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ABSTRACT
Speech recognition system is one of the significant, yet challenging systems in computer-human interaction. 

Recognizing Indian languages, especially Hindi, faces many practical difficulties due to its wide grammatical and 
phonetic features from English. This paper focuses on Hindi speech recognition system for which Cepstra features 
and linear collaborative discriminant regression (LCDR) model are proposed for feature analysis and recognition. For 
definite audio signals, two models of test speech signals are synthesized and experimental investigations are carried 
out. The performance of the LCDR methods is analysed using Type I and II error functions and compared with the 
existing methods such as NN2-cepstra and SVM2-cepstra. Moreover, the best, worst, mean, median, and standard 
deviation are used for the statistical prediction and the proposed LCDR method is proved as the superior method for 
recognising Hindi speech. 
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INTRODUCTION
Automatic Speech Recognition (ASR) is a subsystem or a component of utmost importance in the human-

computer interaction system, which accepts decoded text input to enable further operations (Zhang &  Fung, 2014a). 
The two components that constitute the ASR primarily are (i) the language model and (ii) the acoustic model (Kumar 
et al., 2004). The acoustic model deals with the modeling of the pronunciation that is related to an input word. On 
the contrary, the language model envisages the possibility of occurrence of the input word sequence in any language 
kind (Kumar et al., 2004). In case of the acoustic model, the speech signal features, as well as an approach for pattern 
matching an input word or phone, serve as the major components comprising it (Jeong, 2012). ‘Phone’ indicates 
the fundamental unit of speech, whereas a word is formed of phones that can be a single phone or multiple phones 
(Kumar et al., 2004). 

 Normally, the Perceptual Linear Predictive (PLP) Coefficients (Hermansky, 1990) and the Mel-Frequency 
Cepstral Coefficients (MFCC) (Davis & Mermelstein, 1980) are the features of frequent use in ASR, though domain 
transformation succeeds in other applications (Paithane & Bormane, 2014; Paithane & Bormane, 2015; Paithane 
et al., 2014). Further, the regularly used approaches for pattern matching in ASR are the neural networks and the 
Hidden Markov Model (HMM) (Kumar et al., 2004 ; Rabiner, 1989). The HMM undergoes a learning on the speech 
signal’s sequential nature to enable the modeling of the output probability distribution along with the state transition 
probability (Liu & Sim, 2014). At the time of speech recognition, a hypothesization process is done between several 
words and the signal being acquired. The matching procedure in HMM involves the computation of likelihood, which 
is related with a word being provided. For a word, the estimation of likelihood relies on the use of the joint likelihood 
of the entire number of phones that has relation to the word (Kumar et al., 2004). In previous years, the HMM training 
was largely accomplished through the maximum likelihood estimation (ML) (Simand & Gales, 2006). Yet, nowadays, 
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the ML training was found to be less hopeful than the discriminative training (Simand & Gales, 2006; Evermann et 
al., 2004 ; Kim et al., 2003; Donough & Waibel, 2003; Goel et al., 2003).

The language model, in contrast, allows assessing the likelihood of occurrence of a given word sequence from the 
speech signal. The language model that is extremely used to envisage the probability of occurrence of a word from a 
sequence is the N-gram language model, and it makes utilization of the history of word sequences to do so. A massive 
text corpus, which is provided during the training phase, supports the computation of probability. In order to deal 
with the hypothetical word occurrences, the scores that result from the language, as well as the acoustic models, are 
exploited. A word is recognized to be an isolated word if its associated likelihood is the largest of all the joint likelihoods 
of the entire number of words (Kumar et al., 2004). Yet, the performance that the traditional N-gram language models 
exhibits is found to lag behind the performance that is experienced from the Neural Network Language Models 
(NNLMs) (Bengio et al., 2003; Schwenk & Gauvain, 2005; Schwenk, 2007; Le et al., 2013; Mikolov  et al., 2010; 
Mikolov et al., 2011). Improvisation in the ASR decoding process has been achieved using less number of hybrid 
models as well (Arisoy et al., 2014; Arisoy et al., 2013).

