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ABSTRACT

Complex variable theory and the superposition principle are useful ways to study a tunnel’s
stress and deformation. Accordingly, an elastic solution is presented for a twin tunnel’s stress
distribution in homogeneous and isotropic rock subjected to non-uniform stress. Taking into
account the influences of the supporting pressure, spacing distance and stress coefficient, the elastic
solution and infinite element method are applied to analyze the twin tunnel’s stress distribution and
concentration. The results demonstrate that the twin tunnel’s maximum stress appears at the middle
rock wall, and the spacing distance has most evident influence on the stress concentration. The
largest difference in the stress distribution between the analytical solution and the finite element
method is at the twin tunnel’s left and right hances, but the analytical data are highly consistent with
the numerical data. Nevertheless, the difference may become significant if the twin tunnel’s spacing
distance is less than 0.25 times the tunnel diameter and the stress coefficient is less than 0.7.

Keywords: Complex variable theory; deep twin tunnel; elastic solution; stress distribution;
superposition principle.

INTRODUCTION

Tunnels, as a main way to utilize underground space, play a highly important role in infrastructure.
The field of tunnel engineering has greatly blossomed, attracting the attention of engineers. A tunnel’s
stress distribution and deformation are critical factors to evaluate its stability, so most researchers
have focused on the tunnel’s stress distribution and displacement. Pender (1980) presented elastic
solutions for a deep circular tunnel in a non-uniform stress field to analyze the displacement and
stress distribution.Park (2004) presented elastic solutions for the prediction of tunneling-induced
ground deformations for shallow and deep tunnels in soft ground. An analytical solution is presented
to predict the stresses and displacements of a circular tunnel in a Mohr—Coulomb rock mass subjected
to hydrostatic stress (Wang et al., 2012).Based on elastic theory and the transfer matrix technique,
Sulem et al. (2013) analyzed the stresses and displacements in a two-dimensional circular opening
excavated in a transversely isotropic formation with nonlinear behavior.
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When considering a tunnel with an arbitrary sectionand non-uniform loading boundary,
complex variable functionsare very helpful.Complex variable theory has been employed to find
the analytical solution for the rock stress around square tunnels in a homogeneous, isotropic and

elastic rock mass (Zhao & Yang, 2015), the solution for deep lined circular tunnels in transversely
anisotropic rock (Bobet, 2016), a closed-form elastic solution for stresses and displacements
around a tunnel with an arbitrary section (Exadaktylos & Stavropoulou, 2002), and the stress
solution for a lined non-circular tunnel subjected to a uniform ground load (Kargar et al., 2014).
Based on complex variables, the analytic stress solution for a circular pressure tunnel at great
pressure and depth including support delay (Li et al., 2011; Carranza-Torres et al., 2013) and the
solution of a tunnel in a homogeneous and isotropic material taking the construction sequence and
support delay into account (Li & Wang, 2008)are presented.

With complex variable theory, ashallow tunnel in a half-plane can be changed into a circular
ring, so that the shallow tunnel’s stress and displacement can be solved (Verruijt, 1998; Strack
& Verruijt,2002).A solution for plane containing two holes is presented (Ling., 1948). Fu et al.
(2015) analyzeda twin tunnel’s deformationusing superposition principle. The Schwarz alternating
method was used to analyze a twin tunnel’s stress through simplifying a multiply connected region
to a single-connected region, and it is necessary that the iteration number should be increased to
enhance the analytical accuracy. (Yan et al., 2011; Kooi & Verruijt, 2001; Su et al., 2012).A closed-
form solution is presented for the stresses and displacements around two deep circular tunnels
(Tran-Manh et al., 2015).

Based on complex variable theory and the superposition principle, an elastic solution is
presented to analyze a twin circular tunnel in homogeneous and isotropic rock on the condition of
a non-uniform stress field.The influences of the supporting pressure, spacing distance and stress
coefficient on the stress distribution are discussed. The finite element method is applied to study
the twin tunnel’s stress distribution, and the result is compared with the analytical solution. The
elastic solution validated by the finite element method can quickly describe the twin tunnel’s stress
distribution at another angle.

