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ABSTRACT

Nanotechnology is emerging as one of the most promising alternative technology to 
CMOS technology because of its higher density, high speed, lighter, and lower power 
consumption; however, defects are much higher in nanotechnology. Therefore, the 
need for defect-tolerance techniques becomes crucial in nanotechnology. This paper 
addresses an important intractable problem of finding a maximum size defect-free 
sub-crossbar in defective nano-scale crossbars for a higher yield. We propose a hybrid 
mapping algorithm by embedding known greedy heuristics with genetic algorithm 
(GA) to search a large solution space effectively. The proposed algorithm exploits the 
degrees of nodes, which play a crucial role in the selection mechanism in the greedy 
mapping heuristics to generate a better quality solution. In the proposed algorithm, 
GA provides the selection order by generating a new set of degrees that are used by the 
greedy mapping heuristic to find a new value for the defect-free sub-crossbar (k). The 
experimental results demonstrate the effectiveness of the proposed hybrid algorithm 
in finding a large size defect-free sub-crossbar compared to the existing state-of-the-
art greedy heuristics. 

Keywords: Biclique problem; defect tolerance; genetic algorithm (GA); mapping 
algorithm; nano-crossbar switches; nanotechnology

INTRODUCTION

The limitation of CMOS technology in electronic and computational circuits incites 
researchers to focus on finding alternative technologies such as nanotechnologies 
(Rao et al., 2006). Unlike CMOS devices, nano-electronic devices are faster, consume 
less power, and occupy a smaller area because of their size and density factors (Zieglar 
& Stan, 2003). In nanotechnologies, 2D crossbars can be built easily because of their 
regular structure, which plays a key role in reconfigurable nano-architecture (Paul & 
Bhunia, 2012; Zamani et al., 2014). Unfortunately, defects are new challenges that 
arise when nano-wires are integrated into computing and electronic systems. During 
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the manufacturing process of nano-crossbars, defects are either non-programmable 
crosspoint defects or disconnected wire defects (Ghavami et al., 2010). These 
defects are catastrophic; they make switches unusable and prevent them from being 
reconfigurable. An example of a 3x3 defective crossbar is shown in Figure 1(a). It 
consists of two sets of orthogonal nano-wires. The horizontal wires labeled “U” are the 
inputs, whereas the vertical wires labeled “V” are the outputs. At each crosspoint, there 
is a programmable switch. The defective switches in this crossbar are represented as 
“X”. The need for defect-tolerance techniques becomes crucially important especially 
when mapping any function to a defective crossbar. 

(a)              (b)               (c)

Fig. 1. (a) A 3x3 crossbar with four defects, (b) representative graph, (c) complement graph

Most researchers are exploiting fault tolerance techniques to get full utilization of 
defective crossbars and reaching a high manufacturing yield. Fault tolerant approaches 
are classified as defect-aware and defect-unaware approaches (Bonam et al., 2007). 
In defect-aware design flow, the defect maps are very large, since they identify all the 
defective crosspoints. The size of the resulted map is O(n²). With this size, it is difficult 
to retrieve this map each time especially in online testing. A variety of techniques have 
been reported for defect-aware design flows to handle defect problems in nano-circuits 
(Zheng & Huang, 2009; Su & Rao, 2009, 2014; Yang & Datta, 2011; Gören et al., 
2011). However, in defect-unaware design flow, only two binary vectors are needed 
to be retrieved and stored with a size equal to O(n). These two vectors denote the 
horizontal and vertical lines in a crossbar (Tahoori, 2005). In this flow, there is no need 
to consider the location of defects in high level design steps. In this flow, a maximum 
size defect-free sub-crossbar is identified, which means that a defective crossbar can 
be used as a defect-free sub-crossbar with a reduced size. A defect-aware approach 
is required only in the final mapping step. Maximizing the value of defect-free sub-
crossbar (k) is important for efficient function mapping in nano-scale crossbars and to 
improve the yield of a defective crossbar. 
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RELATED WORK

