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الخـلا�صـة

�إعادة الإعمار ثلاثي الأبعاد الأ�سا�سية من وجهات نظر متعددة تم درا�سته جيدا، ولكن تكمن �صعوبة الم�شكلة 

في مجال ر�ؤية الكمبيوتر. هناك مجموعة كبيرة ومتنوعة من النهج المتاحة في ال�سابق. ت�ستخدم الأ�ساليب 

تمثيلات مختلفة للداخل �سواء كان م�شهد �أو كائن وقد توفر �أنواعا مختلفة من المخرجات. بع�ض الأ�ساليب 

�أو تمثيل �شبكة م�ضلع.   تمثل الم�شهد ب�أكمله مثل )voxel-set( حيث ي�ستعمل البع�ض مجموعات م�ستويات 

م�ساحة  الطرق في  بع�ض  تعمل  بنا�ؤه.  �أعيد  الذي  الكائن/الم�شهد  يمثل  �سطح  �أو  �إما حجم  الناتج  يكون  وقد 

ال�صورة حيث تعمل بع�ض الطرق في م�ساحة الكائن. وقد تم تطوير هذه الطرق لتقديم حل و�سط جيد بين 

�سرعة الح�ساب والتعقيد الح�سابي والدقة جنبا �إلى جنب مع الجدوى في التنفيذ. ويتوقف اختيار طريقة معينة 

على متطلبات التطبيق وتوافر الموارد المطلوبة. وعلى الرغم من �أن الا�ستعرا�ضات ال�سابقة المتوفرة في المراجع، 

ف�إن التقدم ال�سريع في هذا المجال يتطلب �آخر الم�ستجدات. تقدم الورقة مراجعة ومقارنة لأحدث طرق عر�ض 

متعددة الأبعاد لإعادة الإعمار الثلاثي الأبعاد جنبا �إلى جنب مع المعلومات حول مجموعات البيانات القيا�سية 

و�صناديق الأدوات/البرمجيات مفتوحة الم�صدر. وهذا �سوف ي�ساعد الباحثين على فهم حالة �آخر ما تو�صل 

اليه العلم في هذا المجال.
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ABSTRACT
Three Dimensional reconstruction from multiple views is well studied, fundamental, yet a 

challenging problem in the field of computer vision. There is a large variety of approaches available 
in the literature. The methods use different representations for input scene/object and may provide 
different kinds of outputs. Some methods model entire scene as voxel-set where as some use level 
sets or polygon mesh representation. Output may be either volume or surface representing the 
reconstructed object/scene. Some methods work in image space where as some methods work 
in object space. These methods are developed to offer a good compromise between computation 
speed, computation complexity and accuracy along with feasibility in implementation. Selection 
of a particular method depends on the requirements of application and availability of required 
resources. However, earlier reviews are available in the literature, fast advances in this field demand 
latest review. The paper presents a review and comparison of latest multi-view 3D reconstruction 
methods along with the information about standard datasets and tool boxes/open source software. 
This will help researchers to understand state of the art in this field.

INTRODUCTION
Good quality three-dimensional (3D) reconstruction of a scene or an object is a fundamental 

and challenging problem in the field of computer vision. The task of recovering 3D scene from two-
dimensional (2D) views/images is called 2D to 3D reconstruction. Figure 1 presents the schematic 
for 3D reconstruction pipeline. The reconstruction pipeline comprises forward and

Figure 1. 3D reconstruction pipeline: forward (3D-2D) and reverse (2D-3D) transformation.
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reverse transformation to convert 3D information into 2D information and vice versa, respectively. 
Since physical depth of the object from cameras/viewpoints is related to the true focal length, 
intrinsic and extrinsic parameters of cameras need to be obtained during reverse transformation. 
3D reconstruction has a variety of applications such as 3D terrain rendering (Wu et al., 2015), 
virtual reality, robot navigation, augmented reality tasks, games, animations, and motion pictures. 
In the medical field, it is used in minimal invasive surgical techniques, 3D rendering of patients 
anatomy, computer guided surgeries, preoperative planning, and so on.

A large variety of 3D reconstruction approaches are available in the literature. These approaches 
intend to provide a good compromise between computation speed, complexity, and accuracy along 
with the feasibility in implementation. Different methods use different scene representations and 
provide different outputs (Seitz et al., 2006). The output may be either the volume or the surface 
representing a reconstructed object. Excellent reviews focusing on the earlier reconstruction 
methods are available in the literature (Seitz et al., 2006; Dyer, 2001; Slabaugh et al., 2001). 
However, the advances in this field such as reduction of computational complexity and computation 
time, real time implementations, large scale reconstruction, and reconstruction of the scene with 
high amount of details demand the latest review. This paper presents a review of multi-view 3D 
reconstruction methods. The paper presents a comparison between these methods on the basis of 
the key parameters. The reconstruction methods using same datasets and testing protocol are also 
compared and presented. The paper also presents the information about widely used toolboxes and 
datasets in multi-view reconstruction. This will help researchers to understand the state of the art 
in this field.