SIMPLIFICATION OF THE TWIN TUNNEL’S STRESS FIELD

When a twin tunnel is built at great depth, the influence of gravity near the tunnel is very
unobvious. Hence, engineers often only take the vertical stress (4v) and horizontal stress (h)
into account to analyze a deep tunnel’s stress field, as shown in Figure 1. The stress coefficient
is defined as 9h/qv.The stress superposition principle is very helpful to simplify the engineering
calculations. Based on stress superposition, the Schwarz alternating method was used to analyze
the twin tunnel’s stress, with a single-connected region used to solve problems of a multiply
connected region (Kooi & Verruijt, 2001; Zhang et al., 2000). Hence, the twin tunnel’s stress field
in Figure 1 can be changed into the sum of stress fields shown in Figure 2, namely, the sum of the
initial stress field and stress field under q(x, y), where 40 is the supporting pressure and q(x, y)
equals the initial stress field minus the supporting pressure 90.
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Fig. 1. Twin tunnel’s stress field
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(a) Initial stress field (b)Stress field under q(x, y)
Fig. 2. Analysis of twin tunnel’s stress field

It is clear that analyzing the stress distribution in a multiply connected region is more difficult
than in a single-connected region. Because of the symmetry of the structure and load, the stress
field in Figure 2 (b) can be redrawn as a half-plane stress field with a circular tunnel in Figure3,
where A is the origin point (0, 0), h is the horizontal distance between the origin point and the
tunnel’s center, and d is the horizontal distance from the origin point to the tunnel’s left hance (half
the spacing distance of the twin tunnel).
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Fig. 3. Half-plane stress field with circular tunnel
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ELASTIC METHOD WITH COMPLEX VARIABLE FUNCTION

The elastic mechanics of the complex variable function allows the solution of the elastic plane
problem to be expressed by the complex stress functions ¢(z)and1// ( Z), which are analytic
everywhere in the half plane with the exclusion of the circular tunnel. The relationship between the
stress and complex stress functions can be defined by following equations:

0, +0, =2{¢’(z)+M}=4Re{¢’(z)} 1)

o, -0, +2it, =2{z¢"(z)+1//(z)} 2)
The relationship betweenthe displacement and the complex stress functions can be defined by
ZG(ux+iuy)=kﬂ¢(z)—z¢ (Z)—I/J(Z) 3)

where G is the shear modulus of the surrounding rock,G =FE/2 (1 + M),is Poisson’s ratio, E
is the elastic modulus, and & , is a parameter that is related to Poisson’s ratio, ku =3-4ufor a for
a plane strain.

The stress boundary conditions are expressed by a complex variable function, and the integral
of the force along the boundary conditions is defined by

F(s)=F +iF, =if(Xn+iYn)ds )

The displacement and stress boundary conditions ofa half-plane with a circular tunnel in Figure
3 are obtained by

o 2iGu _Im{k ¢(z)-2¢'(z)-y(z )} C, -
iT, —Im{zq)” }
2+(y+h)2 =r’: q)(z)+z¢)'(z)+1,0(z)=F(s)+C2 (6)

where X » 1s the stress in the X-direction, Yn is the stress in the Y-direction, s, is an arbitrary
point on the boundary, and C] and C2 are unknown constants.

Stress and mapping function

A half-plane with a circular tunnel in the Z plane can be mapped into a ring region M in theZ
plane in Figure 4. Region M consists of an outer circle of |§ | =1 and an inner circle of |é’ | =
Verruijt (1998) chose Equation (7) as the mapping function to analyze the half-plane problem with
a circular hole.
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Fig. 4. Ring region in & plane
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where 0 < & < 1. (t.is a parameter, defined by r/h. Their relationship can be described as

7 2a

hol+a? ®

Each distinct point in theplane corresponds to a distinctpoint in the Z plane. The boundary
of |é’ | =1 corresponds to the axis y=0, the boundary of |§ | = corresponds to the circle
x>+ ( V+ h)z = 7%, the Z plane’s origin corresponds to & = —1 , and the Z plane’s infinite point
corresponds to & =1.1f @ — 0, the horizontal distance from the circle’s center to theX-axis is
very large, so the twin tunnel’s space is very large. If @ — 1, the radius of the circular tunnel is
close to the horizontal distance from the circle’s center to the X-axis, which means that the spacing
distance between the two tunnels is close to zero. Every corresponding value of € can be defined

by Equation (7).

