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ABSTRACT
Vehicular Ad-hoc NETworks (VANETs) are very important in the field of Intelligent Transportation system (ITS) 

for enhancing the safety of road. The communication between the vehicles will be covered under the VANETs. A lot 
of research works are there in the area of VANET development. The common problem that arises is achieving multi-
constrained Quality of Service metrics. In order to solve this problem, this paper proposes an optimal routing discovery 
algorithm to aid the routing process in the VANET. Firstly, this paper derives a cost model for vehicle routing problems 
by considering the network quality metrics such as travel cost, collision, congestion, and the awareness about the 
quality of service (QoS). The QoS awareness is fuzzified into cost model to be included in the total routing cost. Since 
the routing cost model is a minimization function, a recently introduced bio-inspired optimization algorithm, called 
lion algorithm (LA), is used to solve the function. The performance is investigated using three renowned analyses such 
as convergence analysis, cost analysis, and complexity analysis. The simulated results obtained using MATLAB are 
compared with the existing Genetic algorithm (GA) based solution. It is found that the Lion algorithm performs better 
than the GA with a decrease in routing cost and complexity.

Keywords: Lion algorithm (LA); VANET; QoS; Fuzzy; Routing.

INTRODUCTION
Enhancing the road safety with timely information to the transport authorities and the drivers is of great concern. 

So, the better way for road safety can be provided by using the Intelligent Transportation system (ITS) (Bitam  et al., 
2015). The ITS had wide applications such as vehicle safety, prevention of collisions, traffic monitoring, control of 
traffic flows, blind crossing, and real-time detour routes computation, in addition to non-safety applications such as 
nearby information services, automated toll payment, and infotainment services (Zeadally  et al., 2012).

ITS in vehicular network includes Vehicular Wireless Local Area Networks (V-WLAN) and Vehicular Cellular 
Network (VCN). V-WLAN is based on the set of access points fixed at traffic intersections and VCN is based on a set 
of fixed cellular gateways. There are many problems in vehicular networks with the ITS. The problems include high 
costs and geographic limitations. Because of these limitations, the transmission range in network is  found to be very 
low, leading to communication problems (Beylot  & Labiod, 2013).

In ITS, VANETs are a key technology that are envisaged to play a significant role in the futuristic smart cities by 
improving road safety and providing innovative services relating to traffic management and infotainment applications 
(Bai  et al., 2006). The digitalized data communication between the vehicles and Road side users can be provided 
using the VANET (Wu  et al., 2013). There have been many routing protocols proposed for VANETs. These include 
connection based restricted forwarding and connectionless geographic forwarding (Wang  et al., 2009), robust mobility 
adaptive clustering  (Goonewardene  et al., 2009), Q-learning routing protocol (Wu  et al., 2010), estimated-distance-
based routing protocol   (Zhang  et al., 2011), etc. 
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Although much advancement is done in vehicular networks, there is a problem of determining optimal routes for 
vehicle transportation. In order to overcome these problems, various routing algorithms are developed for VANETs in 
recent years. The primary objectives of routing algorithm are to determine the optimal route for vehicles, where the 
term “optimal” refers to multiple aspects and the quality of routes such as minimum distance, high radio access, high 
QoS awareness, etc. Few such algorithms that are reported in the literature are discussed and reviewed below. 

LITERATURE REVIEW
Related Works
In 2015, Eiza et al. (2015) exploited the ant colony system based algorithm and situational awareness concept 

in developing Situation-Aware Multi-constrained QoS (SAMQ) routing algorithm for VANETs. They estimated the 
feasible routes between the vehicles subject to multiple QoS constraints and selected the best route for accurate data 
transmission. The developed method solves the NP-hard problem of searching the feasible routes. Zhou and Wang 
(Zhou  & Wang, 2015) have worked on Vehicle routing problem with time windows (VRPTW) and developed a local 
search-based multi-objective optimization algorithm. They introduced many local search methods to optimize the 
objects. The developed algorithm is simulated with 45 real time pieces of data and proved to show better solutions. 
Yang et al. (Yang  et al., 2015)  developed a novel optimal electric vehicle route model to reduce total distribution 
costs of the electric vehicle route attributing to the other parameters as capacity of battery, time for recharging, etc. 
They also developed a learnable partheno-genetic algorithm with combination of subject knowledge on electric 
vehicle charging station and customer selection. The proposed method is challenging to reduce the carbon emission 
and energy saving. Ahrens et al. (2015) developed algorithms for routing in advanced technology nodes. They used 
the multi-label interval-based shortest path algorithm for long on-track connections. They combined the bonnRoute 
with industrial router for finding solutions to the drawbacks in the experimental design.