The rest of the paper is organized as follows. The next section presents the classification of 
multi-view 3D reconstruction methods based on the approach used for the reconstruction. These 
approaches are discussed in detail in different subsections. Each subsection also sheds a light on 
the pros and cons of the respective approach. The results of volumetric 3D reconstruction method 
developed by the authors are also presented in this section. The section entitled “comparison 
of reconstruction methods” presents a comparison of these methods on the basis of important 
parameters in the form of tables. This section also presents the comparison of performance of 
different methods using the same datasets and testing protocol. The information about widely 
used toolboxes and datasets is also provided in tabular form in this section. The last section 
presents the discussion and conclusion of the review. Although the development of multi-view 
3D reconstruction methods has experienced tremendous growth in recent years, these methods 
need improvement in many aspects. Based on these aspects, the section gives direction to the 
researchers in the field of multi-view 3D reconstruction.

STATE OF THE ART

2D to 3D reconstruction methods are classified on the basis of the approach used for 
reconstruction. This classification is presented in Figure 2. The methods developed by the 
researchers using these approaches are discussed in detail in the following subsections.
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Figure 2. Classification of multi-view 3D reconstruction methods.

Surface extraction based on cost function computed on volume
The methods of this class make use of the volume of visual hull inferred from geometric 

intersection of the regions obtained by back-projecting each silhouette from a corresponding 
viewpoint (Bottino & Laurentini, 2000; Franco & Boyer, 2009). First, they compute a cost function 
on the 3D volume and then extract a surface from this volume. Voxel colouring methods make a 
single sweep through the volume and compute the colour consistency metric to reconstruct the 
colour consistent voxels. Seitz & Dyer introduced the voxel colour consistency constraint, in order 
to distinguish the surface points from other points in the scene (Slabaugh et al., 2001). As shown 
in Figure 3, when two cameras view a non-surface point, they see dissimilar

Figure 3. The left figure shows that two cameras see a consistent colour since the point lies on the 
surface. The right figure shows colour inconsistency for non-surface point (Slabaugh et al., 2001).

colours. Therefore, the views are not consistent in colour, whereas both cameras see the same 
colour if the point lies on the surface. The reconstruction process in these methods begins with 
the object volume represented by the opaque voxels. Each voxel is back-projected on the image 
from which the voxel is visible. The voxels are checked later for photo-consistency or colour 
consistency using some cost function. The voxels, which exceed a certain threshold, are carved 
away. The process continues until all the voxels are consistent in colour (Kimura et al., 1999). 
The method presented in the work of Adipranata & Soo (2007) uses mean charts for defining 
the colour consistency check. Zao & Xiao (2005) implemented the voxel colouring algorithm 
in HLS colour space instead of RGB colour space in order to overcome the limitation of the 
ordinary voxel colouring algorithm. This approach requires background-foreground segmentation. 
Visual hull computation is sensitive to wrong classification of the pixels in the segmentation. This 
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happens because of the occlusion. Slembrouck et al. (2014) developed a self-learning algorithm 
for determination of occlusion of the voxels. The need of background subtraction is eliminated by 
defining the photo-consistency measure based on the optical sensor inputs (Moretto et al., 2003).

It is possible to allow the user to control the complexity of different surface regions interactively 
(Brisc, 2004). Such methods also work on uncalibrated images. In case of the calibrated images, 
the calibration data can be effectively used to determine parameterization of a voxel space and 
calculate the 3D polyhedron automatically further to reconstruct the volume (Feldmann et al., 
2010). In practical situations like observing an aircraft or asteroid, the surface needs to be extracted 
from the silhouettes without knowing relative positions of the viewpoints (Bottino et al., 2000). 
Polygon meshes are widely used to represent the surfaces. These methods use signed octrees to 
determine the polygonal mesh (Montenegro et al., 2006). The method based on polyhedral visual 
hull ensures the topological properties like manifoldness and also achieves high modeling speed 
(Franco & Boyer, 2009). Some of the reconstruction methods construct local surfaces using a 
convex hull with marching cubes and combine those surfaces to complete the reconstruction (Shin 
& Tjahjadi, 2008), whereas some methods make use of arbitrary viewpoints to obtain viewpoint 
dependent image based representations to construct the visual hull. However, these methods do not 
provide a complete 3D model (Matusik et al., 2000). 

Minimum cut/maximum flow algorithms on the graphs are widely used for energy minimization 
in computer vision. The literature presents many min-cut/max-flow methods with different 
polynomial time complexity (Boykov & Kolmogorov, 2004). The method based on the minimum 
cut of the weighted graph uses an implicit volumetric representation based on voxel occupancy to 
take the advantage of volumetric and image space approach (Vogiatzis et al., 2007). A similar graph 
cut algorithm, which integrates the foreground colour information and the silhouette information, 
is used for colour consistency field optimization (Tran & Davis, 2006). Segmentation of the object 
and background can be automated by identifying the object with pose of the camera instead of 
bounding rectangles (Campbell et al., 2011). The constraint based on predetermined locations, 
through which the object surface passes, is used to improve the performance of the method. These 
methods use pair-wise Markov random fields (MRF) framework based on a probabilistic approach 
to reconstruct the surface by computing graph cuts (Ulusoy et al., 2016). Real time implementation 
of voxel based reconstruction methods is a challenging task. Perez et al. (2012) developed the 
improved visual hull algorithm for graphics processing unit (GPU) based implementation. 
Improved visual hull algorithm reduces the consumption of resources.

The volumetric reconstruction methods do not need to find correspondences between different 
views. These methods effectively overcome the occlusion problem and also handle textureless 
and shiny objects. The methods are capable of reconstructing the scenes with complex geometry 
by using colour consistency measures. In case of the view synthesis, the use of voxel based 
reconstruction method is always a good choice. However, these methods demand more memory. 
Hence, the memory requirement is an important design consideration in volumetric reconstruction 
approaches. Voxel colouring based volumetric reconstruction methods do not support arbitrary 
placement of cameras because of the visibility constraint. Background removal is also an essential 
step in colour consistency based volumetric reconstruction methods.