In general, most of the algorithms for identifying the maximum defect-free sub-
crossbar convert the defective crossbar into a representative graph. A bipartite graph 
G (U, V, E) is called a representative graph of a crossbar with two partitions: U as the 
set of input nano-wires and V as the set of output nano-wires. E represents all edges 
between U and V, which in turn indicate the non-defective crosspoints of the defective 
crossbar. A bipartite graph is called a complete bipartite graph, if and only if, all nodes 
in U and V are connected to each other. The two-dimensional crossbar in Fig. 1(a) can 
be described by a representative graph as shown in Fig. 1(b). A bipartite graph G (U, 
V, E) can be called a biclique, if and only if, E = U x V in which E is the total number 
of possible edges in the bipartite graph. A biclique G (U, V, E) is balanced if |U|=|V|. 
A maximum complete subgraph of a bipartite graph is a maximum biclique (Tahoori, 
2005, 2006; Al-Yamani et al., 2007; Yuan & Li, 2011, 2014, Yuan et al., 2014). The 
crossbar can still be used as a maximum k x k (k < n) sub-crossbar if a maximum 
biclique of size k can be extracted.

The complement graph of a graph G is a graph  with the same set of vertices 
such that two vertices of  are adjacent and only if they are not adjacent in G. The 
complement graph of the graph in Fig. 1(b) is represented in Fig. 1(c). An independent 
set S in a graph G is a subset of nodes that are disconnected. The maximum independent 
set is an independent set with the maximum number of nodes. Then, extracting the 
maximum biclique from a graph is the same as extracting the maximum independent 
set in a complement graph (Fig. 1(c)). In most of algorithms for finding the maximum 
independent set in a graph, the node selection order plays a key role in the final 
solution quality. This requires having a well-defined selection process for the nodes in 
the graph. Many research papers have suggested different ways for implementing the 
selection process. The node degree plays a significant role in the selection process. In 
Magun, 1998 and Langguth et al., 2010, the authors compared different degree based 
selection heuristics such as simple greedy, static Mindegree, dynamic Mindegree, and 
others. 

The three state-of-the-art greedy heuristics proposed in the literature (Tahoori, 
2005, 2006; Al-Yamani et al., 2007; Yuan & Li, 2011, 2014) to identify the maximum 
defect-free sub-crossbar from the defective crossbar also used degree-based selection 
criteria. These algorithms were designed to supercede each other with the aim of 
improving the time complexity and the size of the defect-free sub-crossbar. These 
algorithms work on extracting the maximum independent set in the complement 
graph. Each algorithm deletes the nodes in a particular order depending on the degrees 
of the nodes. The algorithm reported in Tahoori, 2005 and 2006 starts by constructing 
the complement graph of the representative graph with two sets, U and V. After that, 
it tries to find the maximum independent set in the complement graph by removing 
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maximum-degree nodes. In order to keep the graph balanced, the algorithm alternates 
between U and V while deleting the maximum-degree nodes. Each time a node with 
zero degree will be added to the maximum independent set. The final nodes in the 
independent set (k) will be considered as the final defect-free subset (kxk). The time 
complexity of this algorithm is O(n²) in which n represents the number of nodes in the 
graph. The algorithm given in Al-Yamani et al., 2007 also tries to find the maximum 
balanced independent set in the complement graph. Each time, it removes the node 
on one side that is connected to a maximum number of minimum-degree nodes on 
the other side. It alternates between U and V while deleting a node to keep the graph 
balanced. The time complexity of the algorithm is O(n³). 