There are umpteen numbers of applications available, which requires support from the speech recognition system, 
and they include the field of commerce, automobiles, military healthcare, and many more areas. Hence, the robustness 
that the speech recognition system imparts to such kind of applications requires utmost attention. Speech recognition 
systems employing English have been under wide usage all around the globe. But, Hindi serves as the official language 
in India with the fact that it ranks second in the group of languages spreading far and wide, subsequent to English. 
The 2001 census report reveals the percentage of Hindi speaking Indians as 41%, which is fairly larger than the 
percentage of Indians speaking the rest of the languages. The language, which is largely spoken and ranks second in 
India, is Bengali. But, only 8.1% of Indians do speak it (Kalinli et al., 2010). Therefore, all the applications concerned 
with government or commerce highly seek the evolution of speech recognition systems. Nevertheless, researches 
that are related to the recognition of Hindi speech are not exceedingly prevalent (Kumar et al., 2004). We have 
thoroughly examined and discovered the truth that the literature lacks witness regarding the recognition of Hindi 
speech. The reason may be the complete variation of the syllables or the pronunciations from the English language. As 
an illustration, consider the acoustic classes that are unique to Hindi such as the stress plosives as well as the nasalized 
vowels. It can be understood that the design as well as the development of speech recognition system, which is solely 
attributed to Hindi, is of much importance.

This paper introduces a robust speech recognition system, which aids in Hindi speech recognition and word level 
recognizer is designed. The speeches are subjected to Cepstra analysis to distinguish them through its spectral features. 
Subsequently, a recently introduced regression classifier called as LCDR is exploited to recognize the speech based 
on its cepstra features. The paper is organized as follows: Section 2 gives a brief review about the works related to 
the speech recognition system and the drawbacks are noted, and Section 3 describes the feature analysis for Hindi 
speech. In Section 4, the speech recognition model is proposed and Section 5 analyzes the obtained results and Section 
6 concludes the paper.   

LITERATURE REVIEW
Related Works
Numerous speech recognition systems have been reported in the literature. However, a few relevant and significant 

works are reviewed here.

Khe Chai Sim and M.J.F. Gales (2006) have examined whether the precision matrix models could be possibly 
employed to perform the discriminative training of speech recognition systems. In addition, they have dealt with the 
issues concerned with the development of LVCSR systems and the utilization of minimum phone error condition. 
The approximation of the precision matrices was attained using a generic framework that incorporates a number 
of conventional models, which include the Subspace for Precision and Mean (SPAM) models, the Extended MLLT 
(EMLLT), and the Semi-Tied Covariance (STC). To carry out their testing, they have made use of English news 
broadcast as well as the non-stop telephone conversation with huge vocabulary. 
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Weibin Zhang and Pascale Fung 2013 (JM Baker, 2009) have trained the acoustic models involving inadequate 
training data through suggesting the sparse inverse covariance matrices. Here, the conventional objective function that 
is associated with ML estimation has undergone an enhancement with the inclusion of L1 regularization. The inverse 
covariance matrices have been sparsely met through the novel objective function. In addition, the parameters that are 
associated with HMM have been trained through the novel objective function exploiting the Expectation Maximization 
(EM) algorithm. The procedure for ML estimation as well as training looks identical. The testing was done with the 
help of a low resource language data, namely, the Cantonese dataset. The testing results have confirmed that the Sparse 
inverse covariance matrix could render improved performances, when compared against the performances that are 
yielded from the full covariance model or the diagonal covariance model. 

Later, Weibin Zhang, and Pascale Fung 2014 (2014a)  have employed the acoustic models involving sparse inverse 
covariance matrices in place of the diagonal covariance matrices or the conventional full covariance matrices. This 
replacement of the models has caused the discriminative training approaches to be enhanced. The inverse covariance 
matrices gain their sparsity through the inclusion of the lasso regularization term in the conventional objective function, 
while it extorts the maximum mutual information (MMI). Maximization of the enhanced novel objective function has 
resulted in the accomplishment of the training process. The ability of the sparse inverse covariance matrix in tackling 
the over-fitting issue, which frequently occurs during the discriminative training, has been proved with the aid of the 
Wall Street Journal as well as the Mandarin datasets.  

Table 1. Merits and demerits of the existing methods.

