slip 
at an optimum value at which there will be no wheel skidding and good steerabililty 
during sudden braking. The system of ABS control is nonlinear because of the 
nonlinear nature of brake dynamics and uncertain parameters such as road surface, 
weight of the vehicle, tire pressure, etc and hence it is not possible to develop an 
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accurate model of ABS. Therefore, intelligent controllers should be developed to deal 
with all these uncertainties. Many control strategies such as Sliding mode control 
(Harifi et al., 2005; Unsal, & Kachroo, 1999; Choi et al., 2002; Oniz, 2007; Oniz, et 
al., 2009), intelligent techniques using Fuzzy Logic (Mauer, 1995; Radac et al., 2008), 
Artificial Neural Networks (Layne et al., 1993; Lin & Hsu, 2003), and Neuro-fuzzy 
control (Topalov, et al., 2011) are reported earlier in literature. Genetic Algorithm is 
used in finding optimum values of fuzzy component (Yonggon & Stanislaw, 2002).

PID Controllers are still widely used in industrial applications due to their simplicity 
and robustness (Åström & Hägglund, 2004), despite advances in control strategies. In 
addition to providing feedback, PID controllers do have the ability to eliminate steady 
state error through integral action and can anticipate the future through derivative 
action (Åström & Hägglund, 1995). Various structures of PID controllers and their 
tuning rules have been given in (O’Dwyer, 2006). Amongst these, the Ziegler–Nichols 
tuning rule is a most popular and widely used one in PID applications. Even though it 
provides good load disturbance attenuation, it exhibits a large overshoot and settling 
time (Ziegler & Nichols, 1942). Hence, it is needed to modify the PID controller’s 
capability without modifying its structure much. A modification in PID structure, 
called Set-Point weighting (Chidambaram, 2000) is found effective in reducing 
overshoot. Fuzzy Logic based Set-Point weight tuning of PID controllers has been 
reported in (Visioli, 1999). 

Firefly Algorithm (FA) is one of the recent swarm intelligence methods developed 
by Xin-She Yang in  2010. It is based on the flashing patterns and behavior of fireflies 
and it is much better than most of the metaheuristic algorithms (Yang, 2010). It is a 
stochastic, nature-inspired, meta-heuristic algorithm that can be applied for solving 
the hardest optimization problems. FA and its modified versions have been widely 
used for solving many optimization and classification problems, as well as several 
engineering problems in practice (Fister et al., 2013). Tuning of PID controllers using 
FA for minimizing ISE has been presented by (Kumanan & Nagaraj 2013).

In this paper, a Firefly Algorithm tuned Fuzzy Set-Point Weighted PID controller 
(FAFSPWPID) has been proposed for a laboratory ABS model. Firefly Algorithm is 
used to select optimum values of parameters of the Fuzzy Inference System so as to 
minimize the Integral Square Error (ISE). The controller is designed to regulate the 
wheel slip in optimum level (0.08 to 0.3). Computer simulations have been performed 
in MATLAB-SIMULINK, version 7.11.0 (R2010b) and the performance of the 
proposed controller has been compared with SPWPID, GAFSPWPID controllers and 
the controllers presented in Oniz, (2007) and Oniz, et al. (2009). 

The next section describes the Inteco ABS model. The methodology of Set-Point 
Weighting of PID and Firefly algorithm description are given next. Further, GA and 
FA based FSPWPIDs are explained with the simulation results at last. 
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LABORATORY ANTILOCK BRAKING SYSTEM (ABS) DESCRIPTION

Even though there are variety of mathematical models been used, the Inteco 
laboratory ABS model is found to be widely used by the researchers. Hence the same 
has been considered in this work as well. The schematic diagram of Inteco ABS quarter 
car model is shown in Figure 1 (User’s manual, 2006). 

Fig. 1. Schematic diagram of Inteco ABS Quarter car model

There are two rolling wheels. The lower car-road wheel animating relative road 
motion and the upper car wheel permanently remaining in a rolling contact with the 
lower wheel. The wheel mounted to the balance lever is equipped in a tire. The car-
road wheel has a smooth surface which can be covered by a given material to animate a 
surface of the road. The car velocity is considered as equivalent to the angular velocity 
of the lower wheel multiplied by the radius of this wheel and the angular velocity of 
the wheel as equivalent to the angular velocity of the upper wheel.