In 2016, Eiza et al. (2016) proposed an innovative secure and accurate multi-constrained QoS aware routing 
algorithm for VANETs. They exploited the Ant colony optimization technique to find out the feasible routes in 
VANETs subject to the QoS, which was estimated using the data traffic type. They also had done the plausibility 
checks on routing control messages using the extended form of evolving graph model. The developed Secure QoS 
routing algorithm ensures better security in the wireless networks.

In 2016, V.V. Mandhare and V.R. Thool (2016) addressed the issue in (QoSR) Quality of Service Routing because 
of its dynamic nature of the network. Hence, they have proposed (MANET) Mobile Ad-hoc Network approach to 
finding the realistic path. Moreover, they have mainly focused on the constraint of QoS in MANET on the basis of 
Cuckoo Search (CS) Algorithm. Finally, the experimental results are compared with other existing algorithms such as 
AODV, PSO, and ACO and show that the proposed algorithm performs better.

In 2016, Aymen Al-Ani and Jochen Seitz (2015) have proposed avoidance mechanism as an enhancement and an 
adaptive congestion control to the QoS-aware routing protocol. Moreover, they have utilized Ant Colony Optimization 
(ACO) approach for the Simple Network Management Protocol. The adaptive nature of QoS-aware routing protocol 
(QoRA) on the basis of ACO diagnosed the sustainability of multi-rate data transmission resolute by the QoS 
restrictions presented on the path. 

In 2014, Chao Gaoa et al. (2015) had worked on Cooperative QoS routing (CQR) protocols in a multi-service 
network application to present scalable information delivery. Moreover, they have proposed a Fading Memory 
Cooperative QoS Routing (FMCQR) approach on heterogeneous services, large range transmission, and three-
dimensional monitor region.

In 2015, Aymen Al-Ani and Jochen Seitz (2015) had addressed the issues like scarcity of resources and node 
mobility in (MANETs) mobile ad-hoc network. Hence, to overcome these issues they have used ant colony optimization 
algorithms by QoS-aware routing approach. Nevertheless, vehicular ad-hoc networks (VANETs) also addressed the 
issues such as prediction of QoS parameters and change in rapid topology. Moreover, to reduce the overhead introduced 
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to gather information from neighbor nodes and to attain a precise approximate of QoS parameters, they have used 
network management protocol to approximate the values locally. Finally, the simulation result shows that the Ant 
colony optimization on the basis of QoS Routing protocol is scalable and possesses high mobility.

In 2016, S. Kavi Priya et al. (2016) have developed distributed power aware routing mechanism on the basis of the 
fuzzy in terms of bandwidth and energy constraints. Here, the star algorithm is used to satisfy the bandwidth limitation 
and energy. Finally, the simulation result shows that the proposed approach reduces frequent transmissions.

In 2015, Miguel Sepulcre et al. (2016) had proposed Multipath QoS-driven Routing (MPAR) protocol for the 
industrial wireless network to assure the strict QoS levels. MPAR uses the probabilistic estimation for the reliability 
and multipath delay routes to recognize the nodes and routes essential to create the end-to-end connections. The 
MPAR is compared with the single path and multipath routing protocols. 

In 2013, M. H. Eiza and Q. Ni (2013) had proposed on VoEG model and extended the evolving graph theory. The 
extended evolving graph aids to capture the evolving characteristics of the vehicular network topology. In addition, it 
decides the reliable routes pre-emptively. Here, an evolving graph based routing strategy is first proposed for VANETs 
so as to ease the quality-of-service (QoS) support in the routing process. To find the most reliable route in the VANET 
evolving graph a novel algorithm is developed from the source to the destination.