Methodology Merits Drawbacks Year

MPE Training of Precision Matrix
Models (Simand & Gales, 2006) 

Suitable for LVCSR 
environment

Suffers from over-fitting 
problem

2006

Dynamic Features in the Linear-
Logarithmic Hybrid Domain (Kolossa et 
al., 2013) 

Effective under reverberant 
environment

Noise impact affects 
performance

2010

Noise Adaptive Training (Zhang &  Fung, 
2014b) 

Suitable for Noisy environment Not asserted for LVCSR 
environment

2010

Sparse Inverse Covariance Matrices for 
Low Resource Speech Recognition (JM 
Baker, 2009) 

Handles even low resource 
dataset and provides 
regularized training of speech 

Investigated under no noise 
environment

2013

Noise-Adaptive Linear Discriminant 
Analysis (Zhang &  Fung, 2013)

Suitable for Noisy environment Not asserted for LVCSR 
environment

2013

Discriminatively Trained Sparse Inverse 
Covariance Matrices (Zhang, &  Fung, 
2014a) 

Solves Over-fitting problem Investigated under no noise 
environment

2014

Sparse Banded Acoustic Models (Tanja & 
Alex, 2001) 

Good regularization and 
computational speed

Investigated under no noise 
environment

2014

Semi-Parametric Trajectory Model for 
HMM (Liu & Sim, 2014) 

Proven on LVCSR under noisy 
environment 

Computationally complex 2014

Derived Back-off Language Models 
from Neural Network Language Models 
(Arisoy et al., 2014) 

Proven under LVCSR 
environment

Tested under no noise 
environment and suffers due 
to over-fitting

2014
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Their approach has resulted in the regularization of the complexity associated with the model, in addition to 
enhancing the accuracy of recognition. The results of the traditional full covariance models as well as the diagonal 
covariance models have been found to lag behind the results of the acoustic models employing sparse inverse 
covariance matrices. 

Weibin Zhang and Pascale Fung 2014 (2001)  have successfully achieved the training of the sparse banded acoustic 
models through suggesting the weighted lasso regularization scheme. They have stated few features, which help in 
cutting down the bandwidth associated with the sparse-banded models, with the aim of improving the computational 
speed. The results of sparse banded models have orderly shown 15.1% increase and 9.5% increase, when compared 
orderly with the full covariance models and diagonal covariance models. 

Osamu Ichikawa et al. 2010 (Kolossa et al., 2013) have suggested the ways of representing the speech signals, 
which are subjected to reverberation, through the utilization of logarithmic delta. Approaches that compute delta 
along with the features that exist between the deltas were put forth in their work, in order to cancel out the effects 
of reverberation from the speech recognition systems. Further, their schemes were supported with newly suggested 
dynamic features. The testing platform has involved the Corpus as well as the Environments for Noisy Speech 
RECognition-4 (CENSREC-4) database, which are subjected to reverberation influences. A decrease in the dominant 
error was observed with the utilization of dynamic features in place of the conventional features.

 Ozlem Kalinli et al. 2010 (Zhang &  Fung, 2014b)  have suggested a noise adaptive training (NAT) algorithm with 
the intention of dealing with the acoustic models, which are adversely affected by noises. In NAT, the ‘pseudo-clean’ 
model parameters were assessed in a straight forward manner, instead of taking the point estimates related to the clean 
speech features. Once the pseudo-clean model parameters were learned, they allow the noisy utterances that occur 
during testing to be decoded in combination with the vector Taylor series (VTS) model adaptation. When compared 
against the conventional VTS model adaptation, the NAT has caused improvements of about 32.03% and 18.83% in 
Aurora 3 and Aurora 2 tasks in a respective manner. 

Dorothea Kolossa et al. 2013 (Zhang &  Fung, 2013) have come up with a rule, which supports ASR that operates in 
a non-artificial  or noisy environment. According to their strategy, “Reducing the dimensionality of the speech feature 
for optimal discriminance under observation uncertainty can yield significantly improved recognition performance”. 
While finding ways to achieve their strategy, they have discovered the fact that Fisher’s principle of discriminant 
analysis could hold good.   

Shilin Liu and Khe Chai Sim 2014 (Liu & Sim, 2014) have analyzed the problems related to the Standard HMM. 
They have found that HMM results in poor trajectory model for speech due to the notion, “successive observations 
are independent to one another given the state sequence”. Usually, the techniques offering semi-parametric trajectory 
modeling are capable of dealing with speech recognition tasks, which involve massive and non-stop vocabulary. 
Hence, Temporally Varying Weight Regression (TVWR) in combination with time-varying Gaussian weights has 
been intentionally employed for modeling the HMM trajectory in an implicit manner. An in-depth formulation of 
the Temporally Varying Weight Regression (TVWR) in accordance with the probabilistic modeling framework was 
portrayed here. The estimation of parameters has been attained in compliance with the phenomena of ML as well as 
the minimum phone error (MPE). The testing outcomes have outweighed the results of the standard HMM systems, 
when 20k open vocabulary recognition task (NIST Nov’92 WSJ0) and 5k closed vocabulary noisy speech recognition 
task were employed.

