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ABSTRACT

 The k-out-of-n system model is the most prominent model of coherent system reliability, with a 
variety of important special cases, generalizations, and extensions thereof. In particular, the k-out-
of-n reliabilities (1 ≤ k ≤ n) constitute a basis for expressing the reliability of an n-order coherent 
system in terms of its signature (destruction spectrum). A notable algorithm for computing the 
reliability of a k-out-of-n system is the Improved Disjoint Products (IMDP) algorithm. This paper 
has four goals, namely, (a) to present a detailed and novel exposition of the IMDP algorithm; 
(b) to demonstrate that the IMDP algorithm is derivable from the BH-2 algorithm, which is an 
enhancement of the BH-1 algorithm that is used for evaluating the probability of exactly k successes 
among n Bernoulli trials and, hence, for computing the probability mass function (pmf) of the 
generalized binomial distribution; (c) to demonstrate that the IMDP algorithm can be derived from 
the AR algorithm, which is the Reduced-Ordered-Binary-Decision-Diagram (ROBDD) algorithm 
for evaluating the k-out-of-n reliability and also for computing the Cumulative Distribution 
Function (CDF) of the generalized binomial distribution; and (d) to show that the IMDP algorithm 
is a collective orthogonalization (disjointness) algorithm for a shellable sum-of-products formula 
(DNF) for k-out-of-n success. The paper plays a unifying role for a variety of concepts and 
algorithms and tries to emphasize similarities and interrelations among them, while pinpointing 
any subtle differences among them. A common denominator in explaining the various algorithms 
is the use of signal flow graphs that are compact, regular, and acyclic. For these loopless graphs, the 
gain formula requires only simple path enumeration, as well as a calculation of the transmittances 
of the paths.

Keywords: k-out-of-n; reliability; improved disjoint products; the AR algorithm; the BH-2 
algorithm; shellability; signature; unification; signal flow graphs.

NOMENCLATURE

Probability-Ready Expression (PRE): An expression that is directly convertible, on a one-to-
one basis, to the corresponding probability transform (Rushdi & Ghaleb, 2014). In a PRE,

all ORed terms (products) are disjoint;

all AND ed terms (sums) are statistically independent.
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The conversion from a PRE to a probability expression is trivially achieved by replacing 
Boolean variables by their expectations, AND operations by multiplications, and OR operations 
by additions (Rushdi, 1983; Rushdi and Goda, 1985; Rushdi and AbdulGhani, 1993; Rushdi and 
Ba-Rukab, 2005a; Rushdi & Rushdi, 2016). Most of the discussions in this paper pertain to various 
methods for converting a general switching expression into a PRE, with a stress on achieving 
property (a) above while preserving property (b).

Duality: The dual of a switching function is obtained by complementing the function and all its 
switching arguments (inverting both inputs and outputs) (Muroga, 1979; Rushdi, 1993; 2010).

Monotone: A monotone system is one whose reliability function is a non-decreasing function 
in each component reliability, that is, 

                      (1)

  

Relevant: Component number m is relevant to the system if there exists a valid value for p such 
that ∂R(p) / ∂pm  ≠  0.0. Relevancy means that R(p ) is not vacuous in (independent of) pm.

Coherent: A coherent system is a monotone system whose components are all relevant (Bergman, 
1985). If the reliability function R(p) of a coherent system with equal-reliability components is plotted 
versus p within the square 0.0 ≤ p ≤ 1.0, 0.0 ≤ R(p) ≤1.0, then it satisfies R(0.0) = 0.0, and R(1.0) = 
1.0, and exhibits an S-shape; that is, the curve R(p) versus p is monotonically non-decreasing and if 
it crosses the diagonal (p versus p), it does so only once and from below (Barlow & Proschan, 1996; 
Kaufmann et al., 1977, Rushdi & Hassan, 2015; 2016a).

Shellability: A shelling of the sum-of-products formula (DNF)

                                                                                                                 (2)

is a permutation (Cπ(1), Cπ(2), . . ., Cπ(m)) of its terms such that, for each k = 1, 2, . . ., m, the expression

                                                                                            π (1) π (2)  …… π (k–1) Cπ (k)                                                                           (3)

is equivalent to an elementary conjunction or to 0. A DNF is called shellable if it admits a shell-
ing (Crama & Hammer, 2011).

Shadow: Let A1, A2, . . ., Am be an ordered list of subsets of {1, 2, . . ., n}. For k = 1, 2,...., m, 
the shadow of Ak depends on the order in which these subsets are listed and is given by the set S(A1, 
A2, …., Ak) = { j ∈ {1, 2, . . ., n} : there exists ℓ < k ≤ m such that the set difference Aℓ / Ak = {j}}
(Crama & Hammer, 2011).

INTRODUCTION

The k-out-of-n:G (F) system, introduced by Birnbaum et al. (1961) more than half a century ago, 
is a system of n components that functions (fails) if at least k out of its components function (fail) 
(Misra, 1992; Rushdi, 1993; 2010; Rushdi & Alturki, 2015). Situations in which this system serves as 
a useful model are frequently encountered in practice. The k-out-of-n:G system covers many interest-
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ing systems as special cases. It is also a subclass of many important systems such as threshold systems 
(Rushdi, 1990; Rushdi & Alturki, 2015) and voting systems (Alturki & Rushdi, 2016). While virtually 
all nontrivial network reliability problems are known to be NP-hard for general networks (Agrawal & 
Barlow, 1984), the regular structure of the k-out-of-n system allows the existence of efficient simple 
algorithms for its reliability analysis that are of quadratic-time linear-space complexity in the worst 
case (Barlow & Heidtmann, 1984; Zhegalov, 1986; Rushdi, 1986; 1990; 1991; 1993; 2010; Kuo & 
Zuo, 2003; Amari et al., 2008). Better temporal complexity is also possible via a utilization of the Fast 
Fourier Transform (FFT) (Belfore, 1995).