Problem Statement
As stated earlier, intelligent routing is the primary concern to accomplish the QoS for the VANETS. Our review has 

reported various routing mechanisms for the VANET architecture at different environments. For instance, a SAMQ 
based routing mechanism has been reported in Eiza  et al. (2015), whereas the vehicle routing problem has been 
considered with time windows in Zhou  & Wang (2015). In Yang  et al. (2015), more realistic vehicle routing problem 
has been considered by introducing the environmental and resource constraints. The design issues with the BONN 
router have been recovered by the efforts made in Ahrens  et al. (2015). Though the routing problem takes various 
such formulations, the basic inference behind them is to accomplish QoS and the basic model of routing problem can 
be termed as multi-constrained QoS aware routing problem, as per Eiza  et al. (2016). The constraints can be security, 
efficacy, reliability, resource utility, and many more. Since the contribution of Ahrens  et al. (2015) in the recent 
literature is on the architecture level, we limit our interest to the rest of the research works. 

Among the reviewed works, the swarm intelligence, specifically ant colony optimization, plays vital role. In 
Eiza  et al. (2015), an ant colony system (ACS) has been introduced to solve SAMQ and the traditional ant colony 
optimization (ACO) has been used to solve the multi-constrained routing problem. Though the ant colony based swarm 
intelligence remains renowned for its fine grained searching ability, it is a local search optimization algorithm. Hence a 
multimodal environment will pose a great challenge to these algorithms, because of its huge number of local optimal 
points and the inability of the algorithm to evade from those points. On the other hand, the evolution based algorithms 
such as genetic algorithm have been endorsed as promising (Yang  et al., 2015). However, the basic characteristic and 
the drawback of these algorithms are its coarse grained searching ability and the extreme random searching. In order 
to overcome these effects, a customized optimization algorithm has also been reported in Zhou  & Wang (2015), yet 
the problem area is multi-objective and the searching nature of the algorithm is based on local neighbourhood. Hence 
a suitable intelligent algorithm can play substantially well to handle the vehicle routing problem. 

Our Solution
As solution to the characteristics of routing cost models, this paper adopts newly introduced lion algorithm 

(Rajakumar, 2014). The lion algorithm has been introduced as the search algorithm (Rajakumar,  2012) and came out 
with few restructurings in 2014. Since the algorithm has been proven for its ability to search in the large scale problem 
domain, we have exploited for solving our route selection model. However, the primary operations of lion algorithm 
such as encoding, crossover, and mutation are not suitable to handle our problem model. Hence, we introduce two-
dimensional crossover and mutation process and customized encoding principle for our paper. Accordingly, the 
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contributions of this paper are given as follows. 

Contribution 1: This paper derives a route selection model by considering significant routing costs such as travel 
cost, congestion cost, and collision cost. Fuzzy intelligence is exploited to derive the cost to be incurred by QoS. 

Contribution 2: The recently introduced optimization algorithm, called lion algorithm (Rajakumar, 2014), is used 
for which a customized version of encoding, crossover, and mutation operations is proposed. These operations are 
performed in two-dimensional rather than the conventional one-dimensional operation. 

ROUTE SELECTION MODEL
Network Model
A schematic representation of the vehicles moving to different locations is shown in Fig. 1. The selected network 

consists of vehicles (referred to as Vn, where n is the index of the vehicle) moving to different locations L1, L2, L3, 
L4, L5, L6, L7, L8, and L9. The vehicles are assumed to move in a constant speed to reach the locations. Each location 
is covered by a specific access point (AP) represented as AP1, AP2, AP3, and AP4 with equal coverage areas. Most of 
the vehicles move from location 4 to location 6. The coverage problem occurs if the route selection is not optimal. So, 
it is better to select a right route for obtaining the maximum coverage. Also, if there is no traffic hub with no collision. 
For each AP, there is a capacity to handle the number of vehicles. Exceeding the number of vehicles often causes 
congestion in the particular coverage area. For instance, the vehicles moving to the locations 1, 2, 4, and 5 share a 
common access point AP1 and vehicles moving to the locations 3 and 6 share a common access point AP2. The instant 
AP3 is shared by vehicles moving to the locations 5 and 8. It is well seen that the congestion level is more around the 
access point 4, which covers locations 5, 6, 8, and 9. The quality of service must be enhanced with reduction in cost.

Let us assume the location where the designated vehicles move as iL and represented by nodesi NiL ,...,2,1: = , 
where nodesN is the number of nodes/location and i  is the ith location/node. Let jV  be the jth vehicle and it is given 
by vehiclesj NjV ,...,2,1: = , where vehiclesN  is the number of vehicles considered in the network. The APs deployed 
throughout the network is represented as , where  is the total number of access points.

