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ABSTRACT

Product quality problem is a critical issue for multistage manufacturing processes, 
especially in continuous production lines whereby quality characteristics are measured 
at the end of the line. Therefore, it is important to reduce process variation by identifying 
its sources and eliminating its causes. In this regard, a novel approach, to identify 
the source of variation in multistage manufacturing processes through integration of 
the Fisher’s linear discriminant analysis and the stream of variation methodology, 
is proposed. Linear discriminant analysis is used to separate the variation of quality 
characteristics through the different stages of the manufacturing processes while 
the stream of variation methodology is used for variation propagation modeling in 
multistage manufacturing processes. Finally, the future deviation is assigned into the 
analysis, in order to identify the source of variation. With an illustrative case study, 
it is concluded that the proposed approach improves fault diagnosis of continuous 
production lines in multistage manufacturing processes.

Keywords: Discriminant analysis; machining process; state space model; stream of 
variation; variation source identification.

INTRODUCTION

Variations in product characteristics are one of the most important problems in quality 
control and improvement for multistage manufacturing processes (MMPs). Most of 
the developed quality control and improvement studies in MMPs can be classified into 
variation propagation modeling, monitoring and diagnosis, and quality-oriented design 
optimization. Jin & Shi (1999) proposed a state space model, based on fundamental 
physical laws that can be used as a physical model for modeling variation propagation. 
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This state space model that has been used to model variation transmission between 
stages in various multiple manufacturing processes is proposed by Xie et al. (2012) 
and Liu et al. (2009) for assembly processes and by Loose et al. (2007); Djurdjanovic 
& Ni (2003) and Abellan-Nebot et al. (2012) for machining process. In monitoring and 
diagnosis areas of quality improvement study, that constitutes the research area of this 
paper, the main technique that can be used for process monitoring and fault diagnosis 
of MMPs is statistical process control. Hawkins (1993) proposed a regression-adjusted 
chart for monitoring correlated quality characteristics. An exponential weighted 
moving average scheme has also been investigated by Xiang & Tsung (2008) that is a 
monitoring method for MMPs. Nevertheless, up to now, one of the main problems to 
applying these methods is how to realize the faulty stage. When a fault is detected at a 
stage, it might be due to a change in previous stages. 

Variation source identification of quality characteristics at the production line is 
a critical issue, especially when it must continuously work. In large industries, most 
of the production lines and their subsets are continuously working. An example of 
these production lines is machining process and assembly stations of the automotive 
industry. Another technique that can be used for process monitoring and fault diagnosis 
is the root cause identification for MMPs. This technique can be classified into two 
categories: (1) statistical-estimation-based method; and (2) pattern-matching-based 
method. In the first method, mathematical models that link the system error and the 
system quality measurements together are treated as a linear mixed model. By this 
procedure, the ordinary least square technique can be used to estimate the process error 
and to provide confidence intervals. Zhou et al. (2004) employed a maximum likelihood 
estimator and Ding et al. (2005) compared different methods to estimate variances. In 
the pattern-matching-based methods, the linear pattern is defined between signatures 
of potential errors and symptoms of the present errors. Signatures can be defined 
based on the model, and symptoms can be extracted from measurement data. Several 
pattern matching studies that have been reported in literature are listed as Li et al. 
(2007); Huang & Kong (2008) and Zeng & Zhou (2008). Although extensive research 
work has been performed in order to identify the source of variation in MMPs, most 
of which has been focusing on fault diagnosis between stages. However, to improve 
product quality, it is desirable to develop a fault diagnosis methodology to identify the 
source of variation for continuous manufacturing processes. Most of current practices 
in industries are stage-by-stage inspections. If the quality characteristics are measured 
at the end of the production line, a specific study is needed to find the faulty stage. In 
this study, a novel approach is proposed to variation source identification in multistage 
manufacturing processes based on discriminant analysis. In this regard, the proposed 
method separates product quality measurements in multistage machining processes. 
Then, faulty stage is determined by allocating future deviation to its classified 
source.
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An illustrative diagram that contains the research framework of quality control and 
improvement in multistage systems is shown in Figure 1. The proposed method is a 
monitoring and diagnosis based methodology, which proceeds to identify the source 
of variation based on statistical estimation methods. For more information about the 
basic framework of quality control and improvement research in multistage systems 
see Shi & Zhou (2009).

