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ABSTRACT
This paper aims at introduction, design, and validation of a temperature estimation algorithm for an infrared dryer. 

The proposed algorithm estimates the temperature at one or some points in a thermal system (e.g., an infrared dryer) 
based on the measured temperature at a number of other points. In this research, the designed algorithm estimates the 
temperature of a single point; however, the methodology can be evidently extended to multiple points. Inspired by 
direct and inverse heat transfer models, a mathematical model is presented for this purpose. This model is developed 
and identified using artificial neural network (ANN) technique and laboratory experimental data. The proposed method 
exhibits excellent accuracy with no need to thermo-physical properties of the system.
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INTRODUCTION
Algorithms to estimate quantities without measurement have been used for several years (Daily et al., 1988, 

Payton, 1986). At the beginning, they were employed to estimate displacement, velocity, and force in robots and 
autonomous vehicles (Muir, 1990, Nicholls et al., 1989, Payton, 1986). Then, the application area of these algorithms 
was extended to estimation of pressure (Corcione et al., 2006), polluting emissions (Liang et al., 2005), wind speed 
(Kabadayi et al., 2006), and acoustic signals (Halim et al., 2011). Such algorithms have been also presented to estimate 
temperature (Yu et al., 2014, Mehrabi et al., 2017) mainly using the information of input heat.

In this work, a temperature estimation algorithm is developed for an infrared dryer (an enclosure heated by 
radiation). This algorithm ideally estimates the temperature distribution on a surface in real-time using the measured 
temperature of a limited number of points on the surface. In general, if initial conditions, boundary conditions (heat 
fluxes), geometry, and thermo-physical characteristics of a thermal system are known, and estimation of temperature 
(distribution) is aimed, the problem is categorised as a direct heat transfer problem. If some temperature information 
is known and any other factor (e.g., boundary conditions) is unknown, the problem is considered an inverse heat 
transfer problem (Ozisik, 2000). Inverse heat transfer problems are considered ill-posed and relatively difficult 
to solve (Tikhonov and Arsenin, 1977). Existing physics-based methods of temperature estimation (based on heat 
transfer and thermo-dynamics laws) inherit serious difficulties such as temperature-dependency of thermo-physical 
characteristics (Das, 2015, Baghban et al., 2014) and inevitable large time delay of heat flux estimation (Woodbury 
and Beck, 2013), which make them impractical for real-time temperature estimation, as further detailed in Results and 
Discussion section.

In this research, alternatively, a temperature estimation algorithm for irradiative systems has been formulated as a 
mathematical model in the form of an artificial neural network (Problem Statement section), which is identified using 
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the experimental data collected in laboratory environment, as detailed in Estimation Algorithm section. Such a model 
can be supplied together with the final product, i.e., an infrared dryer, to the user; then, the user will have access to the 
temperature of several points without having sensors on them.

PROBLEM STATEMENT
In general, for any point (i.e., point i) on a surface of an infra-red dryer, e.g., the one depicted in Figure 1, 

temperature can be estimated in discrete domain as follows (Ghanbari et al., 2010):

Ti ( k ) = FD ( Ti ( k − 1),..., Ti ( k − rT ), qlamp ( k − rd ),  , qlamp ( k − rd − rq )).             (1)

where T, qlamp and k are temperature, heat energy emitted by the lamps, and sequence index (a representative of 
time). rd , rT and rq are delay, temperature, and heat flux orders. FD is a direct heat transfer model of the dryer (in discrete 
domain) and includes its thermo-physical and geometrical characteristics. A detailed thermal analysis and modelling 
of the dryer are presented in Appendix A. Physics-based direct heat transfer models may be used to produce data as 
alternatives to experimental setups of thermal systems to avoid experimentation difficulties (Kowsary et al., 2006). 
In addition to physics-based models, data-driven artificial neural network (ANN) models have been also presented as 
direct heat transfer models of infrared dryers (Ghanbari et al., 2010).

Fig. 1. The investigated dryer.