Fig. 1. A simple network of vehicles moving at different paths.
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The AP has its own coverage area under which the network locations fall and the vehicles are covered. The 
coverage area of each AP can be represented as  in such a way that . Hence, the cardinality of the coverage 

area is given as .

Condition 1:  is said to be in the coverage of , only if  where  is the coverage radius. 

Theorem 1: The diagonal length of the network to provide coverage to all the nodes can be given as , 
where  is the dimension of the network. 

Proof: Assume that the locations of all the nodes are in the same plane. Hence, , where  

and . Since  is represented in the x-y coordinate system,  refers to the xth coordinate of  and 

 refers to the yth coordinate of . If the network nodes begin from origin, the corner nodes can be determined as 

 and . 

Considering the Euclidean distance between the two points, we get the diagonal distance as

                  (1)

                              (2)

where maxX is the length of node from origin, netL . Hence, Eq. (2) becomes

                               (3)

Cost Model

Consider nmP ,  as a solution for the routing problem (obtained from LA, since more detailed explanation is given 
in the following Sections), where nmP , : pathsNm ,...,2,1=  and nodesNn ,...,2,1=  in such a way that { }LP nm ∈, , and 

vehiclespaths NN = . The total routing cost of the solution P is a combination of travel cost, collision cost, congestion 
cost, and QoS awareness cost as represented in Eq. (4). 

( ) QoScongestioncollisiontravel FFFFPF +++=               (4)

The travel cost travelF  can be given as the cost incurred to travel from one location to another location in terms 
of distance or time or fuel or in combination of all these. Considering them as a distance matrix, the travelF  can be 
represented by Eq. (5). 

                            (5)

where ( )BAD ,  is the Euclidean distance between nodes A and B determined from the distance matrix. 
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The collision cost collisionF  is the probability of collision among the vehicles when they travel among the locations. 
It can be determined using Algorithm 1 given below. 

Algorithm 1: Determine Cost of Collision

Input nmP , // path of vehicles

Output collisionF // collision cost

1 Set 0=collisionF // Initialize collision cost

2 for every node till 1−NodesN  m∀

3 Determine nU // unique number of nodes available m∀

4 Determine collN // Number of coding vehicles

5 collisionF = collisioncollF FNP +×

6 return collisionF

Under the collision possibility, a penalty function FP  is multiplied with the number of colliding vehicles collN , 
where collN  can be determined as the number of vehicles that come together to a location at a single instant of time; 
say at  instant.

The congestion cost congestionF  is determined based on the number of vehicles being served by the AP at a given 
instant.

                  (6)

                (7)

                   (8)

where lim
kC in Eq. (7) refers to the congestion limit of the kth AP.
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Fig. 2. Fuzzification of QoS factors such as RSS and congestion level to determine QoS Cost. (a) represents 
network with 40 vehicles and 70 nodes and fuzzification of RSS, congestion cost and QoS cost are given in 

(a), (b), and (c), respectively. 

Table 1. Fuzzy Rules Among QoS Factors and Cost.

Sl. No. RSS Congestion level QoS cost

1 poor low low

2 poor moderate high

3 poor high high

4 fair low zero

5 fair moderate high

6 fair high high

7 good low zero

8 good moderate high

9 good high high

The QoS awareness cost QoSF is determined from the fuzzy inference system that estimates the QoS factors such 
as received signal strength (RSS) and the congestion level of the AP. 

Fuzzification of QoS Factors
Fuzzy logic (Klir et al., 1997)  utilizes the non-numeric linguistic variables for the QoS factors, RSS, congestion, 