The k-out-of-n system plays a central role for the general class of coherent systems, as it can be 
used to express or approximate the reliability of such systems. In fact, the reliability Rc(n, p) of  any 
coherent system of n components is a weighted sum of the reliabilities R(k, n, p) of k-out-of n:G 
system reliabilities (of the same number and reliabilities of components), namely, (Marichal & 
Mathonet, 2013; Marichal et al., 2011).

                                                                                         (4)

Here, p = pn is the vector of component reliabilities [p1 p2 …. pn]
T. The weights i are called the 

system signatures or the destruction spectrum (Samaniego, 1985; 2007; Kochar et al., 1999; Bo-
land, 2001; Boland & Samaniego, 2004a; 2004b; Boland et al., 2003), where.

                                                                                                                            (5)

and 

                                                                                                                              (6)

The signature i is the probability P (T = Ti:n), where T is the time to failure of the system and Ti:n 

is the ith order statistic (i.e., the ith smallest value) among the component times to failures T1, T2,… 
Tn, assumed independent and identically distributed. Alternatively, i might be viewed as the ratio 
of the number of component orderings for which the ith component failure causes system failure 
to the total number of possible such orderings, which is n!. Note that the signature vector for the 
(n–k+1)-out-of-n:G {the k-out-of-n:F} system is an n-element vector whose elements are all 0s 
except the kth element, which is 1 (in immediate agreement with the definition of such a system). 
This means that equation (4) becomes a self-consistent identity if the coherent system considered 
is a k-out-of-n system. 

Samaniego (2007) explains how system signatures are computed (somewhat inefficiently) via the 
basic definition. He also presents a better algorithm for computing signatures via the domination theory 
of Satyanarayana and Prabhakar (1978) using the concept of formations that considerably simplifies the 
Inclusion-Exclusion Principle. An explicit formula for signatures is given by Boland (2001).

                                                                    (7)

where ri(n) is the number of primitive system paths of cardinality i, that is, the number of 
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primitive states of the system (or minterms of system success) in which exactly i components are 
functioning (and hence exactly (n – i) components are failed). Here,  denotes the combinatorial 
(binomial) coefficient, that is, the number of ways of selecting k out of n objects without order or 
repetition.

Typically, the signature vector of a coherent system starts and terminates with some zero 
elements; that is, it takes the form.

                                                                                                (8)

where 1 ≤ f ≤ l ≤ n, and sf and sl denote the locations of the first and last nonzero elements of 
the signature vector s. Since the k-out-of-n:G reliabilities are ordered via.

                                                                            (9)

relations (4), (6), and (9) can be combined to yield the following lower and upper bounds for 
Rc (n, p). 

                                                                     (10)

Note that (10) obtains bounds on Rc(n, p) rather than an exact value for it as (4) does. However, 
it does not demand the computation of signatures. It only requires a determination of  f and l which 
can be readily obtained via some partial information about the minimal cutsets, which are the 
prime implicants of system failure, and about the minimal pathsets, which are the prime implicants 
of system success. In fact f can be identified as the cardinality  of a system minimal cutset that 
has the smallest number of components, while (n–l+1) is identified as the cardinality of a system 
minimal pathset that has the smallest number of components.

One purpose in this paper is to present a detailed exposition of a notable algorithm for com-
puting the reliability of a k-out-of-n:G system, namely, the Improved Disjoint Products (IMDP) 
algorithm, first outlined briefly by Rushdi (1993). This algorithm extends the basic idea of dis-
joint products (Abraham, 1979; Dotson & Gobien, 1979; Rushdi, 1993; Rushdi & Al-khateeb, 
1983; Ball & Provan, 1988; Barlow & Iyer, 1988). This exposition is extended to show that the 
IMDP algorithm is a special case of each of the following: (a) the AR algorithm (Rushdi, 1986; 
1990; 1991, 1993, 2010; Kuo & Zuo, 2003); (b) the BH-2 algorithm (Barlow & Heidtmann, 1984; 
Rushdi, 1993); and (c) an orthogonalization (disjointness) algorithm of a shellable formula for k-
out-of-n success (Crama & Hammer, 2011). The paper’s main gool is to unify and interrelate many 
seemingly disparate concepts and set the stage for a comprehensive theory for k-out-of-n system 
reliability. The paper relies heavily on the use of Mason Signal Flow Graphs (SFGs) (Golnaraghi 
& Kuo, 2009) for offering pictorial explanations, a practice that has been used frequently in the 
reliability literature (Rushdi, 1986; 1987; 1990; 1993; 2010; Rushdi & Dehlawi, 1988; Rushdi & 
Althubaiti, 1993; Kuo & Zuo, 2003; Rushdi & Alturki, 2015). The SFG pictorial explanation is an 
equivalent alternative to the visual interpretation typically given to the Reduced Ordered Binary 
Decision Diagram (ROBDD), first introduced by Bryant (1986) and utilized in reliability studies 
by many researchers including Rauzy (2008), Pock et al. (2011); Mo (2014); Mo et al. (2014; 
2015); and Li et al. (2014). 
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Several observations about the scope of this paper are in order.

  The paper deals with a classical problem of system reliability in which system reliability R(k, n, p) is 
related to component reliabilities p. If a component is known in terms of its failure rate li , then the 
component reliability is pi(t) = exp (–li t). Hence, our study herein is trivially extended to express 
R(k, n, p) as a function of component failure rates.