The mapping function w( é‘) is an analytic function in the ring region M of the g plane. The

complex functions ¢(Z ) and ¥ (Z ) are also analytic functions in the R region of the Z plane.
The complex stress function can be rewritten as

9()=9((2)) =4 (£)= S + P o

w(2)=¢(W(§))=¢1(§)=26k§"+2dk§"‘ (10)



Elastic Solution for a Deep Twin Tunnel>s Stress Based on Complex Variable Theory and the Superposition Principle 74

Because the stress only exists in the boundary of the circular tunnel, the stress and displacement

of the infinite distance are close to zero. The coefficients ¢ b s ¢ and d

k are determined by

the boundary conditions. Equation(5)and(6)are boundary conditions that contains ¢ ( z ) ,w (Z ) ,
/ ! U
¢ (Z) ,1/} (Z) and ¢ (Z) , and & can be written as

(o _d8(8) _dp(E)de ¢ (£) "
M= i & W) "
oy dp (&) ay (£)de v/ (&) 1
Vi) == " ¢ dz  o(Z) "
p)- AL B[y g e e o
z'z=ﬁ’— 14
¢'(z) w,(g)vz(é) (14)
@)= O wie)® EV () (1s)
w’(§)=—2ih%ﬁ (16)
" 1-a? 1

w(:)=—4h1+a2(1_§)3 (17)
i@)b(ng)(pg) (18)
o (£) 2(1-¢)

M=L (19)

To analyze the stress distribution of the half-plane with a circular tunnel in the Z plane, some
coefficients should be simplified by conformal transformation mapping in ring region M of the
& plane. A ring with a radius of © can be expressed as & = PO and E = ,0(7_1, where
O =¢cXp (i@), so that Equations (18) and (19)can be rewritten as
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o(£) _ 1(+p0)(o-p)

=—— 20
w(C) 2 o’ (1- po) 20
Cl)”(é‘) 2

= 21
@'(&) 1-po e

Boundary conditions at X-axis

The circle of |§ | =1 inthe £ plane corresponds to the X-axis, so Equation (5) is rewritten as

inl i 6)- ST ] - @

(©) (&) @'(£)

Equations (20) and (21) can be simplified as

hnﬂ_ngdi)—éigifigﬁﬂ()+wxzﬂ/w%§%=o 23)

w(¢) ~L-0%); —wﬂ(é)LL (24)
(&) 2 T w(E) 1-0
k. (é‘)—w=é‘)¢1’(z)—¢1 (Z)=flls defined, and then

f1=2kﬂaka"+12(k 1)bi0 -12(k+1 )bino" - dea +Zkbo"‘
=1 2 1 2 =1 (25)

—12(k+1)6_1k+10 +12(k—1)ak_1a —cha +ka0 Eo_ﬁ_ﬂ
2 £ 2 = 2 2

fl _]_‘1 = C1 —61 = C3 is clear from Equation(22),where C3 is a real constant, and the
equation can be expressed as

®

Z""
=

o]

—(Eo —co)+kﬂ(a0 —50)—5(1_)1 —bl) ;(51 a])=C3

ka, +%(k-1)13k_1 —%(k+1)l_3k+1 ~dik b +%(k+l)ak+1 —%(k—l)ak_l +ck}

1 1 [ P (26)
[ (k- 1)bkl__(k+1)bk+l_dk_k,,bk+5(k+1)ak+l_E(k_l)ak_l+ck}
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Judging from Equation (28), the sum of the coefficients for each power of O on both sides
k —k
should be equal to zero, so every sum of coefficients O or O  is zero. Because the coefficient of
k -k
U is a conjugate complex number of the coefficient of O, the sum ofthe coefficients of 0" equals

. -k . . .
zero when the sum of the coefficients of O equals zero, and the relationships are written as

k(@ =a0)-(co-c)- (b= )~ (@-a)-C, =0 @)

1

di-c, =k, +%(k-1)5k_1 -%(lm)i),ﬁ1 ~k,bi +%(k+1)ak+l —E(k—l)ak_l K=1,2,3,..