and QoS cost. Each linguistic variable is assigned with a numerical value, which represents the fuzzy membership 
function. Table I represents the fuzzy rules between the QoS factors and the cost involved. With respect to the 
congestion level of low, moderate, and high at fair and good RSS, the QoS cost is zero, high, and high. But at poor 
RSS condition with low, moderate, and high congestion level, the QoS cost is set as low, high, and high, respectively. 
Fig. 3 shows the fuzzy membership function of the various QoS factors that follow the Gaussian model. The degree 
of membership of congestion is set as low, when it is in the range [0, 2], moderate in [1, 2], and high in [1, 4]. While 
considering the RSS factor, the degree of membership in the range [0, 3] is referred to as poor, [0, 10] as fair, and [4, 
10] as good. In the fuzzification of QoS cost, the degree of membership ranges at [0, 0.1] is linguistically referred to 
as zero, [0, 1] as low, and [0.2, 1] as high. 
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OPTIMAL ROUTE SELECTION USING LION ALGORITHM
Background
Based on the lion’s natural behaviour (Bauer et al., 2003), the Lion algorithm (Rajakumar,  2012) was developed 

in the year 2012. Fig. 4 represents the block diagram of the LA. According to LA, for defeating a random solution 
(can be the nomadic lion), the solution (can be a territorial lion) must be strong and so, the disappearance of the 
weak solutions (weak lions) occurs from the solution pool. The solution that won among the other solutions will 
be a stronger solution (succeeded lion in the territorial takeover/territorial defence) that arises due to the failure of 
some solutions (laggard lion). This paper exploits the LA proposed in (Rajakumar, 2014), which is modified from its 
previous version (Rajakumar,  2012). The modifications have been done with the addition of fertility evaluation phase, 
altering the crossover operation and gender clustering method. The algorithm is detailed in Rajakumar (2014), yet we 
have given the steps in sequence. 

Limitations of using existing LA (Rajakumar, 2014): The LA has been proposed to solve a general optimization 
problem, which considers a row vector as the solution model. However, our problem requires a matrix as the solution 
model. Hence, the LA or any other current optimization algorithms cannot be exploited as they are. Such limitations 
persist through the LA procedures such as encoding, crossover, and mutation, which are the major processing steps 
of LA.

Algorithm Steps

1. Pride Generation:  The maleX ,  femaleX  and the nomadX1 of maleX and the femaleX of the pride are initialized, 

where maleX , femaleX  and the nomadX1 are arbitrary solutions, which are referred to previously as P . The elements 

of femaleX , maleX , nomadX1 such as ( )lX female , ( )lX male and ( )lX nomad
1  are the arbitrarily selected locations.

Fig. 3. Block diagram of LA.

2. Fitness Evaluation: The fitness of maleX , femaleX  and the nomadX1 , termed as ,  and 

 is determined using Eq. (4). Subsequently, the initializations are done as  and 0=gN , 

where gN refers to generation counter, which is applied in the termination step. The maleX and femaleX are saved for 

further references.
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3. Fertility evaluation: The pseudo code for the fertility evaluation process is given in Algorithm 2.

Algorithm 2: Fertility Evaluation

Input: maleX , femaleX , reff , rS and rT

Output: maleX , femaleX , reff , rS and rT

// maleX  Evaluation

If reff

rT ← rT +1
else

Reset rT

reff ←

// femaleX  Evaluation

If rS  is not tolerable

Set cu and cg to zero
Do

Calculate +femaleX

cg ← cg +1

If 

cu ← 1

femaleX ← +femaleX

Reset rS

Until cg reaches max
cg

Return maleX , femaleX , reff , rS and rT

In fertility evaluation, the fertility of both gender lions is checked and evaluated for eliminating the problem 
of convergence at the local optima. The +femaleX , reff , rS , rT , cg and cu refer to the updated female lion, reference 
fitness, sterility rate, laggardness rate, female generation count, and female update count, respectively. The rS and 

rT are initialized and they obtain the determined value at the last proceedings of the fertility evaluation process. It is 
necessary to check whether the tolerance level of rS reaches the maximum max

rS . The value of max
rS , max

rT and max
cg  and 

determining LA elements are determined as per the guidelines given in Rajakumar (2014). 
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4. Mating: In the mating process of LA, the maleX  and femaleX undergo crossover and mutation operation, similar 
to any evolutionary optimization processes (Fogel  et al., 1966; Doerr  & Happ, 2012; Back  et al., 1993; Jong, 1975). 
The crossover operation is performed based on the littering rate of lion (Packer & Pusey, 1997) to produce cubsX .  
Equal numbers of new cubs newX are produced, when the cubsX undergoes mutation with mutation probability Mr and 
the cubs are located in the cub pool. After crossover and mutation, the male cub cubmX _  and female cub cubfX _ among 
the cubsX  are determined based on fitness levels (Rajakumar, 2014).