The algorithm given in Yuan & Li, 2011 follows a different scenario to find the 
maximum-balanced independent set. While alternating between U and V, it removes 
a node in one partition with the maximum degree that is connected to a minimum-
degree node in the other partition. The time complexity of the algorithm is O(n²). 
Recently, a new evolutionary algorithm with structure mutation was proposed for the 
maximum balanced biclique problem (Yuan et al., 2014). In the proposed algorithm, 
local search is complemented with a repair-assisted restart process, and a new mutation 
operator is used to avoid the local minima and enhance the exploration space. Since 
the problem of finding a maximum size, defect-free sub-crossbar is an NP-complete 
problem (Peeters, 2003; Shrestha et al., 2011), an algorithm that finds an optimal 
solution in polynomial time is unlikely to exist. Therefore, optimal solution strategies 
must be sacrificed in favor of fast heuristic techniques. 

PROPOSED HYBRID ALGORITHM

As explained earlier, all the greedy algorithms for extracting a defect-free sub-crossbar 
from a defective crossbar depend on the node selection order. This means that the 
selection order, which is based on the node degrees, is very critical in determining a 
better quality solution. Based on that fact, this paper will introduce a hybrid algorithm, 
which integrates a genetic algorithm (GA) with a known greedy heuristic. Genetic 
algorithms are probabilistic combinatorial optimization techniques in which genetic 
operators such as selection, crossover, and mutation, are derived from the selection 
processes in nature. They guide a population of potential solutions to a problem toward 
optimal solutions. GAs have been successfully applied to a wide range of problems in 
diverse fields (Lim, 2014).

GAs are blind search techniques and they require problem-specific genetic 
operators (selection, crossover, mutation) to achieve optimal solutions.  The proposed 
hybrid method exploits a new search space (Storer et al., 1992; Dhodhi et al., 2002), 
which integrates a known fast problem specific heuristic with the local search. The 
key concept in this method is to base the definition of the search neighborhood on 
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a heuristic/problem pair (h, p), where h is a known fast heuristic and p represents 
the problem data. Since a heuristic h is mapping from a problem to a solution, the 
pair (h, p) is an encoding of a specific solution. By perturbing the problem p,   the 
neighborhood of solutions is generated. This neighborhood forms the basis for a local 
search.  The problem space is generated by perturbing the problem data, which is the 
degree of a node in the problem addressed.  For example, let P be a set of m problems 
obtained by perturbing the original problem data. That is, P = {p

j
 = p

0
 + δ, j= 1, ..., m}, 

where p
0
 is the data  for the original problem (degree of the node in the complement 

graph), and δ is the randomly generated perturbation vector. The perturbation range 
depends on the specific problem. In order to keep the generated “dummy” problem 
values  in proximity of the original problem values,  upper and lower limits on the 
perturbation can be introduced (difference between the maximum and the minimum 
degree). The solution subset S corresponding to the problem set P can be created by 
the application of an known heuristic: h, S = {h(p

j
),  j=1, ..., m}. In our case, any of the 

known state-of-the-art greedy heuristics in literature (Tahoori, 2005, 2006; Al-Yamani 
et al., 2007; Yuan & Li, 2011) can be embedded with GA. All these heuristics are 
sensitive to the node degree for their selection order. The high-level description of the 
proposed algorithm is shown in Fig. 2. 

  

Fig. 2. The proposed hybrid algorithm
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Each chromosome in the population consists of an array of integers representing the 
degree for each node of the graph (for both U set and V set in the complement graph). 
The degree of each node for the first chromosome is computed from the complement 
graph. The rest of the chromosomes in the initial population are generated by a random 
perturbation in the degree in the neighborhood. The greedy heuristic (h) was applied 
to generate a solution from a given chromosome with the objective of finding the 
value of k (size of the maximum defect-free sub-crossbar). The cost function is the 
key issue as it reflects the goal of the optimization. Note that the chromosome can 
only provide the selection order for the heuristic to select nodes from the complement 
graph to generate a solution. The fitness is then evaluated based on the solution from 
the original complement graph.

