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الخـلا�صـة

اجتذب  فقد   ،)SPM( الإح�سائية  العمليات  مراقبة  التخ�س�سات في  اأفرع  اأهم  من  واحدة  وباعتبارها 

اأجريت معظم البحوث على تحليل الملف  ر�سد الملف متعدد المتغيرات النتباه في ال�سنوات الأخيرة.  وقد 

ال�ستقلال في  افترا�ض  انتهاك  يتم  ذلك،  ومع  ال�ستجابة.  قيم  ا�ستقلالية  افترا�ض  اإطار  المتغيرات في  متعدد 

العديد من التطبيقات الحقيقية، مثل عندما يتم جمع الملاحظات في فترات زمنية ق�سيرة.  في هذه الورقة، 

نركز على مراقبة المرحلة الأولى من الملفات متعددة المتغيرات عندما تكون قيم ال�ستجابة المتتالية داخل كل 

تطبيق  يتم  اأول،   .))ARMA)1,1 الذاتي )نموذج  للانحدار  المتحرك  المتو�سط    وتتبع  تلقائيا  مرتبطة  ملف 

T2 و )Wilks(، للتحقق من 
طريقة التحويل للق�ساء على تاأثير الرتباط الذاتي.  ثم يتم ا�ستخدام نهجين، ))

ا�ستقرار العملية تحت مقادير مختلفة من التحولت ومتغيرات مختلفة من نموذج ))ARMA)1,1(. ويطبق 

مثال عددي ي�ستند اإلى درا�سات المحاكاة لتقييم اأداء مخططات التحكم المطبقة في وجود الرتباط الذاتي داخل 

على  الغالب  في  يتفوق  لمدا   )WILKS( اأن  النتائج  واأظهرت  الإ�سارة.  احتمال  معيار  حيث  من  النطاق 

T2( في جميع الحالت خارج ال�سيطرة.
الر�سم البياني )
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ABSTRACT
As one of the most important subareas of statistical process monitoring (SPM), multivariate 

profile monitoring has attracted attention in recent years. Most researches on multivariate profile 
analysis have been carried out under the independency assumption of response values. However, 
the independency assumption is violated in many real applications, such as when the observations 
are gathered in short time intervals. In this paper, we focus on Phase I monitoring of multivariate 
profiles when the consecutive response values within each profile are autocorrelated and follow 
the autoregressive-moving average (ARMA(1,1)) model. First, a transformation method is applied 
to eliminate the effect of autocorrelation. Then, two approaches, T2 and Wilks’ lambda, are used 
to check the stability of the process under different magnitudes of shifts and different parameters 
of the ARMA(1,1) model. A numerical example based on simulation studies is applied to evaluate 
the performance of the applied control charts in the presence of within-profile autocorrelation in 
terms of signal probability criterion. The results show that Wilks’ lambda outperforms the T2 chart 
in almost all out-of-control situations.

Keywords: Multivariate simple linear profile; Phase I; signal probability; statistical process 
monitoring (SPM); within-profile autocorrelation.

INTRODUCTION
Control charts are one of the most effective tools for reducing process variations by 

distinguishing between common and assignable causes. In many process monitoring applications, 
the quality of the product or process is characterized by univariate or correlated multivariate quality 
characteristics. Shewhart control charts such as  and , as well as memory-based charts such as 
exponentially weighted moving average (EWMA) and cumulative sum (CUSUM) control charts, 
are used to monitor processes with univariate quality characteristics.  However, using univariate 
control charts for each quality characteristic separately in monitoring multivariate process leads 
to misleading results because of ignoring the correlation structure among quality characteristics. 
In such situations, multivariate charts such as T2, multivariate exponentially weighted moving 
average (MEWMA), and multivariate cumulative sum (MCUSUM) are used to take into account 
the correlation structure. For more information about classic multivariate monitoring schemes, 
refer to Hotelling (1947), Murphy (1987), Tracy et al. (1992), Vasilopoulos & Stamboulis (1978), 
and Mason & Young (2002) for example.