Besides the problem of direct heat transfer modelling (or in short, direct modelling), an inverse problem for heat 
flux estimation has been also formulated and solved in discrete domain (Mirsephai et al., 2012):

qlamp ( k ) = FI ( T j ( k + rd ),..., T j ( k + rT + rd )).                                                        (2)

where FI is an inverse heat transfer model, which estimates the emitted energy of the heat source using the 
temperature of any point (with a temperature sensor, i.e., point j) on a surface of the infra-red dryer. For the purpose 
of real-time temperature estimation without use of emitted heat information, a combination of Equations (1) and (2) 
can be roughly presented in Equation (3). This equation removes the role of emitted heat and relates the temperature 
of different points ( j and i ). However, Equation (3) is approximate as the influence of future values of temperature on 
this model has been disregarded due to their unavailability in real-time.

Ti = F ( T j , history of  T j , history of Ti ) .                                                        (3)
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History of temperatures represent the effect of emitted heat on the temperature at sequential instants. With removing 
the emitted heat, modelling of this cause-effect relationship is not a major concern. Therefore, histories are proposed 
to be removed from Equation (3). Instead, the measured temperature at a number of points (with sensors) is added to 
the formula or

Ti  = FS (Tj , j ∈[1,n], j ≠ i).                                                                                    (4)

where FS is an estimation formula, which receives the information from a limited number (n-1) of temperature 
sensors on a surface of an enclosure heated mainly by radiation, then accurately estimates the temperature of another 
point on the surface. In the next session, a method for developing FS is presented and its applicability is experimentally 
shown in this research for a sample dryer depicted in Figure 1. There exist six thermocouples in the dryer (n=6) and the 
temperature of the last one is chosen to be estimated using the measured temperatures of others, or i=6 in Equation (4). 
Validation of the estimation formula for a single point shows the feasibility of the idea and demonstrates the possibility 
of designing more comprehensive multi-output formulae/algorithms to estimate temperature at multiple points. Section 
3 reports the development and identification of FS (the estimation formula) for the proposed case study.

DEVELOPMENT OF ESTIMATION ALGORITHM
Experimental Setup, Data Collection and Preparation

Figure 2 shows the experimental setup. The dryer has the dimensions of 60cm×40cm×40cm. The heat sources 
are two 39N3 Toshiba 1000W infrared halogen lamps. Asymmetrically arranged K-type thermocouples, equipped by 
AD595 Analog Device ICs as signal amplifiers, measure the temperature. The walls of the dryer are made of insulation 
board with the thickness of 25mm and mounted on a steel skeleton built with 2mm thick steel plates.

Fig. 2. The main components of the experimental setup.

For data collection, MathWorks Simulink software and its Real-Time Workshop and Real-Time Windows Target 
(RTWT) toolboxes were employed. This software platform produces executive codes to connect hardware (the 
thermocouples and the lamps) to the computer through an Advantech PCI-1710U data acquisition (DAQ) card. A 
power amplifier was also designed, built, and used to magnify the signals coming from the computer to the lamp with 
a circuit depicted in Appendix B.

18 different sets of experiments were carried out. Different triangular functions of power with peaks of 400, 
600, and 800 W and the time periods of 100s, 120s, 140s, 160s, 180s, and 200s were applied on the lamps. Each 
experiment took five minutes, but the data collected at the first two seconds were disregarded. The data measured by 
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all thermocouples were collected at the sampling frequency of 10 Hz (3000 samples at each experiment). The data of 
17 experiments were used for modelling and validation, and the data of one set with a peak power of 600W per lamp 
and time period of 160s were solely used to test the model as detailed in Result and Discussion section.

The whole collected data pass through a low pass filter with a cut-off frequency of 2 Hz to reduce the noise. The 
filtered data then resampled up to the frequency of 1Hz to match fairly slow dynamics of the dryer (Mohammadzaheri 
et al., 2015) and mapped into the range of [-1 1] before training (as a type of normalisation) (Demuth et al., 2008). The 
effect of normalisation on the model is detailed in Appendix C.