Genetic operators such as selection, crossover, and mutation are the key elements of 
the genetic algorithms. The selection operator chooses chromosomes for reproduction 
from current population based on their relative fitness. Chromosomes with higher 
fitness will have a higher probability of contributing one or more offspring in the 
next generation. The selection method was implemented using a biased roulette wheel 
where each chromosome in the population has a slot sized in proportion to its fitness. 
Each time we require an offspring, a simple spin of the weighted roulette wheel gives 
a parent chromosome. The crossover operator takes two parent chromosomes selected 
by the selection operator from the current population and generates two children by 
incorporating features from both parents. The premise here is that through this process 
desirable features are enhanced, while most undesirable features are suppressed.  We 
have applied a one-point crossover operator to the degree of the chromosome. In the 
one-point crossover operator, a cross site is selected randomly, and the value of the 
degree to the right of the cross site is swapped among the two mating chromosomes. 
The crossover is applied with a certain crossover rate, which is the ratio of the number 
of offspring produced by crossover in each generation to the population size. It controls 
the amount of crossover being applied. 

In nature, mutation refers to spontaneous and random changes in genes. In a 
genetic algorithm based approach, mutation introduces new features into the current 
population by altering a randomly picked gene value.  Mutation was implemented by 
selecting a gene at random with a mutation rate and perturbing its value. The mutation 
rate is the percentage of the total number of genes in the population which are mutated 
in each generation. The objective is to explore a wider space of node degrees but 
within the proximity to the original problem. We also employed the selection scheme 
based on elitist selection to keep the best parents in the next generation. The best 
parents in our problem are those who gave a large value of k.

The core idea is to use GA in generating a new set of degrees each time and to 
use these new degrees in a greedy algorithm for the selection process. Each time, the 
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greedy algorithm will be executed with a new set of degrees, which will result in a 
new solution. Only the best solution is kept among all iterations until the termination 
criteria is reached. The evolution process only helps us in finding the selection order, 
which leads to a better solution.

EXPERIMENTAL RESULTS

The proposed hybrid algorithm and the three state-of-the-art greedy algorithms 
proposed in literature: Algorithm 1 (Tahoori, 2005, 2006), Algorithm 2 (Al-Yamani 
et al., 2007), and Algorithm 3 (Yuan & Li, 2011) to identify the maximum defect-
free sub-crossbar from the defective crossbar, were simulated using C++ language. 
The experiments were performed using a Windows-7 running on a laptop with an 
Intel Core 2.4 GHz processor and 4GB memory. For each data point, 100 crossbars 
with different sizes (n) (32, 64, 250, 500 and 1000) and with defect rates (p) (5% to 
30%) were randomly generated. It was determined experimentally that for the given 
problem population size of 20 and the number of generations of 100 were sufficient to 
arrive at good solutions. The size of the chromosome was the total number of nodes in 
the graph. It may appear that the number of generations was too low as compared with 
traditional GAs. One reason for arriving at good solutions earlier is the application of a 
problem specific heuristic (that is, a heuristic guided search instead of a blind search). 
The crossover rate =0.1 and mutation rate=0.001 performed quite well. By operating 
in problem space, the proposed algorithm had a fast convergence. The parameters of 
the GA were fixed while simulating the algorithms. We embedded all the three greedy 
algorithms with GA; hybrid algorithm 1 is a combination of algorithm 1 with GA, 
hybrid algorithm 2 is a combination of algorithm 2 with GA, while hybrid algorithm 
3 is a combination of algorithm 3 with GA.