   The present study deals with systems of heterogeneous components. If, instead, the system has 
homogeneous components of independent and identically distributed failure rates, then all the com-
ponent reliabilities pi become equal to a common value p. In this case, the present algorithms are 
not warranted since system reliability can be expressed in terms of the Cumulative Distribution 
Function (CDF), or the probability mass function (pmf) of the binomial probability distribution 
(Rushdi, 1993; Rushdi & Al-Qasimi, 1994; Al-Qasimi & Rushdi, 2008; Rushdi, 2010).

  This paper uses the basic model for studying k-out-of-n systems, in which component reliabilities 
are assumed constant and the time parameter is implicit rather than explicit in the analysis. A more 
realistic model called the load-sharing model takes into consideration the fact that when (n – k) or 
less components fail, the system remains working with an increase in the load on the remaining 
components, thereby increasing the failure rates (and hence decreasing the reliabilities) of these 
components. Such a load-sharing model makes an explicit use of time via Markov analysis (Scheuer, 
1988; Shao & Lamberson, 1991; Liu, 1998; Kvam & Pena, 2005; Amari et al., 2008; Amari & Berg-
man, 2008; Levitin et al., 2012). 

  The failure rates of system components are typically estimated via statistical techniques and, hence, 
are known only with uncertainty. Such uncertainty in component reliabilities propagates into uncer-
tainty in system reliability. This issue is not addressed herein, and the reader is referred to earlier 
work (Rushdi, 1985; Rushdi & Ba-Rukab, 2005a; 2005b; Bamasak & Rushdi, 2016; Rushdi & Has-
san, 2016b) for an assessment of the uncertainty in system reliability in terms of the uncertainties in 
component reliabilities.

  The paper addresses the binary model rather than the multi-state model of a k-out-of-n system. It 
unifies concepts of many prominent k-out-of-n algorithms for the binary case and sets the stage for 
a similar treatment of the multi-state case.

  The paper has a unique way of pictorially presenting the pertinent algorithms via Signal Flow Graphs, 
which are all acyclic (loopless) and beautifully regular and symmetric. The symmetry of these graphs 
is stressed by using the symmetric coordinates k1 = k and k2 = n – k. The choice of these coordinates 
restricts graph edges to be only horizontal or vertical, with no oblique edges such as these in earlier 
work (Rushdi, 1986; 1993, 2010) where the usual coordinates k and n are used.

  The  paper offers a single explicit running example or case study, namely, that of the  4-out-of-7:G 
system. However, the pictorial nature of the SFG representations enables the reader to visualize ad-
ditional case studies for any smaller system. For example, the 2-out-of-3:G system can be visualized 
by viewing the node for k1 = 2 and k2 = 1 in all forthcoming graphs.

  The paper original contribution is a novel mathematical derivation of the IMDP algorithm as well 
as novel proofs that this algorithm is derivable from each of the BH2 and AR algorithms. The paper 
also contributes novel unification of many apparently disparate concepts of reliability theory. 
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The practical importance of the k-out-of-n model cannot be overestimated (Kuo and Zuo, 2003). 
Rushdi (2010) lists many engineering applications of this model as such, and of the variety of 
algorithms discussed herein. Notable among these applications are secure data communication in 
mobile ad hoc networks (Papadimitratos & Haas, 2006), small-fleet aircraft redundancy and spares 
(Cochran & Lewis, 2002), oil-supply systems (Tian et al., 2008), n-version programming (Yamachi 
& Yamamoto, 2006; Hiroshima et al., 2006), furnace  systems (Zuo et al., 1999), power systems 
(Rushdi, 1990), ecological corridors (Rushdi & Hassan, 2015; 2016a), converter valves for power 
transmission (Wang et al., 2010), and multiprocessor systems (Milad et al., 2012).

The organization of the rest of this paper is as follows. This introduction is preceded by a sum-
mary of  some of the nomenclatures used and followed by  a formal derivation and exposition of 
the IMDP method, which enhances and updates its brief outline in Rushdi (1993). Next, we briefly 
outline the BH-2 algorithm, which is a quadratic-time algorithm that is occasionally inadvertently 
confused with the AR algorithm. The BH-2 algorithm is related to the BH-1 algorithm, which 
computes the probability of k successes among n generalized Bernoulli trials, or equivalently, 
the probability mass function (pmf) of the generalized Bernoulli distribution. We also derive the 
IMPD algorithm from the SFG underlying the BH-2 algorithm. Next, we present a quick review 
of the AR algorithm, which is a quadratic-time algorithm for evaluating the k-out-of-n reliability, 
or, equivalently, for computing the Cumulative Distribution Function (CDF) (rather than the pmf) 
of the generalized binomial distribution. We also point out that the AR algorithm is the ROBDD 
algorithm for computing the k-out-of-n reliability and proceed to prove that the IMDP method is 
derivable from the SFG structure underlying the AR algorithm. Later, we consider the concept of a 
shellability algorithm, that is, a disjointing algorithm that does not increase the number of products 
in a sum-of-products expression. Subsequently, We demonstrate that the IMDP algorithm is a col-
lective shellability algorithm in the sense that it orthogonalizes (disjoints) a shellable formula for 
k-out-of-n success, and it does so in a collective fashion. The paper concludes with some observa-
tions and comments.