While deriving the mathematical model, only the longitudinal dynamics of 
the vehicle are considered and the lateral and the vertical motions are neglected. 
Furthermore, it is assumed that there is no interaction between the four wheels of the 
vehicle and hence it is termed as quarter car model. The system parameters are given 
in Table 1. 
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Table 1. Inteco ABS model parameters

Name Description Units

x
1
, x

2
Angular velocity of upper & lower wheels rad/s

M
1

Braking torque Nm

r
1
, r

2
Radius of upper & lower wheels M

J
1
, J

2
Moment of inertia of upper & lower wheels Kgm2

d
1
, d

2
Viscous friction coefficients of upper & lower wheels Kgm2/s

F
n

Total force generated by upper wheel pressing on lower wheel N

 μ(λ) Friction coefficient between wheels --

λ Slip – relative difference of wheel velocities --

M
10

, M
20

Static friction of upper & lower wheels Nm

M
g

Gravitational and shock absorber torques acting on the balance 
lever

Nm

L
distance between the contact point of the wheels and the 
rotational axis of the balance lever

M

φ angle between the normal in the contact point and the line L °

Using Newton’s second law, the equations of motion of upper and lower wheels 
are written as;

                                       (1)

F
t
 is the road friction force given by Coulomb Law;

                                                      (2)

F
n
 is calculated by the equation;

                                           (3)

During the normal driving conditions the rotational velocity of the wheel matches 
with the forward velocity of the vehicle. During braking, the applied braking force 
causes the wheel velocity to reduce. Hence the wheel velocity becomes lesser than 
the car velocity, thereby changes the slip (λ). The expression for slip in this case can 
be written as;

                                                      (4)
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The dependence of wheel slip with road adhesion coefficient (μ-λ curve) is shown 
in Figure 2 ( Topalov, et al., 2011).

Fig. 2. Wheel Slip (λ) Vs Road Adhesion Coefficient (μ)

The mathematical representation (User’s manual, 2006) of Road Adhesion 
Coefficient (μ) is given by, 

                                    (5)

This mathematical model has been simulated in MATLAB®-SIMULINK®. The 
wheel slip and stopping distance are taken out of the model as outputs and the braking 
force is the input to the model. The numerical values assumed for various parameters 
are given in Table 2.

Table 2. Numerical values for ABS model

r
1

0.0995

 

M
10

0.0032

r
2

0.099 M
20

0.0925ϕ 65.61° w
1

0.0424001

L 0.37 w
2

2.938E-10

J
1

0.00753 w
3

0.0350822

J
2

0.0256 w
4

0.4066269

d
1

0.0001187 a 0.0002572

d
2

0.0002147 p 2.0994527

SET-POINT WEIGHTED PID CONTROLLER

The standard form of PID controller is;

                                  (6)

where,  ,  - wheel slip,  - reference wheel slip and K
p
, K

i
 & 

K
d
 - proportional, integral & derivative gains. 
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Even though the widely used Ziegler-Nichols method of PID controller tuning 
results in good load disturbance attenuation, it leads to increase in overshoot and 
settling time. It is well known that reducing the proportional gain can get rid of this 
problem. An approach to scale down the set point for proportional action by a factor 
b<1 is referred to as Set-Point Weighting (Chidambaram, 2000). The mathematical 
model of Set-Point Weighted PID (SPWPID) Controller can be written as,

                                 (7)

where,  

The block diagram of SPWPID for ABS is shown in Figure 3.

Fig. 3. Set-Point Weighted PID Controller for ABS

FIREFLY ALGORITHM (FA)

Fireflies are insects which are capable of producing a flashing light by the biochemical 
process called bioluminescence. Typically, the male flying fireflies produce the flashing 
light to attract the flightless females. In response, the females also emit continuous 
or flashing light. The mating partners produce distinct flash patterns encoding the 
information like identity and gender (Fister et al., 2013). The functions of flashing 
lights are to communicate with mating partners, attract their prey and a protective 
warning mechanism. 

Firefly algorithm is based on a physical formula of light intensity (H) that decreases 
with the increase in the square of the distance (d2). However, as the distance from 
the light source increases, the brightness decreases and thereby the attractiveness 
also decreases. These phenomena can be associated with the objective function to be 
optimized. 

Three idealized rules used in FA are;

All fire flies are unisex.• 

The attractiveness of each firefly is in direct proportion with the light intensity.• 
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The landscape of the fitness function is influenced by the light intensity of a • 
firefly.

FA is designed based on the variation of light intensity and attractiveness of 
firefly. Here, intensity is the light emitted by the firefly whereas the attractiveness 
is the intensity of a firefly seen by other fireflies (Yang, 2010). In a standard FA, the 
light intensity of a firefly representing a solution is directly proportional to the fitness 
function value. 