To measure the effectiveness of each algorithm, the average sizes of maximum 
defect-free sub-crossbars resulted in these algorithms with different values of n and 
p that were compared by computing the percentage improvement. The formula for 
computing the percentage improvement % is:

                            (1)

Note that in our algorithm, since we embedded the known heuristics with GA, the 
first chromosome in the initial population generated the same solution as reported by 
these heuristics. The GA further improves the solution quality by evolving the selection 
order. The percentage improvement of the hybrid algorithm 1 over algorithm 1, hybrid 
algorithm 2 over algorithm 2 and hybrid algorithm 3 over algorithm 3 with respect to 
different defect densities is shown in Figures 3-5, respectively. These figures show 
that hybrid algorithm 1, hybrid algorithm 2 and hybrid algorithm 3 are much more 



Hessa K. Al-Mutairi and Imtiaz Ahmad87

effective than implementing the three greedy algorithms alone especially for large 
defect densities. In other words, we can utilize more potential of the given defective 
crossbar by combining GA with the greedy algorithms.

 

Fig. 3.   Percentage improvement of results of hybrid algorithm 1 over simple algorithm 1 for various 
crossbar sizes

Fig. 4.   Percentage improvement of results of hybrid algorithm 2 over simple algorithm 2 for various 
crossbar sizes
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Fig. 5. Percentage improvement of results of hybrid algorithm 3 over simple algorithm 3 for various 
crossbar sizes

Figures 6-7 show the percentage improvement of hybrid algorithm 2 and hybrid 
algorithm 3 over simple algorithm 1, respectively. Figure 8 compares the effect of 
algorithm 3 after applying GA over algorithm 2. It is obvious that hybrid algorithm 
3 is more efficient than simple algorithm 2. These results demonstrate that hybrid 
algorithm is very effective in improving the results as compared with the simple 
algorithms. 

Fig. 6.   Percentage improvement of results of hybrid algorithm 2 over simple algorithm 1 for various 
crossbar sizes
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Fig. 7.   Percentage increase of results of hybrid algorithm 3 over simple algorithm 1 for various 
crossbar sizes

Fig. 8.   Percentage improvement of hybrid algorithm 3 over algorithm 2 for various crossbar sizes

To measure the consistency of the resulting crossbars from the three algorithms 
before and after embedding with GA, the distributions of resulting crossbars (p = 
15% for 250 x 250 crossbars) are shown in Figures 9-11. In these figures, n[k] is 
the number of crossbars of size equal to k.  Distribution of the resulting crossbars 
for the three greedy algorithms after applying GA, were better than those before 
applying GA. The range of defect-free sub-crossbars spanning of the three greedy 
algorithms after applying GA are consistently higher than those spanned by those 
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before applying GA. Regarding the CPU run time, the proposed algorithm spends 
more time as compared with the greedy algorithms. This is because of the repetitive 
application of heuristic for each chromosome of the population. However, the 
solution quality is substantially better.

Fig. 9.   Distribution of the resulting crossbars from simple algorithm 1 and the combination of GA and 
algorithm 1 for 250x250 crossbars with 15% defect rate

Fig. 10. Distribution of the resulting crossbars from simple algorithm 2 and the combination of GA and 
algorithm 2 for 250x250 crossbars with 15% defect rate
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Fig. 11. Distribution of the resulting crossbars from simple algorithm 3 and the combination of GA and 
algorithm 3 for 250x250 crossbars with 15% defect rate

CONCLUSION

Defects are new challenges that arise when using nanotechnologies. The node selection 
order plays a key role in the final solution quality in the state-of-the-art heuristics 
for identifying the maximum size defect-free sub-crossbars in defective crossbars. 
The proposed hybrid method utilizes a new search space by integrating a known fast 
problem specific heuristic with the genetic algorithm. Since the node’s degree plays 
a significant role in the selection mechanism of the greedy mapping heuristics, our 
proposed algorithm utilizes the node degrees and changes the selection order in the 
known mapping algorithms to find a better quality solution. The experimental results 
showed that the proposed hybrid algorithm was very effective in extracting a large size 
defect-free sub-crossbar in comparison with the other state-of-the-art algorithms. The 
run time of the proposed algorithm may be reduced by parallelizing it since the same 
operations are performed on different chromosomes to get different results. Moreover, 
any other low complexity greedy heuristic may be embedded with the proposed 
technique. 
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