A FORMAL DERIVATION OF THE IMDP FORMULA

Two dual IMDP formulas for the reliability R(k, n, p) and unreliability U(k, n, p) of  a k-out-of-
n:G system with component reliabilities p are reported by Rushdi (1993) in pp. 214-215, following a 
qualitative description in pp. 197-198 that enhances and organizes earlier work by Heidtmann (1982), 
and Locks and Heidtmann (1984). In the following, we present a formal derivation (starting in the 
Boolean domain and terminating in the probability domain) of the IMDP formula for R(k, n, p). 
The success S(k, j, Xj) of a k-out-of-j:G system is given by its Boole-Shannon expansion about Xj 
(namely, Equation (5.40a) of Rushdi (1993)):

                            (11)

where  Xj = [X1 X2 … Xj]
T is the vector of the first j component successes. The R.H.S. of equation 

(11) involves two subfunctions or restrictions S(k, j–1, Xj–1) and S(k–1, j–1, Xj–1) of the original 
success function. We express the latter subfunction in terms of the former as follows:
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                                                         (12)

Here, Se (l, j, Xj) is the indicator of exactly l successes among j trials (exactly of the first j 
components are good). The set of ( j+1) values Se (l, j, Xj) 0 ≤ l ≤ j ,  have expectations E (l, j, pj) 
which constitute the pmf of the generalized binomial distribution. Now, we substitute (12) into (11) 
to obtain  

   

      

                     (13)

Equation (13) consists of two disjoint (orthogonal) terms, whose ANDing is 0. Obviously,

                                                (14)

We now write instances of (13) for j decreasing from n to k {restricted by 1 ≤ k ≤ j ≤n}

                                      (15)

In equation (15), we made use of the boundary condition (Rushdi, 1993)

In view of (14), the second term in the R.H.S. of each success equation in (15) is disjoint with 
the first term in the same equation and, hence, is disjoint with all terms in successor equations. 
Substituting each success equation in (15) into its predecessor one, we obtain 
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                (16)

Equation (16) is the IMDP formula in the Boolean domain. It is a PRE formula since it consists of 
disjoint terms that are presumed to be PREs themselves and, hence, translates, on a one-to-one basis, 
into the probability domain as 

                               (17)

Equation (17) is the IMDP formula in the probability domain. It says that R(k, n, p) is a weighted 
sum of the last (n–k+1) component reliabilities. The weight for component reliability pl (k ≤ l ≤ n) is 
the probability that exactly (k–1) of the preceding components are successful. Note that any particular 
component reliability pl (k ≤ l ≤ n) appears in its own term and then reappears within the weights of 
successor component reliabilities. The formula can be rewritten as the weighted sum of any ordered 
set of (n–k+1) component reliabilities, each with an appropriate weight that is equal to the probability 
that exactly (k–1) of the preceding elements within this set are successful. The numbers of terms in 
the two sides of (17) correspond to the well-known binomial identity

                                                                                                                   (18)

THE IMDP ALGORITHM AS A SPECIAL CASE OF THE BH-2 ALGORITHM

Barlow and Heidtmann (1984) presented two algorithms (frequently named the BH-1 and BH-2 al-
gorithms) for computing R(k, n, p). These two algorithms are based solely on the use of generating func-
tions, but have been given a recursive-relation interpretation by Rushdi (1986; 1993; 2010).

Basically, the BH-1 algorithm computes E(k, n, p), 0 ≤ k ≤ n, which is the probability mass 
function (pmf) of the generalized binomial distribution (Rushdi & Al-Qasimi, 1994; Al-Qasimi & 
Rushdi, 2008) and, hence, is the probability of exactly k successes in n trials; that is, it is the expected 
value of Se(k, n, X). The BH-1 algorithm computes R(k, n, p) as a summation of E(j, n, p) values, 
where k ≤ j ≤ n, i. e.,

                                                                                            (19a)

where p = pn = [p1 p2 p3 …… pn]
T is the vector of component reliabilities. Equation (19a) amounts 

to converting the pmf of the generalized Binomial distribution into the complement of the correspond-
ing Cumulative Distribution Function (CDF). The probabilities E(k, n, p) can be obtained via differ-
encing that converts the aforementioned CDF to the corresponding pmf, namely,

                                                                              (19b)

 These probabilities are governed by the recursive relation (Rushdi, 1986; 1993)

               (20)                     

together with the boundary conditions:
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                                                                                                                   (21a)

                                                                                                       (21b) 

                                                                                                   (21c)

Rushdi (1993) presents relations (20)-(21) pictorially in terms of Mason Signal Flow Graphs 
(SFGs) in the (k, n) plane. We reproduce these SFGs herein in the (k1, k2) plane, with k1 = k 
and k2 = n–k, so as to stress  their symmetry with respect to the k1 and k2 arguments, and set the 
stage for extensibility to multi–state systems with k1, k2, ….. , km (m > 2) arguments. Figure 
1 illustrates an octant of the (k1, k2) plane wherein the recursive relation (Eq. (20)) for E(k1, 
k1+k2, pk1+k2), (k1 ≥ 0,  k2 ≥ 0, (k1+ k2) ≥ 1) is valid, bounded by condition (21a) at {k1=k2=0}, 
condition (21b) at {k1 = –1, k2 ≥ 1}, and condition (21c) at {k1 ≥ 1, k2 = –1}. Figure 1 is totally 
and beautifully symmetric around the symmetry axis k1 = k2. While nodes in Fig. 1 represent 
E(k1, k2, pk1+k2), the figure depicts a particular double-circle node representing R(4, 7, p7) as the 
summation of E(4, 7, p7), E(5, 7, p7),  E(6, 7, p7) and E(7, 7, p7). Each shaded circle node in 
Fig.1 is given recursively via (20) as a weighted sum of the nodes immediately above it and the 
node immediately to the left of it. Each node on the secondary diagonal k1+k2 = n has, there-
fore, exactly two arrows incident on it, a vertical one of transmittance pn and a horizontal one 
of transmittance qn. Therefore, while nodes on the secondary diagonal k1+k2 = (n–1) represent 
exactly k1 successes out of (n–1) trials, they can simply be augmented by the nth trial (of success 
pn and failure qn) to produce nodes on the next secondary diagonal k1+k2 = n. Square nodes are 
not expressed recursively, since they represent boundary conditions and possess specific values; 
white nodes are of value 0.0, while the single black node is of value 1.0.