5. Cub growth: Cub growth function refers to the local solution search function in which cubmX _ and cubfX _ are 
allowed for a random mutation with a given rate of rG . The mutated cubmX _ and cubfX _  may replace the old cubmX _

and cubfX _  if the mutated cubmX _ and cubfX _  are better than the old cubmX _ and cubfX _ . The cub’s growth function is 
represented at each iteration and cubA is increased by one at each level of the cub’s growth and the best local solutions 
for cubmX _ and cubfX _ are searched with the rG rate less than 0.2.

 6. Territorial Defense: The territorial defense helps in identifying the search space with the LA and can 
be easily ordered as survival fight, nomad coalition, and pride. The territorial defense is given below in Algorithm 3 
(Rajakumar, 2014).

Algorithm 3: Territorial defense
Get nomad coalition

Select nomadex _

If nomadex _ wins

←malex nomadex _

Remove nomadex _  from nomad world

Kill cubmX _ & cubfX _

Reset age(cubs)

Defense result ← 1
Else

Update nomad coalition

Defense result ← 0

The nomadX 2 is initialized the same as nomadX1 , when maleX  is not laggard, else the nomadX 2 is initialized as the 
updated type of maleX with mutation rate of 1-Mr . The territorial fight occurs between the nomadic lions based on the 
pride and nomad coalition (Packer  & Pusey, 1982). Here, the winner take approach (Kohonen, 1984) is considered 
and so, the winning nomadic lion gets engaged within the coalition in the territorial defense. 

The nomad nomadeX _ is selected from the survival fight only if it meets the coalition constraints (Rajakumar, 
2014). The pride is updated, when the maleX is replaced by nomadeX _ and the nomad coalition is updated, if the 

nomadeX _  is defeated. One nomadX is selected during the updating process based on selection constraint (Rajakumar, 
2014).

7. Territorial takeover: It can be defined as the process of providing territory to the cubfX _ and cubmX _ , when they 
become mature and more stronger than the maleX and femaleX . The pseudo code for territorial takeover is given below. 
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Algorithm 4: Territorial Takeover

Input: maleX , cubmX _ , femaleX , cubfX _ , rS

If  >
maleX = cubmX _

oldX = femaleX

If  >
femaleX = cubfX _

If femaleX oldfemale XX ≠

Clear rS

 The process is initiated only if maxAAcub ≥ , else cub growth occurs. When cubfX _ is found better than 
the femaleX , cubfX _ occupies the femaleX position. This type of cubfX _ will be mostly fertile. Hence the rS  
reoccupies the zero position and maxA is proportional to the maturity of cubs. Therefore, one generation is complete 
and the gn is increased by 1.

8. Termination: The termination of algorithm occurs when the number of fitness evaluations is beyond the limit. 
Once the algorithm is terminated, the maleX  is returned as the optimal routes for the network vehicles.

Fig. 4. Flowchart of Lion Algorithm.
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Fig. 5. Proposed two-dimensional crossover.

Fig. 6. Proposed two-dimensional mutation.

Two dimensional (2D) Crossover and Mutation
1. 2D Crossover: The existing crossover method provides only the one-dimensional solution. The problem of 

congestion and vehicles covering all cities arises due to the movement of all vehicles to the selected destination. 
Considering this problem, the novel 2D crossover method is proposed and it is represented in Fig. 4. The termination 
of algorithm occurs when the number of fitness evaluations is beyond the limit. Once the algorithm is terminated, the 

maleX  is returned as the optimal routes for the network vehicles.

Let us consider 1V  and 2V  be the number of vectors and they are given as

( )( )1| 11 −Γ= vehiclesvehicles NRNV                    (9)
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( )( )1| 22 −Γ= NodesNodes NRNV                             (10)

where ( )xR uu 2,1| − represents the random integer generated within the [ ]x,1 interval and ( )yx |Γ  gives y  permutated 
element of the sequence . 

In the crossover operation, cubsX are initialized by femaleX  and then the maleX  elements are initialized only if 
they satisfy the condition number of vehicles, m  and number of nodes, n  belong to 1V  and 2V  respectively.