ANN Design and Training
An ANN is proposed to play the role of FS in Equation (4), i.e., the estimation formula. The proposed ANN model 

is a fully connected multi-layer-perceptron (Mohammadzaheri et al., 2012). Considering Equation (4) and n=i=6, the 
ANN has five inputs and one output. One hidden layer with sigmoid activation functions of f, presented in Equation 
(5), has been proved to be sufficient to make this ANN a universal approximator (Chen et al., 1995):

                                                                                                        (5)

The recommended number of neurons in such a single hidden layer is two times the number of inputs plus one 
(Haykin, 1999), i.e., 11. Figure 3 and Equation (6) illustrate the proposed ANN:

                                                                                    
(6)

where Wij and Pj are the first and the second layer weights and Bj and b are biases.

Fig. 3. A schematic of the employed artificial neural network.

Discrepancy of the output of a model (e.g., ANN) and the measured output (i.e., T6) with same inputs is represented 
by the ‘model error’. Tuning the parameters of an ANN to minimise the model error for so called training data is 
named ‘training’. Back-propagation batch training with Levenberg-Marquardt method, a recursive algorithm detailed 
in Appendix C, was employed for training in this research in conjunction with Nguyen-Widrow weights initialisation 
algorithm (Nguyen and Widrow, 1990a). 4560 randomly chosen samples of data amongst 17 sets of experimental data 
mentioned in subsection 3-1 were employed for training and the rest for validation. That is, at each iteration of ANN 
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training, the model error of the validation data was observed as well as the training error; a discrepancy in trend of 
these dual errors is considered as a sign of over-fitting (over-training). Over-fitting decreases the inclusiveness of the 
ANN (Mohammadzaheri et al., 2007). In the case of over-fitting, training should be stopped. The trained and validated 
ANN was then tested by a single series of the data, which were used for neither training nor validation; therefore, the 
requirements of cross-validation were fulfilled.

RESULTS AND DISCUSSIONS
Figure 4 shows the test result. The mean of absolute error is 0.425 ºC, which is excellent. It should be noted that the 

temperature data have been filtered before ANN training; as a result, the ANN simulates filter dynamics as well. The 
employed type of thermocouples has noise in the range of [-2 2] ºC or even higher (Reotemp-Instruments, 2015).

Fig. 4. Test result for estimation.

A physics-based heat transfer algorithm might be considered for temperature estimation either. However, this 
approach would need geometrical and thermo-physical characteristics of the dryer, which could be very difficult 
to estimate, particularly with considering the fact that thermo-physical characteristics are temperature-dependent 
(Baghban et al., 2014). Even with exact knowledge of characteristics (e.g., in simulation), the accuracy and the time 
delay of estimation based on existing physics-based methods would be a concern. For instance, inaccuracy of heat 
flux estimation, which is essential for such estimation methods, is an issue. Many of heat flux estimation problems 
are solved for the entire operation time to increase the estimation accuracy (Kameli and Kowsary, 2014); these the 
so called whole-domain solutions are not applicable for real-time temperature estimation. Even for less accurate 
sequential (non-whole-domain) heat flux estimation, a significant time delay of estimation is expected (Kowsary et 
al., 2006). In fact, with currently available methods of physics-based inverse heat transfer, developing accurate real-
time temperature estimation algorithms (based on temperature of other points) seems to be impossible, particularly 
for complex irradiative thermal systems. On the other hand, as a prominent advantage, the proposed method presents 
outstanding accuracy with no need to thermo-physical information of the dryer.

As potential disadvantages for use of artificial intelligence, (i) the proposed method needs experimental data 
even at target points for estimation, and (ii) in the case of any significant change in the operating condition (e.g., 
having different materials within the dryer), new sets of data need to be collected and used to develop a new ANN 



143Morteza Mohammadzaheri, Ali Firoozfar, Dalileh Mehrabi, Mohammadreza Emadi and Abdullah Alqallaf

model. However, (i) data collection process needs to be performed only once on a single dryer in the laboratory of 
the manufacturer, and the final user can utilise the developed algorithm for temperature estimation with no need to 
data collection. (ii) Also, a number of models may be developed for a variety of prevalent operating conditions to be 
employed as appropriate by the user.