Ebru Arısoy et al. 2014 (2014) have employed non-complex language models to put forward an approximation 
approach that supports NNLMs. It was possible to transform a feed forward NNLM into a back-off n-gram language 
model with the suggested approximation approach. By doing so, usage of NNLMs in conventional LVCSR decoders 
can also be encouraged. Their testing of the back-off models on Broadcast News data has shown enhancements in both 
accuracy as well as gain, when compared against the traditional n- gram language models. 
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Problem Statement

Presently, more number of research works has been devoted to the recognition of spontaneous speech like, 
meetings, lectures, and telephone conversations (Akita & Kawahara, 2010). These works are nothing but an extension 
of the large-vocabulary continuous speech recognition (LVCSR). Despite the fact that the ASRs are rendered with 
sufficient enhancements, more numbers of massive challenges are still posed on them (Baker et al., 2009a; Baker et 
al., 2009b). As an illustration, consider the performance exhibited by the speech recognition systems of present day. 
It depends on the amount of training data that is being provided to the ASR. But gathering and transmitting massive 
data is impractical that it becomes even more complex and expensive in case of the training in acoustic modeling 
(JM Baker, 2009). The training in acoustic model and the speech database carry a trade-off all the time because the 
training of acoustic model necessitates the speech database to be arranged phonetically. Yet the arrangement of speech 
database in an automated way is possible only with the deployment of an acoustic model. If an enormous speech 
database is manually aligned, there will be wastage of time and heavy inaccuracy occurs (JM Baker, 2009). The most 
basic and chief need of ASR is to make it robust enough to noise (Zhang &  Fung, 2013). This implies that the ASR 
should consider its signal of interest alone and eliminate all the other acoustic interferences (Kolossa et al., 2013; 
Ichikawa et al., 2010). All these disturbances would majorly result from the background noise only (Rennie et al., 
2010). The remaining challenges would have resulted from the training or testing of the pattern mismatch (Rose et 
al., 1994; Hasan & Hansen, 2014), which are caused from factors like vocal effects (Hasan &  Hansen, 2013; Fan & 
Hansen, 2011). Normally, in case of languages, excluding English, a mapping between the phone models as well as the 
English phone models is done in prior to recognition (Zhang & Hansen, 2011). But the ASR to recognize Hindi speech 
necessitates a group of certain utterances of isolated monosyllabic data (Kumar et al., 2004). 

The literature survey has revealed the attention of researchers towards developing an automatic speech recognition 
system, owing to the drawbacks existing in the conventional methods. The merits and demerits of the existing methods 
are tabulated in Table I. The objectives of them vary because of the wide research gaps that persist. For instance, 
few works have focused on considering LVCSR system, which is nearer to real environment. However, they fail to 
consider the impact of noise (Arisoy et al., 2014). In contrast, works that have considered noisy environment did not 
consider LVCSR system (Zhang &  Fung, 2014b; Zhang &  Fung, 2013). Though the works have been focused on 
fast processing (Tanja & Alex, 2001) and solve over-fitting problem (Simand & Gales, 2006; Arisoy et al., 2014), 
they are not robust against noise (Zhang &  Fung, 2014a; Kolossa et al., 2013; Zhang &  Fung, 2014b; Tanja & Alex, 
2001; Arisoy et al., 2014). Few works have not focused well on improving the decoding speed, although they have 
worked on LVCSR (Liu & Sim, 2014). On the other hand, over-fitting problem occurs in a recognition system, which 
has considered LVCSR context (Simand & Gales, 2006). These are the significant research gaps that are extensively 
available in the existing speech recognition systems.

Instead of addressing all the aforesaid challenges, our ASR considers over-fitting problem of the supervised models. 
Hence, we introduce the LCDR for recognizing the speech signal. Though LCDR can be operated as a supervised 
model, our paper considers it as unsupervised to avoid over-fitting problem.   