Fig. 1. Research framework of quality control and improvement in multistage systems

The remainder of this study is organized as follows. The stream of variation 
methodology was first explained. Then discriminant analysis for MMPs is discussed, 
where its function in the stream of variation methodology is introduced. Afterward, 
fault diagnosis of multistage manufacturing process is explained through discriminant 
analysis for deviation of product quality measurements. Finally, a case study is 
provided to demonstrate the applicability of proposed method and conclusions are 
subsequently presented.

STREAM OF VARIATION METHODOLOGY

Most of modern manufacturing processes such as automotive, aerospace, appliance, 
aircraft and shipbuilding are multistage systems. These processes consist of multiple 
stages or stations that produce a final product. Each stage introduces variation and 
consequently this variation propagates through the production process. These variations 
not only are propagated along a series of stages but also are accumulated at the end of 
the stages. Hence, variation at the final stage could be affected by the fault on previous 
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stages. This leads to a specific strategy, namely, stream of variation methodology for 
modeling, analysis, and control of product quality and productivity improvement 
in MMPs. This methodology integrates multivariate statistics, control theory, and 
manufacturing knowledge into a mathematical model to describe the propagation of 
quality information in MMPs. The most popular model used for transmitted variation 
between stages in a multistage system is the state space model as shown in Figure 2, 
first proposed by Jin & Shi (1999). 

Fig. 2. Diagram of a G-stage process

This physical model can be set up in a G-stage process as the following two 
Equations: 

                                      (1)

Where,  and  are the vectors representing the deviation of quality characteristics 
and process faults at station j, respectively and j is the stage index, j = 1,2, ... , g. The 
vector  denotes the deviation of quality characteristics which is accumulated in 
stages 1, 2, 3,…, j-1, where natural variation and un-modeled errors in the process are 
represented by vector ej . It should be noted that the product quality measurements 
collected in  and  denotes a noise term due to measurement.  is a dynamic 
matrix that maps product quality variations between stages j and j-1, and  is an input 
matrix for process errors at stage j. Also  is ameasurement matrix that maps quality 
characteristics to product quality measurements. Interested readers are referred to Shi 
(2007) and Ceglarek et al. (2004) for further discussion on the state space model and 
interpretation of system matrices. In this study, “process fault”, “process error”, and 
“variation source” can be interchangeably used with each other.  Also the key quality 
characteristics of the product are dimensional deviation of key features and the process 
faults are fixture errors. The modeling of fixture-related variation propagation using 
the state space model in an assembly process was addressed by Jin & Shi (1999); Ding 
et al. (2000) and Camelio et al. (2003). Stream of variation modeling for multistage 
machining processes was also investigated by Djurdjanovic & Ni (2001); Huang et al. 
(2000) and Loose et al. (2007).
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PROPOSED APPROACH TO FAULT DIAGNOSIS FOR MMPS

In multistage systems, quality managers always explore techniques to achieve a 
distinction between variation sources. Because of existing correlations between 
stages, it is hard to access the analytical model that can separate the variation source 
of product characteristics. Statistical tools such as applied multivariate analysis can be 
used for variation source identification. Multi-group discriminant analysis is a popular 
technique that involves partitioning the variable space into two or more mutually 
exclusive regions. In this section, an approach is proposed based on multi-group 
discriminant analysis that estimates Fisher’s linear discriminant function to provide 
the best separation between process errors of the stages. There are three assumptions 
in the proposed method: (1) data come from a multivariate normal distribution; (2) 
covariance matrices across groups are equal; and also (3) misclassification costs and 
prior probabilities are equal. Violation of this assumption affects both the classification 
results and the statistical significance tests in discriminant analysis. More information 
about discriminant analysis can be found on Sharma (1996). As introduced in the 
previous section, the state space model defined in Equation (1) can be converted to a 
linear model as:

          (2)

Where,  is the state transition matrix,  for j>i, and 
 . Without loss of generality, the effect of initial error  is neglected (Liu, 