A review and comparison of multi-view 3D reconstruction methods55

Surface evolution approach
Surface evolution approach is based on the evolution of the surface iteratively, by minimizing the 

defined cost function. The methods using this approach represent the surface using voxels, level sets, 
or surface meshes (Seitz et al., 2006). These methods mainly work in the object space. The surface 
evolution process starts with an initial surface and then moves with some speed along its normal. 
The level set theory uses partial differential equations (PDEs) to characterize such motion for the 
surface evolution process (Slabaugh et al., 2001). The convex sets based on the convex function can 
be defined using the level set theory, to integrate silhouette and stereo information (Kolev & Cremers, 
2008). This makes the method suitable for modeling the concavities and the reconstruction of shiny 
metal objects. The reconstruction process is made independent of the initialization and the surface 
orientation by imposing silhouette constraints (Cremers & Kolev, 2011). The method based on convex 
optimization using volumetric labeling can reconstruct large scale scenes (Blaha et al., 2016). The 
method consumes less memory as compared to other methods for large scale reconstructions. 

Surfaces are represented as deformable 3D models by using two types of representations, explicit 
surfaces and implicit surfaces. The use of explicit surface representations like polygon mesh makes 
the deformation process simpler. However, these representations suffer from problems like self-
interaction and changes in topology in the form of merging and splitting. On the other hand, implicit 
representations make the surface evolution process easier (Ilic & Fua, 2006). The mesh evolution 
method proposed in the work of Zaharescu et al. (2011) uses an implicit surface representation and 
handles the topological changes robustly. Some methods initialize the surface evolution process by 
defining a triangular mesh followed by PDE based mesh optimization (Nghiem et al., 2010). The 
method based on multi-video data computes a temporal coherence for optimizing photo consistency 
and minimizes the energy function defined for hyper-surface to obtain the 3D scene (Goldluecke & 
Magno, 2004). Methods that initialize their surface evolution process by obtaining surface patches as 
depth maps apply the mesh fusion technique to construct the desired surface (Dainese et al., 2005). 	
The variational approach can be combined with the level set approach to regularize the surface 
evolution process (Lhuillier & Quan, 2005). Reconstruction of the large scale scenes with higher 
amount of details is possible by using minimum s-t cut based optimization (Vu et al., 2009). The 
optimization technique is used to obtain a visibility consistent mesh from the dense point cloud.

Defining a cost/error function is one of the important steps in the surface evolution process. 
Weighted radial basis functions (RBFs) are used as the cost functions to generate smooth and 
seamless surface models from the sparse, noisy, non-uniform, and low resolution range data (Dinh 
et al., 2002). The cost function defined on the basis of discrepancy between surface normals and 
normal fields (Chang et al., 2007) and the cost function defined using specularity constraint based 
on surface normal (Nehab et al., 2008) are some other examples of such cost functions. The use of 
planar mesh parameterization technique eliminates the need of merging the surface normal maps 
(Park et al., 2013). The integrated surface often suffers from dent artifacts produced by depth 
discontinuities in the multi-view range images. The surface mesh model can be used to overcome 
such discontinuities (Ju et al., 2009). The method performing a visual hull intersection in the image 
plane creates the 3D structure by stacking occupancy grids on the top of each other (Khan et al., 
2007). Some methods segment the volume into free and occupied space and extract a surface as a 
boundary in between them (Savinov et al., 2015). Kostrikov et al. (2014) proposed a probabilistic 
approach for assigning a labeling cost to each voxel. This makes the method more robust.
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Space carving approaches fall under this class of 3D reconstruction methods (Seitz et al., 2006). 
Figure 4 presents the results of an efficient and simple method for volumetric reconstruction of real 
objects using multiple cameras. The method proposed by the authors extracts volume of the object 
from its multiple views acquired using pre-calibrated cameras. After extracting the silhouettes 
from calibrated images, the volumetric intersection is performed to obtain visual hull. Inconsistent 
voxels are carved away by enforcing photo consistency measures. Further, the surface extraction 
is done using isosurfaces. Figure 4 shows the sample views, silhouettes, and 3D reconstruction of 
cube and prism shaped objects. The results show that the method efficiently extracts the volume of 
the object. It is observed that the estimated volume of the object is approximately equal to its actual 
volume. The major advantage of the proposed method is its simplicity and less complexity in the 
implementation. The use of multiple cameras improves the reconstruction quality.

Figure 4. Sample views, silhouettes, and reconstruction of objects, cube and prism.

Voxel based reconstruction methods produce the output in the form of voxels, which is the 
most commonly used computer graphics format. Hence, it will be an easier task for computers to 
process the output further. However, the quality of 3D reconstruction is highly dependent upon 
the accuracy of camera calibration and the segmentation of objects in the captured views. These 
methods need to obtain a bounding box of the 3D scene. Hence, they are more suitable for compact 
scenes. These methods evolve the surface iteratively from initial guess. Hence, accuracy of such 
methods depends on reliability and closeness of the initial guess. This may create problems while 
dealing with the large scale scenes. The methods with level sets can work with arbitrary topologies 
and do not have restriction on the placement of cameras. 