FEATURE ANALYSIS FOR HINDI SPEECH
Cepstra Analysis
Let us consider a speech sequence  of length N. The complex cepstra feature is widely used in the 

field of exponential sequences and its transform pair is given as

                                                                                              
(1)
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(2)

For , the complex cepstrum is given as

                                                                                         

(3)

The above equation is the scaled version of eq. (2) and this equation can be subjected to z transformation to form

                                                                                         (4)

The value of  is equal to the Sheffer polynomial set if it satisfies

                                               
(5)

Eq. (5) can be satisfied by polynomials given in (Rainville, 1960)

                                                                                                
(6)

where,                 (7)

Eq. (5) and (6) combine to form a transform pair

                                                                                     

(8)

                                                                                    

(9)

If , the above equation changes to eq. (2). The z -transform of  is taken from eq. (5). If ω is a fraction, then 
 will be a fractional order signal. So, eq. (8) and (9) indicate the fractional order signals building blocks. Using 

those eqs., 

                                                                      
(10)

where , the  in eq. (8) can be calculated. Let  and . With the 
Sheffer polynomial sets, the z transforms of  and  can be calculated as

                                                            
(11)
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When , the  and  had a second order pole and simple pole, respectively, but when z = 0, the function 
will attain zero.  The Sheffer polynomial set is given as

                                                             (12)

                                                             
(13)

where  and  represent the Fasenmyer and Laguerre polynomials (Rainville, 1960). Replace z by 
and multiply  on both sides of eq. (12) and (13), so that we receive

                                                 

(14) 

                                               
(15) 

where . So, the sequences get changed to

                                                                             (16)

                                                                            (17) 

Three-term recurrence relation and four-term recurrence correlations are used for computing the Lnaguerre and 
Fasenmyer polynomials. Therefore,  and  can be computed recursively with the provided β and ω.

Cepstra versus other features
The stationary Gaussian random process has been used to calculate the speech data one frame (~30 ms). Let 

with discrete time and positive spectrum  has been involved in real-valued Gaussian 
zero-mean stationary random process. If the time lag is more than n, then the value is set to be zero for the covariance 
function of the random process. The value of , MFCC of Gaussian process has to be calculated and so,

                                                                                       
(18)

Φ, H, s and  represents the m by m Fourier matrix with the element , 

conjugate transpose, symmetrical spectrum vector, where , and frequency warping 

filter bank, respectively. In the above equation, the log operates element-wise. The M attained the same symmetry of 
spectrum vectors and so, it is chosen as the filter bank. Because of this symmetry, eq. (1) seems to be real valued and 
computation can be done effectively with the discrete cosine transform (DCT). If the filter bank M is a n by n matrix, 
then the cM will be minimized to ordinary cepstrum.
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Let the MFCC estimator be 
  

          (19)

 where  represents the multitaper spectrum estimator (Percival, & Walden, 1993; Thomson, 1982), and it can be 

represented as 

                          (20)

and 
                                                       

(21)

                                                       
(22)

where k and Ψp represent the multitapers and n by n diagonal Fourier matrix, which can be given as

                                            

(23)

Being a weighted average of k sub-spectra, , the multitaper estimate is determined and this type 
of estimation will minimize the variance, because each subspectrum is uncorrelated in a multitaper (Percival, & Walden, 
1993 ; Thomson, 1982). Besides, it also minimizes the windowed periodogram, when k = 1, λ = 1 and . It 

also leads to the Welch and the Bartlett method, if accurate choice is selected for Wj and  If frequency 
warping matrix M is chosen, the multitaper estimator will change to ordinary non-warped cepstrum and MFCC.

SPEECH RECOGNITION MODEL
LDA Models
Let us consider the i th word of the speech signal of the training data as  and Xi column represents the m 

dimensional speech (word) of i class with ni training words, such that, , where c indicates the total number of 
words. Let the probe word be y and it is given as 

                                                                                     (24)

where  refer to the regression parameter and it can also be evaluated with the least square method using 
the formula

                                                                      (25)

The reconstruction of probe word with each class can be estimated using

                                                (26)
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where Hi refers to the hat matrix, which maps y to  and the error in reconstruction can be obtained using

                                                                                (27)

The LRC substitutes the value of  y to the class with less error during reconstruction. Let  
be the training matrix generated from the training database, where m and n denote the dimensionality of the training 
word and number of training words, in order. The xi class label is represented as  and the subspace 
projection matrix is given as . The speech is intruded in the subspace as 

                                                                                                       (28)

where d < m and . Since the label of xi is equal to yi , . 