2. 2D Mutation: For handling the two-dimensional problem in mutation, the 2D mutation is proposed and 
illustrated in Fig. 5. According to it, the cubs

mcX ,  takes the input and new
mcX , is generated. Subsequently, the mutation 

points, 1PM and 2PM are calculated using eq. (11) and (12), respectively. 

                             (11)

                (12)

The mutated solutions new
mcX ,  are determined as 

           (13)

EXPERIMENTAL RESULTS
Simulation 
Simulation of the route selection model is done in MATLAB with four selected network areas using two algorithms, 

LA and GA. The experimentation is done in four configurations-at varying instants and vehicle numbers, namely, 70 
cities with 40 vehicles, 80 cities with 50 vehicles, 90 cities with 60 vehicles, and 100 cities with 70 vehicles. The 
transmission range is taken to be 250 meters, vehicle speed is 20 m/s, and the city area is 1 km2. The simulation is 
performed 100 times to obtain the required result. For finding the performance, the mean, median, deviation, best, and 
worst are measured. Comparative studies are done between the two algorithms to find out the best.

Convergence Analysis
Fig. 6 represents the graphs for convergence analysis for the four network models by considering both GA and 

the LA. In the network with 40 vehicles and 70 nodes, it was found that the convergence is higher in LA than in GA. 
Initially, both curves overlap between each other and they diverge over the increase in the number of evaluations. The 
LA curve has the fastest convergence, which shows the reduction in routing cost over GA. The GA curve bends lower 
than the LA curve but only at a specific point and the deviational difference is high. The cost of routing is estimated as 
0.95x106, 1.55x106, 2.4x106 and 3.6x106 for LA in network model 1, 2, 3, and 4, respectively. In the network with 50 
vehicles and 80 nodes, the LA curve converges steadily with an increase in the number of evaluations and runs parallel 
to the GA curve. However, in the network with 60 vehicles and 90 nodes, both curves intersect each other at 2.5x106 

cost of routing. The model with 70 vehicles and 100 nodes has the highest convergence among the four models and 
the converging point is more at the 10000 evaluations.
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(a) (b)

(c) (d)
Fig. 7. Convergence on determining the optimal route by LA and GA for network with (a) 40 vehicles and 70 nodes, 

(b) 50 vehicles and 80 nodes, (c) 60 vehicles and 90 nodes and (d) 70 vehicles and 100 nodes.

(a) (b)

(c) (d)
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(e) (f)

(g) (h)

(i) (j)

(k) (l)
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(m) (n)

(o) (p)

Fig. 8. Mutual relationship exists between the total cost and the other costs such as collision cost, congestion cost, 
QoS cost and travel cost. (a), (e), (i) and (m) are the results from the network with 40 vehicles and 70 nodes. (b), (f), 

(j) and (n) are from the network with 50 vehicles and 80 nodes, (c), (g), (k) and (o) are from the network with 60 
vehicles and 90 nodes, and (d), (h), (l) and (p) are from the network with 70 vehicles and 100 nodes. 

Cost Analysis
The mutual relationship exists between each of the routing costs under LA and GA; performance is illustrated in 

Fig. 7-10. In fig. 7, while comparing the total cost with QoS cost, the total cost is increased with the increase in QoS 
cost under both LA and GA operations for the network configurations 1 and 4 and configuration 1, respectively. It 
remains constant under LA and GA operations for network configurations 2 and 4, respectively, and decreased under 
LA and GA operations for network configuration 3. The collision costs produced by LA and GA operations overlap 
between each other in all models and increase over the increase in the total cost. The total cost is increased with the 
increase in the congestion cost under LA and GA operations for configurations, 1, 2, 3, and 4 and 1, respectively.  The 
congestion cost is decreased under GA operation for the network configurations 2, 3, and 4. 
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Fig. 9. Mutual relationship exists between the travel cost and the other costs such as collision cost, congestion cost 
and QoS cost. (a), (e) and (i) are the results from the network with 40 vehicles and 70 nodes. (b), (f) and (j) are from 
the network with 50 vehicles and 80 nodes, (c), (g) and (k) are from the network with 60 vehicles and 90 nodes, and 

(d), (h) and (l) are from the network with 70 vehicles and 100 nodes.