Image space approach
Image space approach for 3D reconstruction is based on matching the features between image 

pairs robustly. These methods estimate the depth for each reference image entity (pixels, lines, 
windows, or segments) in the 3D space or along the corresponding epipolar lines and compute 
a set of depth maps. Further, a single consistent 3D scene interpretation is obtained by applying 
a consistency constraint to the set of depth maps and merging those into a 3D scene. The depth 
map merging approaches provide flexibility and superior performance (Seitz et al., 2006; Shen, 
2012). The accuracy of 3D reconstruction is governed by the quality of depth maps. Traditionally, 
the depth maps are estimated in a discrete manner. Continuous variational depth map estimation 
overcomes the errors in discretization and reduces the memory consumption (Liu et al., 2009). 
High accuracy and robustness of the depth map merging algorithm are achieved by using high 
quality oriented 3D point clouds. Bundle optimization (Li et al., 2010) or expansion based depth 
estimation (Song et al., 2010) is used for this purpose. Delaunoy & Pollefeys (2014) proposed a 
bundle optimization of photo-metric re-projection error for collective optimization of the 3D shape 
and camera parameters. The method proposed by Campbell et al. (2008) forces a spatial consistency 
constraint on the discrete label optimization to recover the true depth from multiple depth maps. 
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This improves the performance of the reconstruction method. The approach based on binocular 
stereo proposed in the work of Bradley et al. (2008) uses an adaptive point based filtering, to filter 
the merged point clouds, and generates a surface mesh with good quality. A number of structured 
light depth cameras (SLDC) can be used for generation of good quality depth maps. An algorithm 
for merging such depth maps correlates multiple projectors and infrared images to recover the depth 
for non-overlapping and overlapping regions effectively (Wang et al., 2012). This helps to improve 
the quality of reconstruction. In case of the objects with sparse visible texture, time-of-flight (TOF) 
depth sensors are used to obtain the depth maps (Kim et al., 2009). Some methods extract geometric 
information in the pictures without using any assumption regarding the reflectance properties of the 
object and use this information in robust estimation of the depth maps (Zhou et al., 2013). RBF is 
used further to merge these depth maps (Lambert & Hebert, 2009).

 Stability based fusion technique and confidence based fusion technique fail if true depth is not 
a part of the depth candidate set for a pixel. In large scale 3D reconstruction, pixels can be allowed 
to have multiple candidate depth values to overcome these limitations. Further, uncertainties due 
to mismatching and incorrect estimation of 3D coordinates are used to regulate the fusion process 
(Hu & Mordohai, 2012). In case of wide baseline image pairs, the estimation of dense depth map 
is done by using expectation minimization based algorithms (Tola et al., 2010). Typical image 
based fusion process regularizers such as total variation (TV) may lead to staircase artifacts. 
The regularizer for variational stereo based on the geometry of surface overcomes this drawback 
(Graber et al., 2015). A variational approach based on the prediction error minimization for elastic 
3D motion estimation and multi-view stereo vision computes a matching score by matching the 
predicted images with the input images (Pons et al., 2007). As against the conventional methods, 
this approach overcomes the problems related to partial occlusion and projective distortion 
effectively. A variational approach for simultaneous estimation of the scene flow and structure 
uses the available multi-view information (Basha et al., 2013).

Reconstruction methods for the urban images demand automatic modeling of the scene. To 
solve this problem, these methods use shape priors at the initial stage and use this information 
further to reconstruct the scene (Labatut et al., 2009). The range data obtained from a range video 
gives direct information about the geometry of object surface (Zhou et al., 2013). However, 
these methods suffer from high frequency noise and quantization artifacts. These errors can be 
overcome by using volumetric registration approach for optimization. More accurate and reliable 
3D reconstruction from higher resolution images is a challenging problem. The method proposed 
by Kim et al. (2013) reconstructs a complex scene with the details from densely sampled 3D light 
fields. Real time reconstruction of single 3D mesh and surface is possible by using Zippering 
algorithm along with iterative closest point (ICP) framework for real time merging of the point 
clouds (Alexiadis et al., 2013). Multi-view stereo (MVS) methods need photo-consistency 
computations for refinement of the 3D model. This results in a huge number of operations. The 
number of operations depends on the number of views and size of the model. To improve speed and 
performance, the method based on PatchMatch approach (Uh & Byun, 2016) uses random search 
and propagation for finding nearest-neighbor correspondences between the patches. 

Image space approaches are more suitable for real time 3D rendering. This is because of less 
computation time, which depends on resolution of images and not on the scale/geometry of the 
scene/object. This also makes these methods more suitable for GPU implementations. Methods 
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based on the depth map merging are more flexible and well suited for large scale reconstruction. 
The methods with dense stereo algorithms handle occlusions as against the methods based on 
feature detection and matching. These methods do not need background removal and segmentation 
of the object in the views. This makes the methods more robust against background noise. Image 
space methods rely on solving the correspondence problem. Hence, the success of this step affects 
the accuracy of these methods. In presence of the noise, triangulation step in these methods reduces 
the accuracy of the reconstruction. 