Now, we note that equation (13) is in PRE form (thanks to the orthogonality (disjointness) 
between S(k, j–1, Xj–1) and Se(k–1, j–1, Xj–1) in (14)), and hence it has the probability domain 
counterpart

                                 (22)

Rushdi (1986; 1993) proved that (22) was implicit in the transformation of the BH-1 algo-
rithm to the BH-2 algorithm. This fact is demonstrated by Fig. 2, in which the 4-out-of-(4+k2):G 
reliabilities (0 ≤ k2 ≤ 3) are computed via (22) and are represented by double–circle nodes. 
Similarly to Fig. 1, Fiq. 2 uses single-circle nodes to represent the pmf probabilities E(k1, k1+k2, 
pk1+k2), while the four double-circle nodes represent the CCDF probabilities (i.e., reliabilities) 
R(4, 4+k2, p4+k2), 0 ≤ k2 ≤ 3.
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Fig. 1. The Signal Flow Graph for computing the probability of exactly k1 successes  out of (k1+k2) 
trials up to (k1+k2) = 7, augmented by thick  arrows to show the  BH-1 algorithm for R(4, 7, p7).

We now demonstrate that the IMDP algorithm is derivable from the BH-2 algorithm (in fact, equa-
tion (13) was crucial for both algorithms). Figure 2 suggests that R(4, 7, p7) can be computed just by 
summing the transmittances from the single source at {k1 = k2 = 0} to the R(4, 7, p7) node, thanks to the 
fact that the Signal Flow Graph in Fig. 2 is acyclic (i.e., has no loops). The transmittances terminating 
with p4, p5, p6 and p7 are disjoint and hence R(4, 7, p7) can be written as a weighted sum of the compo-
nent reliabilities of p4, p5, p6 and p7. The weights or coefficients for these component reliabilities are 
deduced as the nodes k1 = 3 (0 ≤ k2 ≤ 3) in Fig. 2 as shown in Fig. 3,and result in the formula

                     )23(

 Note that Fig. 3 is simply a collection of four sub-figures obtained by terminating Fig. 2 at the 
output nodes E(3, 3, p3) , E(3, 4, p4), E(3, 5, p5), and E(3, 6, p6), respectively, that is, by omitting paths 
of Fig. 2 that are irrelevant to the computation of each of these values. Equation (23) is the special 
case {k = 4, n = 7} of the general IMDP formula (17). Note that equation (23) arranges the  = 35 
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terms of R(4, 7, P) as   = 20 terms, respectively. Extension of the 
current SFG derivation for general k and n is straightforward and obvious.                         

Fig. 2. The Signal Flow Graph for computing the 4-out-of-(4+k2): G reliabilities via

the BH-2 algorithm (0 ≤ k2 ≤ 3).

Fig. 3. A representation of the coefficient of pl (4 ≤ l ≤ 7) in the expression of R(4, 7, p) via the 
BH-2 algorithm. These coefficients are naturally displayed as E values, that is, single-circle nodes.
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THE IMDP ALGORITHM AS
A SPECIAL CASE OF THE AR ALGORITHM

The AR algorithm is a quadratic-time iterative algorithm that was developed by Rushdi 
(1986) and expounded in Rushdi (1990; 1991; 1993; 2010), Rushdi & Al-Thubaity (1993), 
Rushdi & Al-Hindi (1993), and Kuo & Zuo (2003) and later reappeared, in disguise, in Wu 
& Chen (1994) and Dutuit & Rauzy (2001). The algorithm has the beautiful characteristic of 
having the same complexity for computing both the reliability and unreliability of either the 
k-out-of-n:G system or the k-out-of-n:F system. It is also an efficient and direct algorithm for 
computing the Cumulative Distribution Function (CDF) of the generalized binomial distribu-
tion (Rushdi & Al-Qasimi (1994); Al-Qasimi & Rushdi (2008)). It was pointed out in Rushdi 
(2010) that the AR algorithm is, in fact, an implementation of the Reduced-Ordered-Binary-
Decision-Diagram (ROBDD) strategy when this strategy is adapted for computing the k-out-
n-reliability. The ROBDD strategy was proposed by Bryant (1986) as an extension of the 
BDD methodology of Akers (1960). The ROBDD deals with general switching (two-valued 
Boolean) functions and is now considered the state-of-the-art data structure for handling such 
functions, with extensive applications in reliability (Rauzy, 2008; Misra, 2008; Bjorkman, 
2013; Mo, 2014). The AR algorithm, however, handles a class of switching functions that are 
both monotonically non-decreasing and totally symmetric. Apart from this restriction in ap-
plicability, the AR algorithm has exactly the same features as the ROBDD algorithm, namely, 
as follows:

1. Both the AR and ROBDD algorithms are based on the Boole-Shannon expansion in the Boolean 
domain

                                                         f(X) =    j  (f(X /  j) ˅ X j (f(X) / X j),                                               (24)

where

                                                               f(X) /  j   =  f(X) ] X j = 0,                                                  (25a)

                                                            f(X) / X j   =  f(X) ] X j =1,                                               (25b)

are called quotients, ratios, cofactors, subfunctions, or restrictions of f (X). This expansion 
translates in the probability domain to the following expression for system reliability.