@ﬂ"@)-%) ey

' ] Z+’Z=,hf11- . licit: (28
w(é‘) (g)ﬂ( ) %( ) /5, the following equation is explicit: (28)

On the condition of

f =%§k(k—l)aka"'2 +%§k(k+1)bka'(“2) —%Sk(k—l)aka" - ikaka"
=1 =1 =1 =1

~Shao e 3k - %Z Kk 1)bo + Fiho™ + koot - S hdo!
=1 =1 = — ! ~

(29)

D ’
Judging from Equation (23), it is clear that fz ' (é ) is equal to f W (§ ) so the following
equation can be presented:

1 =
of,+—f,=0 (30)
o
Equation(30)can be rewritten as

Eak[k(k+1)ak+l-(k-1)kak_l-2kak+2kck+k(k-1)13k-1+2k13k-(k+1)k13k+1-2k3k] o
=1

0

+Z ot [k(k+1)5k+] = (k=1)kaicr = 2kai + kes +k(k=1)b,_, - (k +1)kb,., + 24, - 2kd, ] =0
=]

k -k
where the coefficients’ relationship between O and U is also a conjugate complex number.
The following equations are available.

2k(d~c, ) =k(k+1)ay, ~k(k=1)a,_, ~2ka, +k(k=1)ber ~k(k+1)b +2kbr k=123...(2)
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Boundary condition at tunnel’s surface

The surface force along a circular tunnel is expressed by Equation (6) in the Z plane, and it can
be rewritten at the boundary |€ | =Uinthe& plane

0 (0)+ 2L GE) ()= F (0 @
'(¢)
where F (S ) is determined by the stress boundary condition of a circular tunnel in the Z plane.

Any points of £ = a0 are at the circle boundary of |é‘ | = & 50 Equation (20) can be simplified to

w(&) ) —0{0—(1—2a2)+a(2_a2)0—1 —do?

= (34)
' ( c ) 2 (1 -0 )
To simplify Equation (33), it can be written as
(¢)

(1-ao)(o-a)|4(C)+

4(E)+yi(8)|=(1-ao)(o-a)[F(a0)+C,] ¢s)

e

(€)

Where the result of (1— ao )(O’ -a ) is not equal to zero, and
Fl(aa)=(1—aa)(a—a)F(aa) (36)

The expression of fq (aa) depends on the boundary condition of the circular tunnel, and

F (0{0’ ) can be written as a Fourier series under the polar coordinate condition:

F(ao)= E 40" (37)

k=—

The front partsof Equation (35) can be written as

(1_0{0)(0_0{)@(@):(2%&&+ 2bka'ka'k)[—a+0(1+a2)—a02]

=-a,0-a,0’0-a,a’0" - 2 aao" - Zbkal'ka'k + (1 +a’ )(aoa +aa0’ +ha’
= =

(3%)

=1

+Z ak—lak_lak + Zbkﬂa_l_ka_k ) - a()ao-2 - Z ak—zak_lak - bla - bza_l - 2bk+2a_l'k0'k
= = -
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(1_aa)(a_a)m=(25mko—k+23m—kak)[_a+a(1+a2)_aaz]

© 0

- (1 +a’ )(0001 +eoia+ ZC‘kﬂakHU_k +dia”'o" + 2 diaa ™o ) -coa - chak“o‘k (39)
=] =3 =1

~do-da'o’ - Z da 0" - coad? - o -cra’ - 2 Crnad ot - 2 diaa’ o

=1

1(1+ao)(o

- (1-a0)(o-a) -5 n (;ma o Zkbaa)

= -laao’ -aad’o-ad’ —52(k+3)ak+3a o +52(k—3)bk-3a3"‘0"
=1

=1

©

—%(1 -3a’ )(510 +2a20 + Z (k+2)awa*'o™ - 2 (k=2)biaa' ™ 0" ) (40)
= =

NI—-

(Sa —3a)(a1+2(k+l)ak+1a ot —bha’o? Z (k-1) biaa™r o )
=1
= |

o

+%/<E (k —1)5k-10!k+10_k —%510{ —l_)zO‘1 —%530!_10‘2 —%2(/( + l)l_)k+10{1_k0k
=

=3

After Equations (37)-(40) are combined with Equation(35) ,the sums of the coefficients of each
o 1 2 _k —k
power of @ on both sides equal zero, so the coefficients of O , O O~ O and O " must satisfy

the following requirements:

~aa, +(1+ a’ )oz‘lbl -b,a™ —aco +(1+ a’ )aa —ad’ -ida; —(1 -3a’ )aaz

(41)
—%(30{3 —30[)611 -Ltabi = 4,-aC,

—a, +(1+0:2)a0 -b —d +(1+a2)50 —ad? -wa’ —%(1—30{2)51
+§(3a2—a4)l_)1a'2—l_92 = 4, +(1+0:2)C2 *2)
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—a,a’ +(1+a2)a1a—a0a—d2a" +(1+0{2)d10f1 ~coa-taa

+%(30{3 —3a)l_71a‘2 +%(30{2 —a4)21320:‘3 ~iba™ = 4, -aC,

(43)

~a,a’ +( +a )ak ! —a o —da™ +(1+a2)3k_1a1"" —d i
+1(k=3)bisa™ +4(1-307 ) (k-2)biaa™ +1(3a’ -3a)(k-1)biaa™  @4)
~1(3a* - a* )kbkof"-1 —Lk+\)bima'™ =a* 4, (k=3,4,5,..)

-ba'™" + (1 +a )bk+1a'l'k —b,,a T~ + (1 +a )Ema’”l — Crna"
~L(k+3)arsa™ - 1(1-3a )(k+2)arna™ - 1(3a’ -3a)(k +1)arma’ 49
-3¢ o' Jkarad + L(k-1)ara* =a* 4, (k=1,2.3,..)

According to Equations (1)-(2), it is clear that 4,€ and C2 are constants and have no effect

on the stress distribution. To eliminate them, result of equations ( 41) x (1 +a”) + (42) x cxis

written as
~ad’ —%(30:5 —20:—30:3)51 - {0!3 +(1+a2)(1—3a2)a]52 —%(1+a2)a353 + [(1+0¢2 )2 a’ —Ol]bl
- - 2 - _ (46)
+(a—a3)b1 —(1+0¢2)05'1b2 -ab + [(1+a2) a—of]c] —(1+az)a3(:z ~ad = a4, +(1+0{2)AU
And the result of Equations ( 41) - (43) is written as
—(1+0{2)05al +%(4a—3a3)51 +a,d’ —(1—30{2)0:52 -3das +(1+a2)a'1b1 —%(40{—30{'1)131
(47)

b - (30 - )b +3ba +(a+a )(_:1 ~od (o +va)di+da = 4~ 4,

Because the complex stress functions ¢ ( z ) and ¥ (Z ) are convergent, four groups of constants
a; ,bk ,Crand dk should close to zero on the condition of & — © . Their values can be defined by

Equations (28), (32), (44), (45), (46) and,47, and the solution is complete.

STRESS EXPRESSION OF TUNNEL SURFACE

On the condition that the supporting pressure (q0) is uniform or equal to k times the initial
stress field, q(x, y) in Figure 3 can be written as
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yv+h

Tx=q§, T, =kq (48)

r

where q is the pressure in the x-direction and equal to the initial pressure minus the supporting
pressure at point (r, h) in the Z plane, K’ equals the ratio of the stress in the y-direction at point (0,d)
to the stress in the x-direction at point (r, h), r is the radius of the circular tunnel, and TxandTy are
surface stresses in the X-direction and Y-direction. According to Equation (4), the force F(s)can be
calculated by integrating along the stress boundary condition of the circular tunnel.

; i(1+K sz +ih i(1-4 sz +ih
F(s)=if(7;+iT)ds= ( )qf ds + ( )qf ds (49)
So g 2 oo r 2 So 1
When a circular tunnel has a uniform radial force g, the method of Verruijt (1998) can be
used to express itssurface stress under a bipolar coordinate system. In the bipolar coordinate
system Z + ih = rexp(i £ ) ds = rd 8. On the supposition ofSo = O, where Equation(49) is

combined with Equations (7) and (8) , the force F can be written as

P(s)= 28 7 i D 7257

(50)
i(l+k)gha i(k=1)gha o
_(1+a2)(1—a0)[a o+i(l aa)]+(1+a2)(a—a)[l ao+i(o-a)]
Then,Equation (36) can be rewritten as
E(aa)=(1—ao)(0—a)F(a0)
=%(o—a)[a—0+i(1—aa)]+%(l—aa)[l—aan(a—a)] -