In some industrial processes, the quality of the products is characterized by a relationship 
between a response variable and one or more explanatory variables, called a profile. The most 



M. Taghipour, A. Amiri, A. Saghaei197

common profiles in the case of single-response variables based on the type of relationship between 
response and explanatory variable(s) are simple linear profiles, polynomial profiles, multiple 
profiles, and generalized linear model- (GLM-) based profiles. Profiles like these, with a single-
response variable, are referred to as “univariate profiles”. Many researchers have developed 
approaches to monitor various univariate profiles in Phases I and II. The purpose of Phase I 
profile monitoring is to estimate the in-control values of the regression parameters from historical 
process data. In Phase II profile monitoring, quality engineers focus on detecting changes in profile 
parameters based on the results of Phase I analysis. Most efforts in the profile monitoring area 
have been devoted to Phase I. Phase I monitoring of profiles has been addressed by many authors; 
see Mahmoud & Woodall (2004) and Farahani et al. (2014) for example. For more examples of 
monitoring profiles in Phase II, see Saghaei et al. (2009), Zhang et al. (2009), Zou et al. (2012), 
Amiri et al. (2013), and Noorossana et al. (2015). See the review paper provided by Woodall 
(2007) for detailed information on profile monitoring approaches. 

In some situations, several correlated response variables should be modeled as a set of linear 
functions of the explanatory variable(s). Such profiles are referred to as “multivariate profiles”. 
Most researches in the area of profile monitoring have been devoted to univariate profiles. However, 
in recent years, several studies of monitoring multivariate profiles have been carried out; see, for 
example, Noorossana et al. (2010a), Noorossana et al. (2010b), and Eyvazian et al. (2011).

In all of the studies to date on univariate and multivariate cases, the response values are 
assumed to be independently and identically distributed normal random variables. However, in 
some situations, the independency assumption of response values is violated. In the first research 
in this area, Soleimani et al. (2009) studied Phase II monitoring of simple linear regression in the 
case of within-profile autocorrelation. Monitoring autocorrelated profiles in the univariate case was 
also investigated by Noorossana et al. (2008), Jensen & Birch (2009), Noorossana et al. (2010c), 
Amiri et al. (2010), Abdel-Salam et al. (2013), Keramatpour et al. (2013),  Narvand et al. (2013), 
Soleimani et al. (2013a), Keramatpour et al. (2014), Soleimani & Hadizadeh (2014), Zhang et al. 
(2014), and Khedmati & Niaki (2015). 

Most studies of monitoring autocorrelated profiles have considered a single-response 
variable. To the best of our knowledge, there are only two studies of monitoring multivariate 
autocorrelated profiles. Soleimani et al. (2013b) monitored multivariate simple linear profiles 
in Phase II in the case of within-profile autocorrelation. They proposed a remedial approach 
based on a transformation method to eliminate the autocorrelation structure within multivariate 
profiles. They also presented a case study to show the application of their proposed model in real 
practice. Soleimani & Noorossana (2014) studied Phase II monitoring of multivariate simple linear 
profiles in the presence of between-profile autocorrelation. They proposed three time-series-based 
methods to eliminate the effect of autocorrelation. Both studies aimed at monitoring multivariate 
autocorrelated profiles in Phase II. 

To motivate our study, we refer to a real example in the body shop of an automotive industrial 
corporation. In this example, which is provided by Noorossana et al. (2010a), the relationship 
between four correlated response variables and one explanatory variable is expressed by a linear 
function. The explanatory variable is the nominal force of the press machine, which is exerted 
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by cylinders on metal plates. The response variables are the values of the real forces collected 
from the four cylinders of the press, which are measured by a programmable logic controller. The 
response values within each profile are assumed to be independent from each other. However, 
sometimes the successive observations within each profile are collected at short time intervals. 
In such situations, the independency assumption of the response values within each profile is 
violated. Hence, it is important to take into account the within-profile autocorrelation structure to 
monitor autocorrelated multivariate profiles in Phase I, a topic which is neglected in the area of 
profile monitoring. 

Hence, in this paper, we take into account within-profile autocorrelation to monitor multivariate 
linear profiles in Phase I. For this purpose, first, a transformation method is presented to eliminate 
the within-profile autocorrelation. Then, two control charts, Hotelling’s T2 and Wilks’ lambda/M,  
are proposed for Phase I monitoring of multivariate simple linear profiles where the response 
values within each profile are autocorrelated and follow the autoregressive-moving average 
(ARMA(1,1)) model.