Extracting feature points and fitting a surface
This class of approaches consists of the methods that extract a set of feature points and fit 

the surface to the extracted points (Seitz et al., 2006). Many methods use scale invariant feature 
transform (SIFT) to detect the features in the images (Divyalakshmi & Vaithiyanathan, 2016). 
The surface reconstruction methods use the initial surface fitted to the data, in order to reflect the 
surface represented in the point cloud. In case of unorganized point cloud, the prior information 
about the shape of the object is required for fitting the surface dynamically to the unorganized 
point cloud (Nurzynska, 2009). The point cloud can also be obtained by extracting a set of points 
representing the occluding and texture edges (Liu et al., 2008). Photo-consistency of 3D points 
based on squared Euclidean RGB distance between a pair of image points can also be used for 
extracting the point cloud (Salvador & Casas, 2010). Feature based methods face challenges 
while reconstructing the featureless objects. With the additional cues and prior information, these 
challenges can be overcome (Ley et al., 2016; Bao et al., 2013). The methods using RGB-D cameras 
obtain 3D point cloud using depth maps and construct a surface using truncated sign distance fields 
(TSDFs) (Henry et al., 2016). 3D reconstruction methods using low cost RGB-D cameras such 
as Microsoft Kinect face challenges in handling repeated texture regions. The methods use visual 
and geometrical features along with the structure from motion technique to recover the missing 
geometry (Wang et al., 2014). A real time implementation of a similar approach based on RGB-D 
cameras is presented in the work of Zollhöfer et al. (2014). Online reconstruction methods based 
on TSDF define the error function using the error from corresponding sparse feature points. They 
obtain correspondences between the currently acquired images and the earlier images to create an 
error function independent of the model (Bylow et al., 2016).

Direct surface reconstruction is difficult from the sparse 3D feature points since they are missing 
in large areas and also irregularly distributed. To overcome this problem, the methods reconstruct 
small surface patches. Further, the patches, which are consistent with their neighborhood, are used 
to obtain the entire surface of the object (Zeng et al., 2004). In such patch based methods, the 
polygon mesh is used to represent these patches (Furukawa & Ponce, 2010). Huang et al. (2016) 
proposed the sparse patch based method using a monocular camera. The method considers the depth 
obtained from the mapping thread to control the tracking process. Instead of using such sparse 3D 
points, the free space volume obtained from stereo can also be used for generating the surfaces 
(Taylor, 2003). The method uses 3D results obtained from stereo to determine the structure of input 
scene rather than applying constraints based on viewpoint consistency. MVS methods focus on 
reconstructing all the details of the object under reconstruction. When such details are not required, 
the computation time can be reduced by using an approach proposed by Bodis et al. (2015). The 
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method optimizes the dense depth maps over sparse ground control points (GCP) to remove the 
need of stereo depth estimation. This results in reduction of the computation time.

The reconstructed scene if modeled as probability distributions in 3D space allows use of 
features such as the points on edges, which cannot be matched one to one or whose locations 
cannot be determined precisely (Teney & Piater, 2012). Image gradient based techniques are used 
to extract edge orientations needed for obtaining such features. Feature based MVS methods can 
be extended to dynamic scenes such as 3D videos. However, solving the stereo correspondence 
becomes a difficult task in such cases. Limitations such as incompleteness of the reconstructed 
model and weak photo-consistency of stereo reduce the accuracy of reconstruction. These 
limitations can be overcome by fusing a multi-view structure from motion with robust 3D features 
obtained from MVS (Tung et al., 2009). Methods that need the knowledge of a 3D scene and its 
approximate geometry cannot be used for a large scale scene reconstruction. The method based on 
matching of key interest points for creating a quasi-dense 3D point cloud and labeling of Delaunay 
tetrahedral as ‘occupied’ or ‘empty’ overcomes these drawbacks (Labatut et al., 2007).

The methods based on feature detection and matching are computationally more efficient. They 
need less memory as compared to voxel based methods. However, these methods face challenges in 
reconstruction of the featureless objects such as objects with shiny, textureless, and smooth surface. View 
space conversion leads to the introduction of visual artifacts during the image rendering process.

Comparison of reconstruction methods
This section presents a comparison of different reconstruction methods on the basis of the 

performance and key parameters. Table 1 shows the performance evaluation of different methods 
on DinoRing dataset with 48 views and TempleRing dataset with 47 views (Seitz et al., 2006) 
provided by Middlebury using two performance parameters, completeness and accuracy.

Table 1. Performance evaluation of the methods using Middlebury dataset.

Method
DinoRing (48 views) TempleRing (47 views)

Completeness 
%

Accuracy 
mm

Completeness 
%

Accuracy 
mm

Furukawa (Furukawa & Ponce, 2010) 99.3 0.33 99.1 0.57
Kolev (Kolev & Cremers,  2008) 99.4 0.43 97.8 0.72

Kostrikov ( Kostrikov et al., 
2014) 99.6 0.35 99.1 0.57

Bradley ( Bradley et al., 2008) 97.6 0.39 98.1 0.57
Campbell (Campbell et al., 2011) - - 99.4 0.48

Vu (Vu et al., 2009) - - 99.8 0.45
Zaharescu (Zaharescu et al., 2011) 98.6 0.42 99.2 0.55

Uh (Uh & Byun, 2016) 97.3 0.32 96.4 0.51
Hernandez (Hernandez et al., 2008) 97.9 0.45 99.5 0.52
Vogiatzis (Vogiatzis et al., 2007) 96.7 0.49 96.2 0.76