                                                 R(p) = qj R( p│pj=0) + pj R(p│pj=1),                                         (26)

where qj = 1.0 – pj. Our earlier equation (11) is the particular instance of (24) when applied to the 
k-out-of-n:G success. Equation (26) is simply an expression of the Total Probability Theorem (Trivedi, 
2002; Rushdi& Rushdi, 2016) or the Factoring Theorem (Satyanarayana & Chang, 1983; Rushdi & 
Hassan, 2015; 2016a). 

2. Both algorithms visit the variables in a certain order, typically monotonically ascending or 
monotonically descending. 
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3. Both algorithms reduce the resulting expansion tree (which is exponential in size) to a rooted 
acyclic graph that is both canonical and hopefully compact or sub-exponential. The reduction 
rules (Mo et al., 2015) require 3(a) merging isomorphic subtrees and 3(b) deletion of useless 
nodes whose outgoing edges point to the same child node.

Figure 4 depicts a Mason Signal Flow Graph (SFG) for computing all k-out-of-n:G reliabilities 
for 1 ≤ k ≤ n = 7. Similarly to earlier figures, Figure 4 is drawn over a rectangular lattice of coor-
dinates k1 = k, k2 = n – k. For convenience in forthcoming computations, we use a reverse order 
(from 7 down to 1, instead of a forward order from 1 to 7) for the component reliabilities. This 
graph is the essence of the iterative AR algorithm and helps the reader visualize the basic recursive 
relations used by the AR algorithm, which are a special case of (26), namely,

                        R(k, j, pj) = qj R(k, j–1, pj–1) + pj R(k–1, j–1, pj–1), 1≤ k ≤ j ≤ n,                          (27)

These recursive relations should be used together with the boundary conditions 

                                                             R (0, j, pj) = 1.0,     j ≥ 0,                                               (28a)

                                                          R (j+1, j, pj) = 0.0,     j ≥ 0.                                              (28b)

Note that a node in Figure 4 with coordinates k1 and k2 represents the k1-out-of-(k1+ k2):G 
reliability and, hence, is represented by a double circle, in conformance with the notation in 
earlier figures. Similarity to earlier figures, shaded circles represent nodes expressed recursively 
(this time via (27)), while squares represent boundary conditions of specific values 0.0 and 1.0 
for white and black nodes, respectively. There is a striking similarity between Fig. 4 and Fig.1 
because they share the same recursive structure due to the similarity of equations (22) and (27). 
However, we stress on the fact that these two figures represent different entities and have obvi-
ously different boundary conditions as well as different regions of validity for the common recur-
sive structure. For comparison, Fig. 5 depicts the individual ROBDDs used in the computation 
of R(k, 7, p), 1 ≤ k ≤ 7, with each being isomorphic to the pertinent subgraphs in Fig. 4. In an 
ROBDD, a node does not represent a reliability value but depicts a decision point and hence is 
designated by the pertinent decision variable. The two outgoing edges of each node are labeled 
by 0 and 1 representing the two states of the decision variable (analogously to the  or (qi, 
pi) transmittances on the SFG). While the diagrams in Figures 4 and 5 are definitely equivalent, 
the one in Fig. 4 more readily allows a human user to construct symbolic or numerical reliability 
expressions, while the one in Fig. 5 describes an automated code obtaining such symbolic or 
numeric values. In passing, we stress that we deliberately added unnecessary (albeit helpful) 
features to the ROBDDs in Fig. 5, such as using double circles for the recursive nodes, colouring 
the leaf nodes of values 0 and 1 as white and black, respectively, and using split leaf nodes of 
0 and 1 (rather than a single leaf node of value 0 and a single leaf node of value 1). With these 
added features, the analogy between the lumped Fig. 4 and the individual subfigures in Fig. 5 
becomes clearer and more apparent.
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We now demonstrate that the IMDP algorithm is derivable from the AR algorithm. Figure 4 
suggests that the sink node R(4, 7, p7) (the node at k1 = 4  and k2 = 3) can be computed as a super-
position of contributions of the four unity nodes at k1 = 0 and 0 ≤ k2 ≤ 3. Figure 4 indicates clearly 
that the rest of the unity nodes on the line k1 = 0 contribute nothing to the sink node R(4, 7, p7), 
because no path emanating from any of them can reach the node at k1 = 4 and k2 = 3. Again, the 
Signal Flow Graph in Figure 4 is acyclic and has no loops. Consequently, the individual contri-
bution of each source node at k1 = 0 and 0 ≤ k2 ≤ 3 to R(4, 7, p7) is the transmittance from that 
source node to the node at k1 = 4 and k2 = 3. Such a contribution is equal to p7–k2 (0 ≤ k2 ≤ 3) 
multiplied by a certain coefficient that equals the transmittance to the sink node from the node 
below the actual source node, that is, the one at    k1 = 1 (0 ≤ k2 ≤ 3), and hence is represented by 
the subfigures of Figure 6. 

Fig. 4. The Signal Flow Graph representing the AR algorithm for computing

 the k1-out-of-(k1+k2): G system up to r = k1+k2= 7. Components reliabilities

 have a reverse order from 7 down to 1.    
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Fig. 5. The individual ROBDDs used in the computation of R(k, 7, p), 1 ≤ k ≤ 7. For simplicity, 
split leaf nodes of 0 and 1 are used.