2010). Equation (2) can be converted to an extended model taking into account the 
measurements on all the stages. It expresses quality vectors as linear combinations of 
fault patterns defined in matrix  as in the following Equations:

                                                  (3)

              (4)

Where, , , and  can be derived according to Equation (2). Let  be the 
fault vector that represents the process faults of p quality characteristics at g stages, 
whose covariance matrix is given by  and the total sum of squares and cross products 
(SSCP) matrix by T. If  be a p×1 vector of weights, then discriminant function for 
product quality measurements will be given by:

                                                        (5)
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The maximum number of discriminant functions that can be computed is the 
minimum of g-1 or p, where g is the number of stages and p is the number of product 
characteristics. Since , where B and W  are, respectively, the between groups 
and within group SSCP matrices for  p quality characteristics. The discriminant 
functions for the stream of variations that are linear combinations of product 
characteristics are estimated such that the following ratio for the discriminant scores 
is maximum:

                                                    (6)

The vector of weight can be obtained by differentiating  with respect to , and 
equating to zero. Where,  and  are, respectively, between-groups and 
within-group sum of squares for discriminant scores . Then the vector of weights    
that maximizes Equation (6) is given by . If   be a p×1 
vector of product quality measurements for p characteristics, then the linear combination 

 will called the first discriminant function and continuing,  is the j the 
discriminant function for product quality measurements which can be estimated in a 
linear relationship as follow:

                   (7)

Therefore, m is the maximum number of discriminant functions that separates the 
variation space into (m+1) regions. These regions represent the differences among 
the variation sources at stages geometrically. Adequacy of this representation can be 
assessed by statistical significant test of each discriminant function (Sharma, 1996). 
Also the test statistics for evaluating the statistical significance of the classification 
rate is proposed by Huberty (1984). In order to validate the discriminant function, 
the external validity needs to be examined. The case study provides results from 
the experimental validation of the proposed method. The final object of this study 
is to allocate future deviation of the product quality measurements at the end of the 
production line into one of the stages that is the variation source of process error. 
This can be done based on discriminant score of measured characteristics. First, the 
space of variation source is divided into mutually exclusive regions according to 
its eigenvalues, then, future deviation is allocated into a stage in which it falls. As 
mentioned in the previous section, all product quality measurements come from a 
multivariate normal distribution. Therefore,  represents the p-variate deviation of 
product characteristics at stage j and follows a p-variate normal distribution with mean 

 and common covariance , i.e. . The joint density function of any 
stage j for a p×1 vector of  is given by 

                         (11)
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Classification rule can be obtained by minimizing total cost of misclassification 
(TCM). Since the misclassification costs and priors probabilities are equal, it can be 
concluded that the vector  assigns to the region j if 

       (12)

Now it is possible to allocate the vector of measured deviation at the end of the 
production line into the source of variation. As technology for automatically continuous 
process becomes less expensive and more widely used by manufacturing industries 
such as automotive, aerospace, appliance and electronics, there are many applications 
in which this diagnostic method could be used to identify the source of variation. In 
the next section, the application of the proposed method is shown below using a case 
study.

AN ILLUSTRATIVE CASE STUDY

In order to demonstrate the applicability of the proposed method, a case study that 
involves four-stage machining process is conducted at production line of the Nasir-
Kyung Corporation;  an automotive part supplier of Saipa manufacturing group. The 
production of this corporation is the automobile engine connecting rod, which is 
shown with its key datum features in Figure 3.

Fig. 3. The work piece: a Connecting Rod

The quality of the connecting rod considerably affects the power and the velocity 
of the automotive engine. The production line of this product is a U-shaped multistage 
machining process that works continuously. Therefore, it is not possible to take any 
quality measurement between stages. For this work piece, there are four variation 
sources considered at four machining processes. These machining processes are 
named as small bore machining, bolt seat machining, groove machining, and bolt-
hole machining. The wok piece is clamped on the cube that is fixed by a fixture. The 
used fixture scheme in this case study is the 3-2-1 fixture scheme. Modeling of the 
variation propagation is focused on the one of the key features of the connecting rod. 
This key feature is small bore diameter that is also considered as the datum feature in 
the fixture setup. The nominal position and orientation of the datum feature w.r.t the 
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reference coordinate system is listed in Table 1. In this case study, distance and angle 
are in unit millimeter and radian, respectively. 