                                                          (29)

and

                                                                              
(30)

where  and  indicate the reconstruction of yi by  class and j th class, respectively. Increasing the 
Between-Class Reconstruction Error (BCRE) and reducing Within-Class Reconstruction Error (WCRE) will give the 
subspace projection matrix. 

LCDR
The error problem in reconstruction of class can be reduced using the proposed method. Let the training speech 

vector be  and 
 
where  and ni, m represent the number 

of training words from i th class and dimension of the training word. Let d < m and  using , where
, the xij can be mapped to the learned subspace. So, the complete training speech words can be mapped as 

 and considering each class, it can be written as .

                                                                        
(31)

                                                                          
(32) 

Here,  and  where  and  represent the Yi with yij eliminated and Y with 
Yi eliminated. The value of  and  is taken from eq. (25).  is estimated in the original space  and it is used in 
the learned subspace in the place of α. 
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(a) (b)

(c) (d)

Fig. 1. Accuracy and Specificity of test cases A [(a) (c)] and B [(b) (d)].

It is also noted from eq. (32) that class-specific representation is used by BCRE and cross-class collaborative 
representation is used by Collaborative Between-Class Reconstruction Error (CBCRE). So, the WCRE and CBCRE 
can be also expressed as

                                                     
(33)

                                                        
(34)

The above two equations can also be written as

                                       
(35)

                          
(36)
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(a) (b)

(c) (d)

Fig. 2. PPV and NPV of test cases A [(a) (c)] and B [(b) (d)].

The  factor is eliminated from WCRE and CBCRE without changing the ratios between them. So,

                 
(37)

                   
(38)

where  indicates the trace operator. 

                                      
(39)

                                     
(40)

So,  and 

The maximum range criterion (MMC) (Li et al.,  2006) can be used to increase the CBCRE and WCRE. Hence,  
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The above equation can be solved by identifying the biggest d Eigenvalue and the Eigenvectors are given as

                                                                    (41)

where  and . 

(a) (b)

(c) (d)

Fig. 3. FPR and FNR of test cases A [(a) (c)] and B [(b) (d)].

The small sample size problem (SSSP) with speech signal greater than the training speech number can be solved 
with MMC. The LCDRC algorithm is briefly described as follows:

To obtain the unit 1. l2-norm, the test speech signal and the training speech signal must be normalized.

The projection matrix 2. U is estimated for all training speeches X and this X is substituted in the discriminant 
subspace and so, Y  = U T  X is generated.

For each class 3. , the hat matrix Hi is estimated.

x4.  is transformed to learned subspace for the test speech x using . The i th class is used to reconstruct
.

The error in reconstruction is calculated using 5. . 
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RESULTS AND DISCUSSION
Experimental Setup
Simulation experiments have been carried out in MATLAB with five standard audio sequences in .wav format that 

are downloaded from http://tdil-dc.in. The number of words in signal 1, 2, 3, 4, and 5 is about 51, 51, 97, 102, and 179, 
respectively. The performance testing is done by considering two-mode test case A and test case B. In test case A, the 
speech from speaker A is exploited for training and the testing speech is extracted from speaker B. The database has 12 
audio signals of continuous speech of Hindi language from which seven audio signals were considered for training and 
the rest of the five signals were used for testing the system. The audio signals were segregated for training and testing 
in such a way that each training signal has used 1165 words, whereas the testing signal has 480 words. The speech 
signals were acquired from male Hindi speakers. In order to evaluate the insensitivity of the algorithm against the 
gender, female version of speech was synthesized for modifying the pitch of the test signal and so the experimentation 
was widened. The frequency spectrum of the complete database falls within the range of 16 KHz. The Hindi words 
are repetitive, but randomly throughout the database. The silence based preprocessing stage has been implemented 
to perform word based speech segmentation. Moreover, silence based preprocessing stage has been implemented to 
perform word based speech segmentation.

(a) (b)

(c) (d)

Fig. 4. FDR and F1 Score of test cases A [(a) (c)] and B [(b) (d)].
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Table 2. Statistical analysis on speech recognition performance for test case A.