- a4k - -1-K)] 0"+ da -2 - K Jo s W (K -1~ ~Ke)]}

l+a

And Equation (37) can be rewritten as

©

F(a0) =kE 40
= (52)
_ gha {[2k’a+i(k’a2 -a’ -1-K)) 0 +{dia- 2K - K@’ Jo+ [ Wa+i(k' -1- —k’az)]}

l+a



81 Guo Zi-hong & Liu Xin-rong & Zhu Zhanyuan

Comparing all the coefficients in Equation (52), it is clear that they are all equal to zero except

for Ao R A1 and A2

= qh 2k a+i(k'-1-a” —kK'a*)], 4 = qh dice - 2k' - 2k'a’
2 1
l+a I+

’ (53)
qgha

2

A=
* l+a

[Zk'a +ilk'a® —a® -1- k')]

All the coefficients of the complex stress functions F, (0!0‘ ) , 9 ( z ) and ¥ (Z ) can be defined.
To guarantee the accuracy of the analysis, the number £ should be greater than 100, and it is
advisable to turn to a numerical method, such as by using Matlab.

DISCUSSION OF THE TWIN TUNNEL’S STRESS DISTRIBUTION

A twin circular tunnel’s stress distribution is analyzed comparatively with the finite element
method and an analytical method. The twin circular tunnel’s model is shown in Figure 5. The
surrounding rock is regarded as an elastic material under a plane strain condition, the elastic
modulus is 6 GPa and the Passion ratio is 0.25. To simulate a deep tunnel stress field, the left
boundary is fixed in the X-direction displacement, the bottom boundary is fixed in the Y-direction
displacement, the surface boundary is the applied vertical stress, the right boundary is the applied
horizontal stress, and gravity is not taken into account.

b EREE fead

Fig. 5. Twin circular tunnel’s model

To analyze different factors’ influences on the twin tunnel’s stress distribution, 4 deep-tunnel
examples are applied under a vertical pressure qy=1 MPa, as shown in Table 1, where the d/D is
the ratio of twin tunnel’s spacing distance to diameter. All are shown in Figure 6, and the expressed
data are analytical results. Most of the tangential stressesare larger than the radial stresses around the
tunnel, all the maximum stresses appear at the point of the middle rock wall, and the maximum stress
of example (c) is 2.88 MPa and the largest.The spacing distance of the twin tunnel has a clear influence
on its stress distribution. The tangential stress is larger at the left and right hances than at the vault and
smaller than at the middle rock wall, so the stress concentration at the middle rock wall is the most
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evident. Comparing examples (a) and (b), it is easy to conclude that increasing the supporting pressure
leads to an increase in the radial stress and a decrease in the tangential stress, sothe supporting pressure
is helpful to enhancing the tunnel’s stability according to the rock’s yield criterion.

Table 1.Deep-tunnel examples

Example Stress coefficient d/D Supporting pressure
a 0.7 1.0 0.5q,
b 0.7 1.0 0.1q,
c 0.7 0.5 0.1q,
d 1.0 1.0 0.1q,

oo o Analytical results o o0 i o Analytical results
umerical simulation results Numerical simulation results

0.81 0.75 (a) 075 0.81 0.84 (b) 0.84

@
Analytical results
Numerical simulation results

0.72 0.80 (C) 0.80  0.72

Fig. 6. Twin tunnel’s stress distribution

When the stress coefficient of example (b) increases from 0.7 to 1, it becomes example (d),
which reduces the maximum stress from 2.49 MPa to 2.27 MPa, and reduces the hance’s tangential
stress from 2.22 MPa to 2.05 MPa, but increases the vault’s tangential stress from 0.91 MPa to 1.74
MPa. Comparing the analytical results with the numerical results, the two methods’ data are very
consistent with each other, but the differences in the stress distributions are most evident at the left
and right hances, particularly when the spacing distance is very small, as shown in Figure 6(c).

Thefour examples’ tangential stress distributions at the tunnel boundary are shown in Figure 7,
and the tangential stress is calculated with oy, oy and Tyxy according to the plane stress formula
Oo Zcxcosz0+0ysin29+2rxysin6cos6. It is clear that all the maximum tangential stresses appear
at middle rock wall and all the minimum tangential stresses appear at the vault, except in example
(d), and the numerical results show the same trends. The only difference between examples (a) and
(b) is the supporting pressure, which shows that the supporting pressure has a clear influence on
the tangential stress distribution. Upon increasing the supporting stress from 0.19v to 0.59v, the
tangential stresses at the hance, vault and middle rock wall decrease from 2.22MPa, 0.91MPa and
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2.49MPa to 1.75MPa, 0.59MPa and 1.92MPa, respectively. When the spacing distance of example
(b) decreases from 1d to 0.5d, the tangential stresses at the hance and vault decrease to 1.97MPa and
0.82MPa,respectively, but at the middle rock wall, it increases to 2.88MPa.The stress distribution
differencearound the tunnel’s boundary in example (d) is the smallest in the 4 examples. Comparing
examples (b) and (d), it may be concluded that a lower stress coefficient leads to a higher stress
concentration. The most evident difference between the analytical data and numerical data appears
at the hance in example (c), and the differences in the other examplesare small.
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(C) """"" Numerical simulation results (d)