CONCLUSION
A real-time temperature estimation algorithm was proposed, designed, and validated for a sample infrared dryer. 

This algorithm was aimed to estimate the temperature at a point on a surface of the dryer using the measured temperature 
of a number of other points. First of all, considering direct and inverse heat transfer models of the system, the problem 
was formulated as a mathematical modelling task. Then a universal-approximator ANN was opted as the model.

Afterwards, experimental data were collected, filtered, re-sampled, arranged, and used to train and cross-validate the 
model. The developed algorithm exhibits excellent test accuracy with no need to any information about the geometry 
and more importantly thermo-physical properties of the dryer, which may be difficult to estimate. The algorithm can 
be straightforwardly extended to estimate the temperature of other points through further measurements in laboratory 
environment and developing multi-output ANNs.
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APPENDIX A -DRYER DYNAMICS
A mathematical model of the dryer, depicted in Figure.1, can be developed based on the first law of thermodynamics 

(Mirsephai et al., 2012). The dryer (with closed doors) can be assumed as an enclosure with Diffuse-Grey Surfaces. 
The following assumptions are considered for thermo-dynamics-based modelling (Erturk et al., 2002, Mirsephai et 
al., 2012):

1. The surface properties are non-uniform.

2. ε, the emissivity factor of the surfaces, is independent of the wavelength and the direction of radiation.

3. All the energy is emitted and reflected diffusely.

Incident and reflected energy flux is non-uniform; as a result, in order to find the mathematical model of the 
dryer, its surfaces to be divided into infinitesimal areas. A tiny element on a surface (Figure (A.1)) is investigated as 
following:

Fig. A.1. An element on bottom internal surface of the furnace.

In general, in terms of energy:

EInput – EOutput + EGeneration - EConsumption=EAccumulation.                                                                   (A.1)

The input energy to this element comes from the conduction in x and y directions, the radiation from the lamps, 
and the radiation from other surfaces:

   
    

(A.2)

where kcond  is the heat conduction coefficient (W/mK), t is time (s), lz is the thickness of the dryer body (m), T and 
T are exact and average temperature (K ), q is heat flux (W ), j is the index of elements on the surfaces rather than the 
modelled one, and N is the number of these elements. Fj (x, y) is the exchange factor of the inner surface of j th element 
and the element located at (x,y).

The output energy can be divided in two categories: output energy through conduction, radiation due to high 
temperature of the element and the reflecting radiation:



Temperature Estimation for a Point of an Infrared Dryer Using Temperature of Neighbouring Points: An Artificial Neural Network Approach146

           (A.3)

where σ is the Stefan-Boltzmann Constant=5.6703×10-8  W/m2 K 4, ε is the emissivity factor of the element and  
is the average temperature of the inner side of the element.

According to Taylor’s series:

                                                   
(A.4)

and

                                                  
(A.5)

also

EGeneration=EConsumption=0.                                                                                                              (A.6)

                                                   (A.7)

where V is the volume of the element, C p is the specific heat capacity at constant pressure and ρ is the density of 
element. After considering (A.2-7) in (A.1) and dividing all terms by V,

            

 (A.8)

Due to insulation, the following boundary conditions can be considered for the dryer (see Figure A.2):

                                                                                                (A.9) 

                                                                                                             (A.10) 

                                                                                                                         
(A.11) 
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Fig. A.2. A wall of the dryer.

Simultaneous solution of Equation (A.8) with boundary conditions of Equations (A.9-11) for all elements on the 
surfaces of the dryer returns temperature distribution on those surfaces.

APPENDIX B- LAMPS POWER AMPLIFIER CIRCUIT

Fig. B.1. Lamps Power Amplifier.