Pons (Pons et al., 2007) 99.0 0.55 99.5 0.60
Kolmogorov (Boykov & Kol-

mogorov, 2004) 85.7 2.80 90.4 1.86
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Completeness of the reconstruction is determined by computing a percentage of the 
reconstructed model with respect to the ground truth model. Accuracy of the reconstruction is 
obtained by computing the distance between reconstructed model points and nearest points on 
the ground truth model. It is expressed in millimeters. Lower values of this parameter indicate 
high accuracy. It is observed that most of the methods considered here are able to reconstruct the 
complete object model. Most of the methods achieve completeness more than 95%. The method 
based on probabilistic labeling cost (Kostrikov et al., 2014) produces the most complete model as 
compared to the other methods. The exception is Kolmogorov’s method. The construction consists 
of the holes. Hence, it exhibits a lower completeness value. It is observed that the accuracy of many 
reconstruction methods is up to the mark. These methods exhibit accuracy in sub-millimeter. Uh’s 
method (Uh & Byun, 2016) outperforms other methods with almost 90% points within 0.32mm 
of the ground truth model for DinoRing dataset, whereas Vu’s method (Vu et al., 2009) exhibits 
the highest accuracy with 90% points within 0.45mm of the ground truth model for TempleRing 
dataset. Methods by Furukawa, Pons, and Kostrikov show the best performance for both datasets. 
Tables 2 and 3 provide the information about the widely used toolboxes/open source software and 
datasets in the field of multi-view 3D reconstruction, respectively. Methods presented in different 
approaches are also compared on the basis of their important key features. Tables 4 and 5 present 
the comparison between the methods discussed under the subsection entitled “surface extraction 
based on cost function computed on volume”. Tables 6 and 7 compare the methods based on the 
surface evolution approach. Tables 8, 9, and 10 compare the methods based on the image space 
approach, whereas tables 11 and 12 compare the methods based on the feature point extraction for 
surface fitting. In tables 4 to 12, “√” (tick) indicates that the corresponding parameter is satisfied by 
the method described in the paper, whereas “X” (cross) indicates that the corresponding parameter 
is not satisfied by the method described in the paper. “NA” indicates that the corresponding 
parameter is not addressed in the paper.

Table 2. Tool boxes widely used in the field of multi-view 3D reconstruction.

Tool box/ open source s/w Brief description

VisualSFM (Wu, 2013)
GUI application for 3D reconstruction using structure 
from motion (SFM) 

MVE (Fuhrmann et al., 2014)
Implementations for structure from motion, multi-
view stereo, and surface reconstruction

OpenMVG (Pierre Moulon et al., 2013) Library for multiple view geometry 

SFMToolbox (Rabaud, 2009)
Structure from motion tool box developed in 
MATLAB

Bundler ( Snavely et al., 2007) Open source SFM system for sparse point clouds
PMVS2 and CMVS (Furukawa & 
Ponce, 2010)

Multi-view stereo framework with patch based 
(PMVS) and clustering (CMVS)

CMPMVS (Jancosek & Pajdla, 2010) MVS framework 
Matlab Functions for Multiple View 
Geometry (Hartley et al., 2004)

Matlab functions developed for multiple view geom-
etry by Andrew Zisserman

Camera Calibration Tool Box (Bouguet 
& Perona, 2009)

Camera calibration tool box developed by J-Y Bou-
guet and available on Caltech University website
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Table 3. Datasets widely used in the field of multi-view 3D reconstruction.
Datasets Brief description
Ford Car Dataset (Pandey et al., 2011) Images with Lidar points  
StrechaDenseMVS (Strecha  et al., 
2008)

Dataset for dense MVS include fountain-p11, castle 
and Herz-Jesu-p8 datasets

Leuven Stereo Scene (Leibe et al., 
2007) Stereo dataset with scene and depth

Car and bottle ( Savinov et al., 2015) Dataset of images with 3D object shape priors
Middlebury Stereo datasets–2005 
(Scharstein & Pal, 2007) Stereo dataset

Middlebury Stereo datasets–
2006 (Scharstein & Pal, 2007)

Stereo dataset with conditional random field(CRF) 
framework

Middlebury Stereo datasets–2014 
(Scharstein et al., 2014)

High resolution stereo dataset

Temple and Dino datasets ( Seitz et al., 
2006) Multi-view stereo dataset with ground truth

Kermit, Citywall, Der Hass datasets 
(Fuhrmann et al., 2014)

Images with VisualSFM bundle file

3D scene dataset (Li et al., 2015) Dataset with sequence having RGB-D frames

Table 4. Comparison of methods extracting surface based on cost function computed on volume.

Paper
Parameter

Adipran-
ata & Soo, 
2007

Slem-
bro-uck 
et al., 
2014

Brisc, 
2004

Zao 
& 
Xiao, 
2005 

Feldm-
ann et al., 
2010

Boykov & 
Kolmogo-
rov,  2004 

Vogiatzis et 
al., 2007 

Perez 
et al., 
2012

Calibrated images √ √ X √ √ √ √ √
Real objects/scene √ √ √ √ √ √ √ √

Optimization  X √ NA NA NA √ √ √

Mean chart based 
colour consistency √ X X X X X X X

HLS Space X X X √ X X X X
Use epipolar 
geometry X √ X X X √ X √

Auto-calculation 
of bounding box X X X X √ √ X X

Correlation based 
cost function X X X X X √ X √

Self-learning for 
voxel occlusions X √ X X X X X X

GPU implementa-
tion X X X X X X X √
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Table 5. Comparison of methods extracting surface based on cost function computed on volume.