Note that nodes in Figure 6 represent E(k1, k1 + k2, pk1 + k2) values rather than R(k1, k1 + k2, 
pk1 + k2) and hence are shown as single circles rather than double ones. This a consequence of 
the fact that each of these figures is used simply to enumerate  path transmittances for paths 
that emanate from a non-source node to another by replacing the node from which the paths 
originate by a source node of value 1. Note also that the subgrahs in Fig. 3 and Fig.e 6 are the 
same, apart from a reordering of components. Figure 6 consequently produces Eq. (23), which 
is a special case of the general IMDP formula (17). Again, it is straightforward to generalize the 
current SFG derivation to general k and n. 
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Fig. 6. A representation of the coefficients of pl (4 ≤ l ≤ 7) in the expression of R(4, 7, p)
 via the AR algorithm. These coefficients are consequently displayed

 as E values, that is, as single-node circles. 

Figure 7 provides a pictorial summary of the relations between the IMDP, BH-2, and AR algo-
rithms. The three algorithms are quite similar, and there is no significant preference of one of them 
over another. Figure 7 stresses the equivalence of the BH-2 and AR algorithms and asserts that the 
IMDP algorithm is a natural outcome of each of them.
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Fig. 7. Interrelations between the IMDP, BH-2, and AR algorithms.

THE IMDP ALGORITHM AS A COLLECTIVE  SHELLABILITY 
ALGORITHM

The k-out-of-n:G system has success indicator variables given by the sum-of-products expres-
sion (Ruhdi, 1993) 

                                                                                          (29)

where K is a subset of {1, 2, …., n} with a cardinality of = k. Equation (29) expresses S as an 
ORing of  prime implicants of S, called minimal paths (tiesets) of the system. Similarly, the failure 
of the k-out-of-n:G system is given by the sum-of-products expression (Rushdi, 1993):

                                                                                            (30)

where C is a subset of {1, 2, …., n} with cardinality  = n  k + 1. Equation (30) expresses  as an 
ORing of   prime implicants of   called minimal cutsets of the system. One has to work 
with either (29) (if k ≥ n _ k + 1) or (30) (if k < n _ k + 1). Locks (1984) noted that disjointing terms 
in either (29) or (30) (to obtain a PRE) is possible without increasing the number of terms, which 
means, in modern language, that S in (29) and , in (30) are both shellable. To achieve this, Locks 
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proposed that minimal products (minimal paths in (29) or minimal cuts in (30)) be arranged in an 
order such that each product differs from its predecessor in exactly one literal. However, he did 
not present a general strategy or an algorithm to achieve such an arrangement, and Rushdi (1993) 
demonstrated  that this arrangement is a sufficient but not a necessary condition. Anyhow, Locks 
(1984) is credited with being the first to seek "shellability", even before this mathematical term 
was adopted for reliability applications. We now demonstrate that the IMDP algorithm is a general 
strategy to achieve shellability for either of the shellable expressions S in (29) or  in (30). We 
consider the success function S(4, 7, X) of a 4-out-of-7:G, which has  = 35 minimal paths of 
4 literals each. These paths are arranged in Table 1 according to the IMDP formula (17) to groups 
of 1, 4, 10, and 20 terms, respectively. The first group has a single arbitrarily chosen product (here 
X1 X2 X3 X4). In the second group, an arbitrarily chosen literal of the 3 so far unused literals (here 
X5) replaces a single literal of the initial product, that is, one at a time. Hence,  = 4 products are 
obtained, which constitute the second group. In the third group, an arbitrarily chosen literal of the 
2 so far remaining literals (here X6) replaces a single literal of the previous five literals in the pre-
decessor products, thereby producing  = 10 products that constitute the third group. The fourth 
and final groups consist of terms in which the so far remaining literal (X7) appears. The number of 
terms in this group is  = 20 terms. The order of terms within each group is arbitrary. Several 
comments on Table 1 are in order:

1.  Table 1 demonstrates clearly that, with the IMDP arrangement, the shellability algorithm (Cra-
ma and Hammer, 2011) works perfectly. 

2.  The disjunction of terms in the last column up to rows 1, 5, 15, and 35 is, respectively, PRE 
expressions for the successes S(4, 4, p4), S(4, 5, p5), S(4, 6, p6), and S(4, 7, p7). Each of these 
successes is in the form suggested by the IMDP formula (17).

3.  The entries in the column for  in the rows i = 2, 6, 16, and 36 are symmetric functions 
representing the failures of the 1-out-of-4:F, 2-out-of-5:F, 3-out-of-6:F, and 4-out-of-7:F systems 
(which are the same as the 4-out-of-4:G, 4-out-of-5:G, 4-out-of-6:G, 4-out-of-7:G systems). Note 
that Table 1 includes an extra step (row 36), in which the shellability algorithm successfully pro-
duces the complementary function  (4, 7, X) which consists of  terms.

4.  The intersection of the shadow S(Ai) with any Al preceding Ai is not ø.

5.  In each row, the entry in the last column  equal to the logical product of the corre-
sponding entries in the  column and the Ci column. However, it is obtained instead 
by augmenting Ci by failures of the elements in the corresponding shadow set.

6.  In each row, the entry for the product  is obtained by multiplying the same entry in the 
preceding row (representing ) by the complement of the entry Ci in the preceding 
row (representing ). The resulting product differs from the preceding one in a few literals 
that are highlighted in bold red. The multiplication needed for  is quite involved, but 
it is much simplified by the rule of "Intelligent Multiplication" (Brown, 1990; Rushdi and Al-
Yahya, 2001; Rushdi and BaRukab, 2014), namely, 
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                                                                                                           (31)

The result of multiplication in each row is minimized simply by deleting any term that sub-
sumes another (Muroga, 1979; Rushdi & Al-Yahya, 2001). For example, in going from row 22 
to row 23, we multiply the entry under   by the complement of X2X3X5X7 which is 

 .The first term in that entry becomes.