APPENDIX C- NORMALISATION AND ANN TRAINING
Before training ANNs, the input and output data columns are often normalised to remove the effect of magnitude 

difference between variables (Mohammadzaheri and Chen, 2008). A common way of normalisation, employed in 
this research, is to map the data from their real range into the range of [-1 1]. The input(s) to an ANN, trained by the 
normalised data, should be normalised and the output(s) should be de-normalised (de-mapped) into the real range. 
Normalisation and de-normalisation stages may be embedded into the final presentation of the ANN to remove the 
need for normalisation/de-normalisation of input(s)/output(s).
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After normalisation, the first stage to train an ANN is to define the model error, which represents the discrepancy 
between the output of the ANN and the real system. A popular definition of the model error, and the one used in this 
research, is mean of squared errors, which was presented as Equation (C.1) or Equation (C.2):

                                                                              (C.1) 

                                                                                                                                                                 
(C.2) 

where y represents the output(s) of the system or the ANN, and nd is the number of training data sets. Equations (C.1) 
and (C.2) are used when a single set of input-output data or the whole data is used for error calculation, respectively, 
i.e., single pattern or batch training.

yANN and consequently the error function are influenced by the weights and the biases shown in Equation (6), i.e., 
78 parameters in the proposed ANN. Thus, E is presented as E(θ), where θ is a vector of all the parameters of the 
ANN. Training is the process of tuning θ components so as to minimise (optimise) E(θ). An approach to tackle this 
optimisation problem is to approximate the model error using the Taylor series up to the second order derivatives:

                                                
(C.3)

The goal is to find θ so that the error converges towards its minimum value. Since θ is a vector rather than a scalar, 
the derivatives are in the following form:

where np is the number of parameters. A solution to this optimisation problem is presented in Equation (C.4), 
namely, Newton direction (Jang et al., 2006):

                                                                                            (C.4)

However, Equation (C.4) is applicable only if H is invertible. Levenberg and Marquardt (Jang et al., 2006) presented 
an alternative to improve and generalize Equation (C.4):

                                                                                       (C.5)

where I is the unit matrix with the size of np , and λ is the smallest number that can make the matrix within 
the parenthesis invertible; η is calculated through linear search. Algorithms to find η and λ have been detailed in 
Mohammadzaheri and Chen (2010) and Jang et al. (2006). As a prerequisite to calculate H and g, E and its derivatives 
are analytically presented as functions of θ, namely, error back-propagation.
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However, as a drawback of all derivative based optimisation algorithms including Levenberg-Marquardt, the 
algorithm may be trapped in a local minimum. That is, training results in ANN parameters, which do not lead to 
the minimum model error. If training is restarted from the same initial values of parameters, the algorithm moves 
towards the same trap again. As a result, an initialisation algorithm is essential to assign appropriate initial values to 
the parameters of the ANN at the beginning or after each unsuccessful training. Such an algorithm should have two 
features: (i) The assigned initial values are not very far from the best values of parameters to reduce both computational 
effort and the chance of being trapped in local minima; this demands the use of training data. (ii) Randomness should 
be included to make sure initial conditions leading to local minima are not repeated. Nguyen and Widrow presented 
such an algorithm in 1990, which is still widely used (Nguyen and Widrow, 1990a).

APPENDIX D- AN INTRODUCTION TO NGUYEN-WIDROW ALGORITHM
The ANNs employed in this research are universal approximators and have sigmoid activation functions in their 

hidden layers. As shown in Fig.D.1, a sigmoid function is nearly linear for an interval.

Fig. D.1. The sigmoid function presented by (6) and its linear interval (Mohammadzaheri et al., 2016).

In practice, if an input to a sigmoid activation function is outside the range associated with the linear interval, it 
will have a slight effect on the output; thus, its effect on the error and training process will be insignificant. Such a 
situation slows training down. For given input values, ANN weights determine if the output of a sigmoid function is 
located within linear interval. Nguyen-Widrow algorithm suggests initial values for the weights, considering the range 
of inputs, so that the output of the activation function lies within the linear interval of the sigmoid function. Such an 
deliberate initialisation accelerates the training process. Random functions are also used in this algorithms to avoid 
repeated initial weights (Nguyen and Widrow, 1990b).
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