Table 1. Nominal position and orientation of the feature

Feature Euler Angle Translational Importance Spec.

Name Vector

Small Bore [0, 0, 0] [102, 98, 178] A 21.84~21.89

The origin of the reference coordinate is the intersection point between the 
centerline of small bore and the upper plane of the cube fixture. In the 3-2-1 fixture 
scheme, the work piece position is located by six locators. To develop the state space 
model, the nominal locations of the fixture locators are needed w.r.t the datum feature. 
These values are listed in Table 2. 

Table 2. Nominal locations of the fixture locators

Tertiary
 Datum

Secondary
 Datum

Primary
 Datum

[92, 0, 108][0, 78, 80][84, 90, 0]

[0, 88, 182][88, 180, 0]

[184, 142, 0]

The nominal fixture locations are given in the coordinate systems attached to the 
corresponding datum feature. With this known information, the state space model can 
be established to link the datum induced errors and fixture errors with the product 
quality measurements. For the datum feature, the relevant product characteristics are 
its orientation and the distance from the reference coordinate of the datum feature 
plane. The deviation of the orientation is denoted by  and the deviation 
of the distance is denoted by  . The overall dimensional error of product 
characteristics is described by combining error sources together in a 6×1 vector. The 
model noise and measurement noise is neglected and the initial state vector sets as zero. 
For applying the proposed method, 40 work-in-process products in the off-line mode 
are randomly selected as the training data. In order to model variation propagation, 
the linear model is built based on the measured deviation of these products at the 
off-line mode, and stream of variation is modeled at four machining stages by the 
state space equations. Subsequently, discriminant functions are estimated based on 
product quality measurements. In order to identify the source of variation for future 
deviation, the quality characteristics of the faulty product are first measured at the end 
of the production line. Then, the measured deviations are allocated into the source of 
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variation by classification rule. The deviation value, the predicted group membership, 
and the discriminant score of six product characteristics are listed in Table 3. 

Table 3. Predicted group membership for future deviation

characteristic deviation
Predicted 

group 
membership

Discriminant 
score

-1.7600 # 1 -20.2675

1.8400 # 1 3.6143

0.0000 - 0.0000

0.0000 - 0.0000

0.0000 - 0.0000

0.0200 # 1 21.2146

It can be concluded that the deviation of the product characteristics belongs to the 
stage number One. Subsequently, small bore machining is the faulty stage. As the 
deviation is in the 3-D plane, three parameters are required to completely characterize 
the deviation of the final product. Those are deviation in x and y directions and the 
rotation along the z axis. The faulty product at the end of the machining process is 
deviated -1.76 mm and 1.84 mm respectively in x and y direction and 0.02 radian in ψ  
orientation too. Figure 4 presents a view of the work piece deviating from its nominal 
position.

Fig. 4. The work piece deviating from its nominal position

Figure 5 shows a clear visualization for the deviations of characteristics w.r.t. each 
other in which the graphic views of this visualization are illustrated by contour plots. 
In Figure 5 (left), the values for δx and δy are represented on the x- and y-axes, while 
the values for the grouped variable are represented by shaded regions, called contours. 
The contour lines that form the boundaries of deviation regions connect points with 
equal values. This leads to range of deviations for stage four to vary between 0.03 mm 
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to 0.09 mm and also from 0.12 mm to 0.14 mm on the x-axis and from 0 to - 0.04 mm 
on the y- axis. In Figure 5 (right), the values for δx, δy, and δψ are represented on three 
axes. It can be concluded that the highest deviation in the ψ orientation is found where  
δx varies from 0.04 mm to 0.07 mm and also δy varies from 0 to - 0.02 mm. As δx and  
δy move away to larger values, the values for δψ increase steadily. 