Audio signal 1 Audio signal 2 Audio signal 3 Audio signal 4 Audio signal 5
LCDR SVM NN LCDR SVM NN LCDR SVM NN LCDR SVM NN LCDR SVM NN

Best 99.49 98.18 98.67 99.26 98.3 98.64 99.82 99.55 99.74 99.82 99.57 99.77 100 99.5 99.64
Worst 98.53 97.20 97.69 98.27 97.31 97.65 98.84 98.59 98.75 98.84 98.59 98.79 99.09 98.5 98.69
Mean 99.06 97.69 98.16 98.77 97.78 98.11 99.32 99.08 99.25 99.33 99.06 99.25 99.59 98.97 99.16

Median 99.1 97.67 98.15 98.8 97.76 98.08 99.3 99.04 99.24 99.33 99.07 99.25 99.59 98.98 99.14
SD 0.27 0.29 0.28 0.29 0.27 0.28 0.29 0.30 0.28 0.27 0.29 0.29 0.28 0.29 0.28

In test case B, the test speech signals are synthesized to by changing the tempo of the training speech signals so 
that speaker independent environment is simulated. For the purpose of comparing the proposed recognition model’s 
performance, renowned classifier models such as a neural network (NN) and support vector machine (SVM) are 
used. Henceforth, the NN, SVM, and proposed classifier models are referred to as NN2-cepstra, SVM2-cepstra, and 
LCDR, and they are analysed for both cases using the performance metrics such as accuracy, specificity (measures 
the proportion of negatives), sensitivity (measures the proportion of positives), PPV (Positive Predictive Value), NPV 
(Negative Predictive Value), FDR (False Discovery Rate), FPR (False Positive Rate), MCC (Matthews Correlation 
Coefficient), F1 score, which is the harmonic mean of precision and sensitivity, and FNR (False Negative Rate).  The 
performance of the three methods is statistically studied by determining the best, worst, mean, median, and standard 
deviation (SD) and the best method is sorted. Here, the precision percentage represents the ratio between the true 
positive and sum of true positive and false positive, where the true positive is the number of words that are recognized 
correctly, while the false positive is the number of words that are misclassified stating as positive words. 

(a) (b)

(c) (d)
Fig. 5. MCC and Sensitivity of test cases A [(a) (c)] and B [(b) (d)].
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Table 3. Statistical Analysis on Speech Recognition Performance for Test Case B.

Audio signal 1 Audio signal 2 Audio signal 3 Audio signal 4 Audio signal 5
LCDR SVM NN LCDR SVM NN LCDR SVM NN LCDR SVM NN LCDR SVM NN

Best 99.04 97.74 98.24 98.81 97.85 98.2 99.39 99.12 99.29 99.37 99.12 99.33 99.63 99.05 99.24
Worst 98.95 97.64 98.14 98.72 97.76 98.1 99.29 99.02 99.19 99.28 99.02 99.24 99.53 98.95 99.14
Mean 98.99 97.69 98.19 98.76 97.81 98.15 99.34 99.07 99.25 99.32 99.07 99.28 99.58 99 99.19

Median 98.99 97.69 98.19 98.76 97.81 98.14 99.33 99.08 99.25 99.32 99.08 99.28 99.58 99 99.19
SD 0.029 0.03 0.027 0.028 0.027 0.026 0.028 0.03 0.028 0.031 0.029 0.029 0.029 0.03 0.026

Fig. 1, 2, 3, 4, and 5 represent the performance of NN2-cepstra, SVM2-cepstra, and LCDR methods for test cases A 
and B with considered parameters, accuracy and specificity, PPV and NPV, FPR and FNR, FDR and F1 scores, MCC, 
and sensitivity, respectively. The statistical prediction of the performance of the audio signals for test cases A and B is 
tabulated in Tables 2 and 3, respectively. Tables 2 and 3 represent the accuracy as the recognition performance measure. 
The variation in recognition performance is observed because of varying pitch in the unknown audio signals. 

Test Case A
Among various metrics considered, the proposed method shows 100% accuracy for signal 1 and 2, 100% F1 score 

for signal 5, 100% PPV for signals 1, 2, 4, and 5, and 100% sensitivity for signal 5. For all signals except the fifth 
signal, the sensitivity of the proposed method is about 9% and 25% more than the SVM2-cepstra and NN2-cepstra 
methods, respectively. 