Fig. 7. Twin tunnel’s tangential stress distribution at boundary

Judging from the twin tunnel’s stress distribution, the most attention should be placed on the
middle rock wall where the maximum stress appears. The following will analyze the influence of
d/D, qn/qv and the supporting pressure 90 on the stress concentration at the middle rock wall.

With d/D=0.5, the influences of 40 and k’ on the stress concentration are shown in Figure 8. The
supporting pressure and stress coefficient are helpful to reduce the stress concentration.When the
supporting pressure is zero andthe stress coefficient increases from 0.5 to 1, the stress concentration
factor falls from 3.17 to 2.97. When the supporting pressure decreases from 50% v to zero with
k’=1, the stress concentration factor increases from 1.97 to 2.94. Hence, the supporting pressure
hasa more significant influence on the stress concentration, and the linear relationships between the
stress concentration and the two factors are obvious.

When the stress coefficient equals 0.8, the influences of 90 and d/D on the stress concentration
are shown in Figure 9. It is clear that d/D’s influence on the stress concentration is stronger than
that of the supporting pressure. The stress concentration increases rapidly with the decrease in d/D.
When the supporting pressure is zero and d/D falls from 1.5 to 0.1, the stress concentration factor
changes from 2.33 to 4.69. According to Figure 8 and Figure 9, it is clear that the spacing distance
hasthe greatest influence on the stress concentration.
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Fig. 8. Influence of 90 and k’ on stress Fig. 9. Influence of 940 and d/D on stress

With no supporting pressure, theinfluences of k” and d/D on the stress concentration are shown
in Figure 10. Compared with the influence of d/D , the influence of k’ on the stress concentration
is minor. It is interesting to observe that thestress concentration factor slowly decreases with the
spacing distance’s reduction in the small region of a stress coefficient below 0.7 and d/D below
0.25, and this is worthy of discussion.

To verify that the results are reasonable, the finite element method isapplied to analyze the
stress concentration for comparison with the analytical method, as shown in Figure 11, where
k1 is the conditions that d/D is variable with k’=1 and qp=0.2qy; k2 is the conditions that d/D is
variable with k’=0.8 and o=0; and k3 is the conditions that (o is variable with k’=1 and d/D=0.5.
It is easy to conclude that when d/D exceeds 0.25,the analytical results have good agreement with
the numerical data, but the difference between the analytical and numerical data o may increase
when d/D is below 0.25 and k’ is below 0.7. When the spacing distance is very small, the analytical
results based on the superstition method may fail to guarantee the calculation accuracy(Tran-
Manbhet al., 2015).
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Fig. 10. Influence of d/D and k’ on stress Fig. 11. Stress concentration comparison
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CONCLUSIONS

Based oncomplex variable theory and the superposition principle, an elastic solution fora deep
twin tunnel’s stress in a homogeneous and isotropic rock subjected to non-uniform stress is presented.
Analyzing the influences of the ratio of the spacing distance to the tunnel’s diameter, the stress
coefficient and the supporting pressure on twin tunnel’s stress distribution, it is easy to conclude that
the maximum stress appears at the middle rock wall,the spacing distance has the greatest influence
on the stress concentration and the secondstrongest influence is the supporting pressure. Comparing
the analytical method with the finite element method, the greatest differences between the two
methods’ results appear at the left and right hances, so the two methods’ results are very consistent
with each other. However, the twin tunnel’s spacing distance and the stress coefficient have an
influence on the results’ accuracy. In the small region where the spacing distance is less than 0.25
time the tunnel diameter and the stress coefficient is below 0.7, the difference between the analytical
data and numerical data may become obvious, and it is worth paying attention to.
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