In fig. 8, the congestion cost is increased with the increase in the travel cost under both LA and GA operations 
for network configuration 1. In contrast, the congestion cost is decreased under LA and GA operations for network 
configurations 2 and 3, respectively. For network configuration 4, the congestion cost remains constant under LA 
operation. The comparison of travel cost against collision cost reveals that the travel cost is greatly increased under LA 
and GA operations for all network configurations except configuration 2 under GA operation. When comparing the QoS 
cost with travel cost, it decreases with the increase in the travel cost under LA operation for network configurations 2, 
3, and 4 and increases for configuration 1. In contrast, the QoS cost decreases over increasing travel cost for network 
configurations 1, 3, and 4, and increases over increasing the travel cost for configuration 2, under GA operation. 
The congestion cost approximately increases for increasing travel cost for all the network configurations, except 
configuration 1 in which the opposite occurs. 
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In fig. 9, while comparing the collision cost with congestion cost, the LA shows slightly increased congestion cost 
with the increase in the collision cost of about 5 for configuration 1. However, under the GA operation, the congestion 
and collision costs are much higher. According to configuration 2, both GA and LA show inversely proportional 
relationship between collision and congestion costs. The congestion cost is decreasing with increasing collision cost 
under GA operation for configuration 3, whereas under LA operation, the collision cost also increased up to 2.9x106 

at higher congestion cost. As per network configuration 4, the cost characteristics of both algorithms intersect with 
each other. The GA convergence shows increased collision cost with the increase in the congestion cost and LA 
convergence shows decreased congestion cost with increased collision cost. 

Table 2. Computing time incurred by LA and GA.

Configuration GA LA

40 vehicles, 70 nodes 263.4403      98.9077

50 vehicles, 80 nodes 346.8884      115.7794

60 vehicles, 90 nodes 447.7318      134.142

70 vehicles, 100 nodes 560.5515       153.164

Fig. 10. Mutual relationship exists between the collision cost versus congestion cost, QoS cost and travel cost. 
(a) and (e) are the results from the network with 40 vehicles and 70 nodes. (b) and (f) are from the network with 50 
vehicles and 80 nodes, (c) and (g) are from the network with 60 vehicles and 90 nodes, and (d) and (h) are from the 

network with 70 vehicles and 100 nodes.
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Fig. 11. Mutual relationship exists between the congestion cost and QoS cost for the network configuration 
(a) 40 vehicles and 70 nodes,  (b) 50 vehicles and 80 nodes, (c) 60 vehicles and 90 nodes, and (d) 70 

vehicles and 100 nodes.

Comparing the collision cost with QoS cost, the collision cost increases with the increase in QoS under LA 
operation for configurations 1 and 4. Both curves intersect at 0.98x106 collision cost. However, under GA operation, 
the QoS cost is decreased for configurations 2, 3, and 4. In fig. 10, the QoS cost remains constant for varying congestion 
cost under LA operation for network configurations 1, 2, and 3. Under GA operation, the constant QoS is observed for 
network configuration 4, but the QoS cost decreases and increases for configurations, 1, 3 and 2, 4, respectively.

Computational Overhead
Table II details the computational time incurred by LA and GA to determine the optimal route for various network 

configurations. The results confirm that the computational time is greatly decreased for all the network models while 
using LA. The LA records at least 60% (approximated) reduction of computing time to determine the optimal route 
over the GA. To a maximum, LA reduces 70% of the cost incurred by GA for determining the route for network 
configuration 4. 

CONCLUSIONS AND FUTURE WORK
This paper addressed the multiple objective constraints required for solving a vehicle routing problem for VANET. 

For this, a vehicle routing problem model had been proposed that mainly depends on the collision, congestion, 
travel, and QoS cost. The QoS based cost function had been derived using the fuzzy inference system. LA has been 
exploited for solving the routing model and the computational time is calculated along with the cost and convergence. 
The performance of LA is demonstrated by comparing the results with the GA using renowned analyses such as 
convergence analysis, complexity analysis, and cost analysis. The experimental results show that the computational 
time taken by the LA is about 72% lesser than the time taken by GA. Specifically, the convergence rate is high for the 
LA with 2.2% difference from the GA and the cost of collision, congestion, and QoS have been decreased when the 
LA is used. From the results, it has been confirmed that the LA significantly reduces the computational complexity. 
The proposed cost model and the algorithm produced encouraging results. In the future, the obtained results will be 
experimentally compared against the conventional routing protocols using network simulators such as NS2 or NS3. 
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