The rest of this paper is organized as follows. In Section 2, the multivariate simple linear profile 
model when the observations within each profile are autocorrelated is discussed. In Section 3, two 
monitoring approaches based on transformation of autocorrelated response values are extended. 
In Section 4, the performance of the extended approaches is evaluated and compared through a 
numerical example. In Section 5, conclusions and recommendations for future study are discussed. 

SIMPLE LINEAR PROFILE IN THE PRESENCE OF
WITHIN-PROFILE AUTOCORRELATION

Assume that the p-dimensional observations of the kth  profile are collected as 
follows: 

)1(

where   is the jth response variable at ith treatment of the kth 
profile. For the ith treatment of the kth profile, the following model is used to relate the multivariate 
response variables with the explanatory variable when the process is statistically in control:  

)2(

where  is the value of the explanatory variable at the ith observation,   is a  vector of the 
response variables,   and   are   vectors of the intercept and slope parameters, and   is a   

 vector of the error terms with the following distribution:

)3(
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The matrix form of Equation (2) is given as

)4(

In Equation (4),  is a  matrix of the regression model, and   
is an  matrix of error terms in the kth profile. In the case of independency, the rows of  are 
independent from each other, while the elements of each row are correlated. One of the most basic 
assumptions of the least squares method is the independency assumption for error terms. Hence, 
using the least squares method to estimate the regression parameters in the presence of within-
profile autocorrelation leads to misleading results. Here, we suppose that the error terms in the 
successive multivariate simple profiles are autocorrelated. Therefore, the multivariate simple linear 
profile model in the presence of within-profile autocorrelation according to an autoregressive-
moving average or ARMA(1,1) process is given as follows:

)5(

It can be proven that this structure leads to a similar autocorrelation structure (ARMA(1,1)) 
within observations of each profile as follows (Soleimani et al., 2013b):

)6(

where   is a   vector of the independent error terms that follows  , and 
  and  are both  diagonal matrices. For the sake of simplicity, the diagonal elements for 

both  and   are considered equal. Hence,

)7(

Here, without loss of generality, we suppose that the independency assumption of within-
profile observations is violated, according to the following equation:

  

          

   

)8(

where

)9(
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Note that i and i' in Equation (8) are two adjacent treatments. For more elaboration, the 
explained autocorrelation structure of a bivariate profile with n=4  treatments is written as follows:

)10(

It is pointed out in the literature on statistical process monitoring that autocorrelation affects 
the performance of different control charts. Therefore, the transformation presented by Golnabi & 
Houshmand (1999) is extended and utilized to remove the within-profile autocorrelation structure. 
For the kth profile, this transformation is given as follows: 

)11(

where E(Y) =XB and  is the covariance matrix of each profile that can be obtained for an 
ARMA(1,1) process as follows:

)12(

After using the transformation in Equation (11), the following model is obtained when the 
process is statistically in control:

)13(

MONITORING APPROACHES
In this section, two methods, Hotelling’s T2 and Wilks’ lambda/M, are extended to monitor 

multivariate simple linear profiles in the presence of within-profile autocorrelation in Phase I.

3.1. Hotelling’s T2 method
To construct the T2 statistic, first, the estimation of matrix   using 

the least squares method is obtained based on the transformed response values as follows:

)14(
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The elements of  can also be estimated as

)15(

where  

Then, for the kth  profile, the extended T2 statistic to monitor the autocorrelated 
multivariate simple linear profile in Phase I is obtained as follows:

)16(

where the mean estimate of the regression parameters is obtained as

)17(

)18(

Finally, the estimate of a covariance matrix for the regression parameters is derived as

 )19(

3.2. Wilks’ lambda/M method
Noorossana et al. (2010) used the Wilks’ lambda/M method to monitor multivariate simple 

linear profiles. Here, we extend this approach and utilize it to monitor multivariate simple linear 
profiles in the case of within-profile autocorrelation. Suppose that there are a total of m profiles, 
each of size n. To extend the Wilks’ lambda statistic, first, we merge all m samples and construct a 
single sample of size mn . Then the m-1  indicator variables are defined as follows:

)20(

The mth  profile is considered as the reference sample, and then for the ith;  observation 
of the pooled profiles, we have

)21(

where  . Then to check the stability of the process, the following hypothesis is considered:

)22(
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The reduced regression model under the null hypothesis is given as follows:

)23(

The extended Wilks’ lambda statistic is obtained as

)24(

where  is an  matrix of transformed response values for the merged samples,  is an 
  matrix of the independent variables for the full model, and  is an   matrix of the 

independent variables for the reduced model. Note that   is a  matrix of the estimated 
regression parameters for the full model, while  is a  matrix of the estimated regression 
parameters for the reduced model. The extended Wilks’ lambda chart triggers an out-of-control 
signal when  where  is set such that the desired probability value for a Type I error 
is obtained.