Paper
Parameter

Franco 
& 
Boyer, 
2009

Hernan-
dez     et 
al., 2008

Bottino & 
Laurentini, 
2000

Shin & 
Tjahjadil, 
2008

Monten 
-egro   et 
al., 2006

Tran 
et al., 
2006 

Camp-
bell 
et al., 
2011

Ulu-
soy et 
al.,2016

Polygon mesh √ √ √ X X X X X
Marching 
cubes X X X √ X X X X

Signed OCTrees X X X X √ X X √
Less  computa-
tion complexity √ NA NA √ NA √ √ √

Optimization  x √ NA NA X √ X √
Good accuracy NA √ NA √ NA √ √ √
Estimation 
based on epipo-
lar geometry 

√ X X X X X √ X

Textureless 
shiny object X √ X X X X √ √

Unknown rela-
tive viewpoints X X √ X X X X X

Handles imper-
fect silhouettes X X X √ X √ √ NA

Graph cut X X X X X √ √ X
Real data √ √ √ √ √ √ √ √
MRF frame-
work X X X X X X √ √

Voxels X X X X X √ √ √

Table 6. Comparison of methods based on surface evolution approach.

Paper
Parameter

Gold-
luecke & 
Magnor, 
2004 

Kolev & 
Cremers, 
2008

Zaharescu 
et al., 2011

Vu  et 
al., 
2009 

Khan    
et al.,  
2007 

Ilic &  
Fua, 
2006

Blaha et 
al., 2016

Nehab 
et al., 
2008 

Park 
et al., 
2013

Calibrated im-
ages √ √ X √ √ X √ √ X

Real dataset √ √ √ √ √ √ √ √ √
Computation 
complexity √ √ √ NA NA √ √ √ √

Optimization √ √ √ √ √ √ √ √ √
Good accuracy √ √ √ √ X X √ X √
convex function √ √ X X X X √ X X
Dynamic scene √ X √ X X X X X X
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Temporal coher-
ence for photo 
consistency 

√ X X X X X X X X

Volumetric 
graph cuts X √ X X X X X X X

Silhouette-stereo 
fusion X √ √ X X X X X X

convex con-
straint X √ √ X X X √ X X

TansforMesh X X √ X X X X X X

Large scale data X X X √ X X √ X X

Topology adap-
tive X X √ √ X X X X X

Weighted RBF X X X X X X X X X

Mesh parameter-
ization X X X X X X √ √ √

Table 7. Comparison of methods based on surface evolution approach.

Paper
Parameter

Ju et al., 
2009 

Cremers 
& Kolev, 
2011

Lhuillier 
& Quan, 
2005 

Nghiem 
et al., 
2010 

Chang 
et al., 
2007 

Dainese et 
al., 2005 Savinov et 

al., 2015
Kostrikov 
et al., 2014

Calibrated images √ X X √ √ √ √ √

Real dataset √ √ √ √ X √ √ √

Computation 
complexity (Less) √ √ NA √ NA √ √ NA

Optimization √ √ √ √ √ √ √ √

Good accuracy NA √ √ √ √ NA √ √

Deformable model √ X X X X √ X X

Convex function X √ X X X X X X

Function based on 
2D & 3D data points X X √ X X X X √

RBF X X X √ X X X X

Least squared error X X X X √ X X X

Wide base line X √ X √ X X X √

Labeling cost/
smoothing term X √ X X X X √ X
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Table 8. Comparison of methods based on image space approach.

Paper
Parameter

Campbell 
et al., 2008

Alexiadis 
et al., 
2013

Pons 
et al., 
2007

Wang et 
al., 2012

Labatut 
et al., 
2009

Bradley et al., 
2008

Hu & 
Mordoh-
ai, 2012

Zhou et 
al., 2013

Calibrated 
images √ X X √ √ √ √ √

Real dataset √ √ √ √ √ √ √ √
Computation 
complexity (less) √ √ NA NA NA √ NA NA

Optimization √ √ √ X √ √ X √
Wide base line √ √ √ √ X √ √ X
Dynamic scene X √ √ X X X X X
Spatial consistency 
constraint √ X X X X X X X

RGB depth maps X √ X X X X X X

Zippering 
algorithm X √ X X X X X X

Prediction error X X √ X X X X X
Structured light 
based cameras X X X X √ X X X

Adaptive point 
based filtering X X X X X √ X X

Multiple candidate 
depths per pixel X X X X X X √ X

Range data X X X X X X X √

Table 9. Comparison of methods based on image space approach.

Paper
Parameter

Graber et 
al., 2015

Basha et 
al., 2013

Kim et al., 
2013

Uh & 
Byun, 2016

Shen, 
2012

Calibrated images √ √ √ √ X
Real dataset √ √ √ √ √
Computation complexity (less) √ X √ √ √
Optimization √ √ X √ X
Wide baseline X X √ √ √
Dynamic scene X √ X X X
Spatial consistency constraint X X X √ X
RGB depth maps X √ √ X X
Adaptive point based filtering X X √ √ X
Multiple candidate depths/pixel X X X √ X
Use of range data √ X X X X
Variational Approach √ √ X X X
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Table 10. Comparison of methods based on image space approach.