 

Fig. 5. Contour plot of X and Y deviations vs Stages (left) and Psi deviation (right)

To validate the proposed method, a work piece is machined in the test bed with 
current machining process under prior knowledge about the faulty stage (Shi, 2007). 
The training data that is obtained from work-in-process products at the off-line 
mode is provided the empirical range for fixture error in the x direction. Based on 
this information, proper value of error can be considered to add to the fixture locator 
in connecting rod machining process. The empirical range of fixture error for the 
connecting rod machining process is listed in Table 4. 

Table 4. Empirical range of fixture error

Small Bore 
machining 

Bolt Seat 
machining 

Groove 
machining 

Bolt Hole 
machining 

Stage 1 Stage 2 Stage 3 Stage 4

0.10 ~ 0.90 0.16 ~ 0.50 0.60 ~ 0.70 0.76 ~ 0.99

In the machining, a fixture error is intentionally added to the process at stage one; 
the input to the model that correspond to the fixture error is .  
The nonzero value in the vector of process error expresses that the locator is deviated 
from its nominal position in the x direction by 0.6 mm. The work piece is measured 
at the end of the machining process and the deviation of product characteristics is 
obtained. Based on discriminant analysis for each characteristic, group membership 
of deviations is predicted. The deviation, the predicted group membership, and the 
discriminant score of product characteristics in the test bed are listed in Table 5. 



Variation source identification of multistage manufacturing processes through discriminant .... 106

Table 5. Predicted group membership for the intentionally added deviation

characteristic deviation
Predicted 

group 
membership

Discriminant 
score

δx -5.2800 # 1 -27.0800

δy 5.5200 # 1 4.8756

δz 0.0000 - 0.0000

δφ 0.0000 - 0.0000

δθ 0.0000 - 0.0000

δψ 0.0600 # 1 34.6877

Since the results of the test-bed indicate stage number one is the faulty stage, it can 
be concluded that the proposed method is sensitive to variation source identification. As 
previously mentioned, the faulty stage is the first process in the case study. Therefore, 
small bore machining is important process that strongly influences the dimensional 
quality of the connecting rod. The importance of this machining process is highlighted 
by the fact that the dimensional variation of small bore lead to instability of connecting 
rod at the fixture location in the next process. This instability injures machining tools 
and decreases the capability of the process.

CONCLUDING REMARKS

Based on this current research, there is an identified gap and a need for more research to 
study the complexity of MMPs and product quality problems with particular emphasis 
on variation source identification. Challenges can be addressed based on detection of 
faulty stage during production phase, rapid root cause tracking and problem solving 
during production stages. Statistical process control is one of the most primary 
techniques that can be used for monitoring and fault diagnosis in MMPs. However, 
stage-by-stage inspection, high alarm rates, and recognition of the faulty stage are the 
main problems in applying these methods. Therefore, it is desirable to develop a fault 
diagnosis methodology to identify the source of variation especially for continuous 
production lines. In this study, a novel approach was proposed to diagnose faults in 
multistage manufacturing processes based on stream of variation methodology and 
discriminant analysis. This approach separates process error of product characteristics 
and facilitates the identification of faulty stage in continuous multistage manufacturing 
processes. The proposed method first constituted state space model, then discriminant 
function was estimated based on the measurements of the quality characteristics during 
production phases separated stream of process errors between stages geometrically. 
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Consequently, future deviation at the end of the production line can be assigned to 
the region of variation that corresponds to the faulty stage. The effectiveness of this 
method has been demonstrated using a case study from automotive industry; the Nasir-
Kyung Corporation that is one of the prosperous suppliers of Saipa manufacturing 
group in Iran. The results showed that variation sources in multistage connecting rod 
machining process could be simply identified. Furthermore, a quantitative comparison 
between the real case and simulated case confirmed the recognition of the faulty stage 
with the same predicted group membership. The proposed diagnostic method is widely 
applicable in large manufacturing industries such as automotive, aerospace, appliance, 
and the like.

The proposed diagnostic methodology is limited to between-stage variations. 
The development of the proposed method that separates within-stage variations in 
multistage manufacturing process would be a valuable contribution. New research is 
needed to forecast the trend of the propagated variation employing the statistical tools 
such as time series analysis.
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