The light intensity (H) varies with distance (d) as;

 ;                                                     (8)

where, H
s 
is the intensity at the source. 

In a given medium, with an original light intensity of source (H
0
) and a constant 

light absorption coefficient (γ), the light intensity varies with the distance (d), as given 
below;

                                                      (9)

From equations (8) and (9), it can be approximated in Gaussian form as;

                                                (10)

The attractiveness β of a firefly is proportional to the light intensity seen by the 
other fireflies. Therefore,

                                                    (11)

where, β
0
 is the attractiveness at d=0. 

The distance between any two fireflies x
i
 and x

j
 is expressed as the Euclidean 

distance;

                                    (12)

 where, x
i,k

 is the kth component of the spatial coordinate x
i
.  

In a 2D case, it can be got as;

                                       (13)

The movement of firefly i is attracted by another more attractive firefly j, it is given by, 

                                    (14)

where α is randomization parameter and ε
i
 is a vector of random numbers generated 

from Gaussian distribution.
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Hence, the movement of firefly has three terms: the current position of ith firefly, 
attraction to another one and a random walk. Therefore, the FA has three parameters, 
the randomization parameter (α), the attractiveness (β), and the absorption coefficient 
(γ) which can be adjusted to modify the performance of FA. The steps involved in 
Firefly Algorithm are shown in Figure 4 as pseudo code (Yang, 2010).

Fig. 4. Firefly Algorithm Pseudo code

GA AND FA TUNED FUZZY SET-POINT WEIGHTED PID 
CONTROLLERS

The process of Set-Point Weighting leads to increase in rise time. This can be handled 
by the proposed GA and FA tuned Fuzzy Inference System (FIS), which determines 
the value of b depending on the error and its time derivative (Visioli, 1999). The 
Mamdani FIS is constructed with two inputs; error (e) and its derivative (de/dt). Both 
inputs and output of FIS are fixed in a range of [-1,1]. Hence three gains K

in1
, K

in2
 and 

K
out

 are used to scale the inputs and output to this range. 

Seven triangular membership functions for input and nine for the output are used 
as shown in Figure 5a and Figure 5b respectively. 

               Fig. 5a. Input membership functions     Fig. 5b. Output membership functions

The rule base using assigned linguistic variables are given in Table 3. The centroid 
method has been used for defuzzification. 
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Table 3. FIS - Rule base

      e_dot
   e NB NM NS ZE PS PM PB

NB NVB NVB NB NM NS NS ZE

NM NVB NB NM NS NS ZE PS

NS NB NM NS NS ZE PS PS

ZE NM NS NS ZE PS PS PM

PS NS NS ZE PS PS PM PB

PM NS ZE PS PS PM PB PVB

PB ZE PS PS PM PB PVB PVB

A simple PID is used first and its parameters are tuned by trial and error method. 
With these fixed PID gains, it is modified to FSPWPID and then the GA and FA 
are used to find the optimum values of K

in2
 and K

out 
with K

in1
 arbitrarily fixed as the 

inverse of amplitude of the step of the set point (Visioli, 1999). Thus, the value of K
in1

 
for this case is set as 5. The scheme of FSPWPID is given in Figure 6.

Fig. 6. FSPWPID Controller for ABS

The objective function used is to minimize ISE which is given by,

                                                    (15)
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The selected Genetic and Firefly Algorithm parameters are listed in Table 4.

Table 4. GA and FA parameters

Genetic Algorithm

Parameter Value

No. of generations 50

Population size 50

Selection Stochastic uniform  

Elite count 2

Crossover fraction 0.8

Firefly Algorithm

No. of fireflies 20

α, β, γ 0.5, 0.2, 1

No. of iterations 50

No. of Evaluations 1000

SIMULATION RESULTS & DISCUSSIONS

The effectiveness of the developed FAFSPWPID has been investigated through 
computer simulations. The simulations were performed in MATLAB-SIMULINK 
7.11.0 (R2010b), with a fixed step size of 0.01. A band-limited white noise is added at 
slip and velocity measurements of the system for getting more realistic results due to 
the fact that most of the practical systems are subjected to disturbances. The numerical 
value of noise power for slip and speed measurements are selected as 10-5 and 0.2 
respectively (Oniz, 2007; Oniz et al., 2009). A series of 25 trials have been performed 
for both Genetic and Firefly Algorithms with various initial vehicle velocities and set-
points. The best results of these trails have been used as scaling factors of fuzzy logic 
and their results are presented. 