In the case of FDR, the proposed method has performed well for signals 1, 2, 4, and 5, though just a performance 
lagging with the signal 3. For all signals with respect to FNR parameter, the proposed method shows nearly 0.22%, 
0.02%, 0.07%, and 0.09% difference from SVM2-cepstra and 0.26%, 0.18%, 0.21%, 0.23%, and 0.16 % difference from 
NN2-cepstra method. Since the FNR needs to be minimized, the proposed method ensures its superior performance over 
the other two methods. In other words, the proposed method has lesser false negative outcomes, i.e., misclassification 
of desired words as undesired words, than the other two methods. The similar kind of better performance can be seen 
from FPR outcomes. For the signals 1, 2, 3, 4, and 5, the MCC and F1 score are found to be higher for the proposed 
method than the SVM2-cepstra and NN2-cepstra method. Overall, the performance of the proposed method is higher 
with increased accuracy, F1 score, PPV (except in signal 3), MCC, sensitivity and decreased FDR, FNR, FPR than the 
NN and SVM2-cepstra methods. From Table II, it is noted that, for all audio signals, the LCDR method shows better 
mean, median, worst, best, and standard deviation. Among the audio signals, the best, worst, mean, median, and SD 
are better for audio signal 5 and they are 100%, 99.09%, 99.59%, 99.59%, and 0.28%, respectively.

Test Case B
In test case B, the NPV and specificity of all the three methods are found to be 100% for all signals. The accuracy 

of the proposed is found to be 99%, 98%, 99%, 99%, and 100%, which are higher than those of the other two methods. 
Similar to accuracy, the sensitivity is highly increased for the LCDR method, which is noted as 42%, 30%, 30%, 35%, 
and 32% more than SVM2-cepstra and 22%, 23%, 12%, 8%, and 14% more than the NN2-cepstra method with respect 
to signals 1, 2, 3, 4, and 5. Referring the PPV, the proposed method shows good performance for the signals 1, 2, and 
5, but for signals 3 and 4, the SVM2-cepstra and NN2-cepstra possess 100% PPV and this is a very significant variation 
when compared to the proposed method. For all the signals except 3 and 4, the FDR of the proposed method is lesser 
than SVM2-cepstra and NN2-cepstra method. This in turn depicts that the proposed method has the characteristics of 
reduced misclassification. In the case of MCC, the proposed method shows better performance for signals 1, 2, 3, and 
4 with 54%, 4%, 29%, and 33% more than SVM2-cepstra and 28%, 39%, 5%, and 52% than NN2-cepstra method. The 
signals in FNR and FPR graph (except 3 and 4) are found to be lesser than the SVM2-cepstra and NN2-cepstra method. 
From the results, the performance of the proposed method is higher than the NN2-cepstra and SVM2-cepstra methods. 
Table III interprets that the LCDR method performs better by considering the statistically predicting measures. The 
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measures best, worst, mean, median, and SD are better for LCDR in audio signal 5 and they are noted as 99.63%, 
99.53%, 99.58%, 99.58%, and 0.029%, respectively. Although the number of subjects used in the database is less, the 
recognition system attempted to recognize nearly 5000 words of Hindi. The number of records of the database, i.e., 
number of subjects, can be increased further since it is word based recognition system.

CONCLUSION
The present paper discussed the problems related to the speech recognition system for Hindi language. The 

challenges have been overcome in this paper by proposing a LCDR based recognition model with cepstra features. 
The performance of the LCDR method has been analysed by considering various parameters such as specificity, 
accuracy, PPV, NPV, FPR, FDR, F1 score, sensitivity, MCC, and FNR, and the comparison has been done with 
SVM2-cepstra and NN2-cepstra. The mode of experiment has been done under two cases, A and B. The maximum 
possible performance has been accomplished by the proposed method for most of the audio signals in terms of 
accuracy, NPV, sensitivity, PPV, F1 score, and specificity for test case A. In test case B, the maximum possible 
performance has been accomplished in terms of specificity and NPV. Since the adopted models are stochastic 
by nature, a statistical analysis has been carried out in which the best, worst, mean, median, and SD metrics are 
utilized for investigating the performance exhibited by the proposed model. The analysis has resulted in a finer 
performance of the proposed recognition model over the conventional models and hence ensured the consistency 
of the recognition accuracy. In the presence of noise, the robustness of the proposed scheme will be evaluated in 
future work.
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