 

                                                (32)

where each of the first three terms subsumes the last one and is absorbed in it. Therefore, the 
term  remains intact  after multiplication. Similarly, all other terms remain intact, with 
the sole exception of the term  (corresponding to the complementary set for A22 or the 
shadow set), which becomes 

                                             (33)

Table 1. Demonstration that the IMDP algorithm achieves shellability

 for the shellable expression S(4, 7, X).
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CONCLUSIONS AND FUTURE WORK

This paper reviews and exposes a few old mathematical results as well as introduces and dem-
onstrates many new ones for the evaluation of k-out-of-n:G reliability. Pertinent algorithms such as 
the ROBDD algorithm, the AR algorithm, the BH-2 algorithm, the IMDP algorithm, and the shel-
lability algorithm are all interrelated. Several examples are also given to demonstrate the important 
concept of Signal Flow Graph (SFG) representation for recursive relations and their boundary 
conditions. This representation provides useful insight, and it was previously used for constructing 
iterative versions out of recursive ones (such as the iterative AR algorithm (Rushdi, 1986; 1991)). 
It is utilized herein as an aid in deriving useful new relations and in proving equivalences among 
different algorithms.

Despite the existence of several earlier tutorial reviews on the topic of k-out-of-n system reli-
ability, this paper is believed to fill in a gap in this topic by unifying, updating, and modernizing 
many mathematical concepts pertinent to this topic. Though the paper is basically intended to pro-
vide many novel contributions, it is also useful as an expanded tutorial exposition on the subject. 

The k-out-of-n model adopted herein does not consider time explicitly and hence cannot ad-
dress the more realistic situation of load sharing, in which every component could be operated, 
derated with a lower failure rate. However, this simple model sets the stage for comprehending 
and then constructing any useful Markov chain model (Koutras, 1996), that is, powerful enough to 
cover load sharing. Possible future investigation is to utilize the algorithms presented herein in a 
finite Markov chain imbedding approach (Fu, 1986; Chao & Fu, 1989; 1991; Fu & Koutras, 1994; 
Boutsikas & Koutras, 2000, Cui et al., 2010). This investigation is highly promising since imbed-
ding the k-out-of-n structure in a Markov chain requires certain recurrence relations with initial 
conditions (Koutras, 1996). These relations are essentially those used herein in the BH-2 and AR 
algorithms. In fact, Koutras (1996) points out that his algorithm is “actually the dual counterpart 
of Barlow and Heidtmann (1984) algorithm.”
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لية النظم الوافرة جزئيا: توحيد المفاهيم الريا�ضية والخوارزميات لمعوَّ
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الخـلا�ضة

لية النظم المت�سقة، وهو يتميز بتعدد الحالات الخا�سة  اإن نموذج النظام الوافر جزئيا )نظام ك من بين ن( هو اأبرز نماذج معوَّ

لية  ليات ك من بين ن اأ�سا�سا ي�ستند اإليه في التعبير عن معوَّ الهامة له، ف�سلا عن كثرة تعميماته وتمديداته. وب�سفة خا�سة تمثل معوَّ

لية نظام ك من بين ن  نظام مت�سق نوني الرتبة بدلالة التوقيع )طيف التدمير( لهذا النظام. ثمة خوارزمية مرموقة لح�ساب معوَّ

ت�سمى الطريقة المح�سنة للم�ضروبات المتعامدة ) ط ح �ص ع( )IMDP(. لورقة البحث هذه اأربعة اأهداف، وهي بالتحديد: 

)اأ( تقديم �ضرح تف�سيلي مبتكر لخوارزمية ط ح �ص ع، و )ب( اإي�ساح اإمكانية ا�ستقاق خوارزمية ط ح �ص ع  من خوارزمية 

النجاحات خلال  لتقدير احتمال حدوث ك من  الاأخيرة  ت�ستعمل هذه  BH-1، حيث  تعد تح�سينا لخوارزمية   التي   BH-2
ن من محاولات برنولي، ومن ثم لح�ساب دالة الكتلة الاحتمالية )د ك ح( للتوزيع ذي الحدين المعمم، و )ج( بيان اإمكانية 

ا�ستقاق خوارزمية ط ح �ص ع من خوارزمية AR التي تعد خوارزمية مخطط القرار الثنائي المرتب المختزل )خ ق ث ر خ( 

لية ك من بين ن واأي�سا لح�ساب دالة التوزيع التراكمي )د و ر( للتوزيع ذي الحدين المعمم، و )د(  )ROBDD( لتقدير معوَّ

اإظهار اأن خوارزمية ط ح �ص ع هي خوارزمية لتحقيق التعامد )التنافي( على الاإجمال ل�سيغة متقوقعة لمجموع م�ضروبات تعبر 

عن نجاح ك من بين ن.  تلعب ورقة البحث دورا توحيديا للعديد من المفاهيم والخوارزميات، وتحاول التاأكيد على اأوجه ال�سبه 

والارتباطات والتداخلات بينها، في الوقت الذي ت�سير فيه اإلى اأية فروق دقيقة بينها. اإن العامل الم�سترك في �ضرح الخوارزميات 

المختلفة هو ا�ستعمال ر�سوم ل�ضريان الاإ�سارة ) ر �ص �ص( )SFG( تت�سم بكونها ملمومة ومنتظمة وغير حلقية. ولهذه الر�سوم 

عديمة الحلقات يحتاج قانون الك�سب فقط اإلى تعداد ب�سيط للم�سارات ثم ح�ساب المناقلات لهذه الم�سارات.