Condition 1: Initial velocity of vehicle = 1720 rpm or 18 m/s and λ
sp

 = 0.2

Figure 7 depicts the set point tracking capabilities of developed controllers. 
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                                                          Fig. 7. Set point tracking of controllers  

In Figure 7, it is found that the mere Set-Point weighting with b=0.9, leads to a 
response with overshoot. This means that the vehicle experiences a front and back 
motion when applying the brake input, which is not a desirable one. When employing 
fuzzy logic to find the suitable value of b and Genetic Algorithm to find the suitable 
values of scaling factors of fuzzy logic, the resulting GAFSPWPID exhibits a better 
response with relatively reduced overshoot. However, when Firefly Algorithm is used 
in the place of Genetic Algorithm, the resulting FAFSPWPID controller decreases the 
overshoot further to a negligible amount. 

The stopping distance and stopping time of vehicle remain the same with all these 
types of controllers. The values of stopping distance and stopping time are obtained 
as 11.8 meters and 1.4 seconds respectively, as shown in Figure 8. There is a smooth 
braking torque produced by the controller as shown in Figure 9.

 
                             Fig. 8. Stopping distance                                       Fig. 9. Braking torque

The values of ISE of various developed controllers are presented in Table 5. The 
ISE for FAFSPWPID is 20.5901, which is the minimum among that of all other 
controllers. There is a reduction in ISE from 20.7015 to 20.5901, which is 11.14% 
reduction, when making use of Firefly algorithm in the place of Genetic algorithm. 
Hence, the FA performs much better than GA.
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Table 5. Performance measures for Reference slip=0.2

Control scheme ISE

SPWPID 20.9691

GAFSPWPID 20.7015

FAFSPWPID 20.5901

To assess the performance of the proposed controller, different values of set-points 
and different initial velocities have been considered as stated in conditions 2, 3 and 4. 
The results are presented in Figures 10 – 16. These results also show that the controller 
using FA performs better than the same with GA.

Condition 2: Initial velocity of vehicle = 2290 rpm or 24 m/s and λ
sp

 =0.2

     

        Fig. 10. Wheel slip tracking of controllers                         Fig. 11. Stopping distance 

Condition 3: Initial velocity of vehicle = 1720 rpm or 18 m/s and λ
sp

 =0.3

 

       Fig. 12. Wheel slip tracking of controllers                                     Fig. 13. Stopping distance 
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Condition 4: Initial velocity of vehicle = 1720 rpm or 18 m/s and λ
sp

 =0.6

 

       Fig. 14. Wheel slip tracking of controllers                    Fig. 15. Stopping distance 

 

                      Fig. 16. Braking torque                        Fig. 17. Velocity profile

When the braking torque is applied by the controller, the velocity of wheel gradually 
reduces and hence the vehicle velocity also reduces. Finally, the vehicle comes to rest 
only after the wheel coming to rest. As seen in Equation 4 and Figure 17, the value 
of wheel slip increases towards unity during the wheel velocity being zero for a short 
time after which the vehicle velocity also becomes zero. This situation leads to a 
drastic jump in wheel slip when the time is around 1.3 seconds in Figure 7, Figure 10 
and Figure 12.

Comparison with existing results and methods:

The comparison of responses of controllers presented in (Oniz, 2007) and proposed 
controllers, is presented in Table 6. It clearly indicates that the proposed controllers 
are more adaptive than the others for the disturbances and produce responses with 
negligible fluctuations around the set-point.
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Table 6. Set point tracking of controllers

Controllers

Controlled Wheel Slip 
(Desired Slip=0.2)

Min Max
% Deviation 

at steady state

Oniz (2007) and Oniz 
et al. (2009)

SMC 0.196 0.209 2 to -4.5%

GSMC 0.198 0.204 1 to -2 %

Proposed Controllers

SPWPID -- 0.199 0.40%

GAFSPWPID -- 0.199 0.35%

FAFSPWPID -- 0.199 0.35%

CONCLUSION

A modified PID controller called Set-Point Weighted PID controller has been designed 
to control the wheel slip of Antilock Braking Systems. Effect of weighting the set 
point to the proportional action has been compensated by Fuzzy Logic whose inputs 
are scaled down to a defined range using scaling factors which are determined by 
the Firefly Algorithm. The same control scheme is also tuned by Genetic Algorithm 
and the obtained results have been compared. The comparison through simulations 
prove that the FA tuned Fuzzy Set-Point Weighted PID Controller (FAFSPWPID) 
for minimizing ISE is superior to the other developed controllers and the controllers 
found in literature. It is also found that the proposed controller is more adaptive to 
external disturbances and for different initial conditions and set-points. 
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