Paper
Parameter

Kim 
et al., 
2009

Tola 
et al., 
2010

Liu 
et al., 
2009

Song 
et al.,   
2010

Li    
et al., 
2010

Lambert 
& Hebert, 
2009 

Zhou 
et al., 
2013

Delau-
noy et 
al., 2014

Calibrated images √ √ X √ X √ √ √
Real dataset √ √ √ √ √ √ √ √
Computation 
complexity (less) NA √ NA X √ X X X

Optimization √ √ √ √ √ √ √ √
Sensor fusion for 
finding depth √ X X X X X X X

DAISY  descriptor X √ X X √ X X X
Continuous depth map 
estimation X X √ X X X √ √

Expansion based 
approach X X X √ x X X X

Bundle optimization 
for robust depth map 
merging 

X X X X √ √ X √

Depth map based on 
silhouette and epipolar  
line 

X X √ X X √ X X

Wide base line X √ √ X √ X X X

Dynamic scene √ X X X X X X X

Use of reflectance 
properties X X X X X √ √ X

Table 11. Comparison of methods that extract a set of feature points and then fits the surface on it.

Paper
Parameter

Labatut 
et al., 
2007

Taylor, 
2003

Zeng 
et al., 
2004

Teney & 
Piater, 
2012

Tung 
et al., 
2009

Furukawa 
& Ponce, 
2010

Liu 
et al., 
2008

Nurzyn-
ska, 2009

Salvador 
& Casas, 
2010

Calibrated images √ X X X X X √ NA √
Real dataset √ √ √ √ √ √ √ √ √

Computation complexity √ NA NA X NA X X X X

Optimization √ X √ X √ √ √ X X

Initialization (visual hull) X X X X √ X √ X √

Wide base line  √ X X X √ √ X √ √

Feature points (texture 
& occluding edges) X X X √ X x √ X √

Good accuracy √ NA NA √ √ √ √ X √
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Unorganized point cloud X X X X √ X X √ X
Large scale scenes √ X X X √ X X X X 
Feature point matching √ √ √ √ √ √ √ √ √
free space volume  
based features X √ X X X X X X X 

Fusion of narrow & 
wide baseline X X X X √ X X X X 

Probabilistic
approach X X X √ √ X X X X 

Table 12. Comparison of methods that extract a set of feature points and then fits surface on it.

Paper
Parameter

Wang et 
al., 2014

Huang et 
al., 2016

Henry 
et al., 
2016

Bylow et 
al., 2016

Bao et 
al., 2013

Bodis 
et al., 
2015

calibrated images √ √ √ √ X √
Real dataset √ √ √ X √ √
Computation complexity √ √ X X NA √
Optimization √ √ √ X X √
Initialization (visual hull) X X X X X X
Wide base line  X X √ √ √ √
Feature points (occluding & 
texture edges) X X X X X √

Good accuracy √ √ √ √ X NA
Dynamic surface (unorga-
nized point cloud) X X X X NA X

Large scale scenes X X √ √ √ √
Feature point matching √ √ √ √ √ √
features (free space volume) X X X X X X
Fusion of narrow & wide baseline X X X √ X X
Probabilistic approach X X X X X X
RGB depth cameras √ X √ X X √
Truncated Signed distance function √ X √ X X X

Discussion AND Conclusion
This paper presents a review and comparison of the latest 3D reconstruction methods developed 

by computer vision researchers. Although it is very difficult to classify these methods, they are 
grouped on the basis of their common features. Different reconstruction methods are compared 
on the basis of their performance and key parameters. The results of the efficient and accurate 
volumetric 3D reconstruction method developed by the authors are also discussed. This will help 
researchers to understand the state of the art in this field. 

Solving a correspondence problem is one of the complex tasks in itself. On the other hand, 
multi-view reconstruction methods that operate in 3D space such as voxel based methods do 
not need to solve the complex correspondence problem. The volumetric methods may fail to 
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reconstruct non-Lambertian objects. The beauty of voxel based methods lies in the fact that they 
provide physical parameters close to those of the actual scene. Methods based on the image space 
approach use estimation techniques to provide better accuracy than the volumetric methods. 
Applications in the medical field demand more accuracy. Hence, the approaches can be combined 
to take benefits of both.

Development of multi-view 3D reconstruction methods has experienced a tremendous growth 
in recent years. Still, these methods need improvement in many aspects such as reduction in 
computation complexity, implementation simplicity, suitability for large scale and dynamic scenes, 
suitability for real time applications, and so forth. The literature shows that many reconstruction 
methods are basically designed for small baseline and indoor applications. Emphasis can be given 
on making these methods suitable for outdoor applications. Most of the methods model static 
scene only. The methods can be modified to make them suitable for dynamic scene reconstruction. 
Although 3D reconstruction methods using MVS can reconstruct good quality large scale scenes/
models, they do not produce good quality textured results. Efforts can be made to improve these 
methods to obtain good quality of texture. More emphasis should be given on making these complex 
algorithms realizable on the hardware platforms such as GPU. In volumetric reconstruction methods, 
the accuracy of reconstruction depends upon calibration of cameras. The calibration process can be 
automated to make the method simple and improve the overall performance. Reconstruction methods 
mainly face challenges while dealing with the complex scenes and objects with textureless surface. 
With additional cues/priors, the methods can be modified to deal with such objects. Transparent 
objects like fire or objects with reflecting surface like mirrors are difficult to reconstruct. More efforts 
are needed in this direction. There is a scope to improve the accuracy of image space methods by 
improving the accuracy of depth maps. The scope of 3D reconstruction is increasing day by day. It 
is challenging to make these methods more suitable for satellite imagery and geographic information 
system (GIS) applications where high resolution images are to be dealt with. 
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