To monitor the covariance matrix, first, the unbiased estimator of the covariance matrix for the 
kth sample is computed as follows:

)25(

where  is an  matrix of transformed response values in the kth profile,  is an   
matrix of the explanatory variables, and  is the estimate of  at the kth profile. To obtain the 
statistic for checking the stability of the covariance matrix, the value of M is computed as follows:

)26(

where

S )27(

The values of the M statistic are obtained in the range of  . The chart triggers an out-of-
control signal when , in which  is the threshold of the control chart that is set such that 
a desired probability of Type I error is obtained. Finally, the M  statistic is used in conjunction with 
the Wilks’ lambda statistic. The procedure triggers a signal when at least one of these statistics 
shows an out-of-control situation.
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PERFORMANCE EVALUATION
In this section, the performance of the proposed methods to monitor multivariate simple linear 

profiles in the case of within-profile autocorrelation in Phase I is investigated and compared 
through a numerical example. Consider a bivariate simple linear profile as   and 

  where  and  . To compare the performance of the proposed methods 
in Phase I, the overall probability of Type I errors for each is set approximately equal to 0.05. Note 
that, in Wilks’ lambda/M (WL/M) method, to obtain an overall probability of Type I error equal to 
0.05, the value of  for each statistic is considered equal to 0.025. Then, the power of these charts 
to detect different out-of-control scenarios is compared through 10,000 simulation runs in terms 
of signal probability criterion. The design matrix of the explanatory variables is considered as 

 . It is also assumed that   The following tables show the values of 

signal probability considering different step shifts taking place after sample  for  
under different scenarios of autocorrelation parameters, that is,  Table 1 shows the signal 
probability values of both methods under different step shifts from   to   under 
different values of parameter  Based on the results in Table 1, as the magnitude of step change 
in  increases, the power of the both methods to detect out-of-control situations increases. The 
results of Table 1 also confirm that the extended Wilks’ lambda/M method outperforms the T2 
chart for all step changes occurring in  under all values of parameter  The values of signal 
probability for both methods under different step shifts from   to   are summarized 
in Table 2, which shows results similar to those of Table 1. In other words, as expected, increases 
in the value of parameter  lead to increases in the value of signal probability for both methods 
under different values of  We can also observe that the capability of the extended Wilks’ 
lambda/M method to detect shifts in parameter  is better than that of the T2 chart for all values 
of parameter  Table 3 contains the values for signal probability when  changes to  The 
results of Table 3 show that when  , the performance of the extended T2 chart is better than 
that of the Wilks’ lambda/M method under small shifts. However, for medium to large shifts, the 
Wilks’ lambda/M method outperforms the T2 method. Moreover, when  and  , the 
signal probability values obtained by the Wilks’ lambda/M method are larger than those from the 
T2 chart under almost all step changes. 
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Table 1. Probability of an out-of-control signal under the sustained shifts from  to .
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Table 2. Probability of an out-of-control signal under the sustained shifts from  to .
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Table 3. Probability of an out-of-control signal under the sustained shifts from  to .

CONCLUSIONS AND FUTURE RESEARCH
In this paper, Phase I monitoring of multivariate simple linear profiles in the case of within-

profile autocorrelation was studied. First, a transformation method was utilized to eliminate the 
autocorrelation structure of consecutive response values within each profile. Then, two methods, 
Hotelling’s T2 and Wilks’ lambda/M, were proposed based on the transformation applied to response 
values. A simulation study in terms of signal probability criterion was applied to evaluate and 
compare the power of the two methods to detect different step shifts in the regression parameters. 
The results of the simulation showed that the performance of both methods is satisfactory for Phase 
I monitoring of multivariate simple linear profiles when the response values within each profile 
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follow autoregressive-moving average (ARMA(1,1)) model. The results of the simulation also 
indicate that the Wilks’ lambda/M method outperforms the T2 method under most step changes. 
For future research, we recommend taking into account other autocorrelation structures such as 
AR(1) and MA(1) to monitor multivariate simple linear profiles. 
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