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ABSTRACT

As one of the most important subareas of statistical process monitoring (SPM), multivariate
profile monitoring has attracted attention in recent years. Most researches on multivariate profile
analysis have been carried out under the independency assumption of response values. However,
the independency assumption is violated in many real applications, such as when the observations
are gathered in short time intervals. In this paper, we focus on Phase I monitoring of multivariate
profiles when the consecutive response values within each profile are autocorrelated and follow
the autoregressive-moving average (ARMA(1,1)) model. First, a transformation method is applied
to eliminate the effect of autocorrelation. Then, two approaches, T?> and Wilks’ lambda, are used
to check the stability of the process under different magnitudes of shifts and different parameters
of the ARMA(1,1) model. A numerical example based on simulation studies is applied to evaluate
the performance of the applied control charts in the presence of within-profile autocorrelation in
terms of signal probability criterion. The results show that Wilks’ lambda outperforms the T2 chart
in almost all out-of-control situations.

Keywords: Multivariate simple linear profile; Phase I; signal probability; statistical process
monitoring (SPM); within-profile autocorrelation.

INTRODUCTION

Control charts are one of the most effective tools for reducing process variations by
distinguishing between common and assignable causes. In many process monitoring applications,
the quality of the product or process is characterized by univariate or correlated multivariate quality
characteristics. Shewhart control charts such as and , as well as memory-based charts such as
exponentially weighted moving average (EWMA) and cumulative sum (CUSUM) control charts,
are used to monitor processes with univariate quality characteristics. However, using univariate
control charts for each quality characteristic separately in monitoring multivariate process leads
to misleading results because of ignoring the correlation structure among quality characteristics.
In such situations, multivariate charts such as T?, multivariate exponentially weighted moving
average (MEWMA), and multivariate cumulative sum (MCUSUM) are used to take into account
the correlation structure. For more information about classic multivariate monitoring schemes,
refer to Hotelling (1947), Murphy (1987), Tracy et al. (1992), Vasilopoulos & Stamboulis (1978),
and Mason & Young (2002) for example.

In some industrial processes, the quality of the products is characterized by a relationship
between a response variable and one or more explanatory variables, called a profile. The most
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common profiles in the case of single-response variables based on the type of relationship between
response and explanatory variable(s) are simple linear profiles, polynomial profiles, multiple
profiles, and generalized linear model- (GLM-) based profiles. Profiles like these, with a single-

3

response variable, are referred to as “univariate profiles”. Many researchers have developed
approaches to monitor various univariate profiles in Phases I and II. The purpose of Phase I
profile monitoring is to estimate the in-control values of the regression parameters from historical
process data. In Phase II profile monitoring, quality engineers focus on detecting changes in profile
parameters based on the results of Phase I analysis. Most efforts in the profile monitoring area
have been devoted to Phase I. Phase I monitoring of profiles has been addressed by many authors;
see Mahmoud & Woodall (2004) and Farahani et al. (2014) for example. For more examples of
monitoring profiles in Phase II, see Saghaei et al. (2009), Zhang et al. (2009), Zou et al. (2012),
Amiri et al. (2013), and Noorossana et al. (2015). See the review paper provided by Woodall

(2007) for detailed information on profile monitoring approaches.

In some situations, several correlated response variables should be modeled as a set of linear
functions of the explanatory variable(s). Such profiles are referred to as “multivariate profiles”.
Most researches in the area of profile monitoring have been devoted to univariate profiles. However,
in recent years, several studies of monitoring multivariate profiles have been carried out; see, for
example, Noorossana et al. (2010a), Noorossana et al. (2010b), and Eyvazian et al. (2011).

In all of the studies to date on univariate and multivariate cases, the response values are
assumed to be independently and identically distributed normal random variables. However, in
some situations, the independency assumption of response values is violated. In the first research
in this area, Soleimani et al. (2009) studied Phase II monitoring of simple linear regression in the
case of within-profile autocorrelation. Monitoring autocorrelated profiles in the univariate case was
also investigated by Noorossana et al. (2008), Jensen & Birch (2009), Noorossana et al. (2010c¢),
Amiri et al. (2010), Abdel-Salam et al. (2013), Keramatpour et al. (2013), Narvand et al. (2013),
Soleimani et al. (2013a), Keramatpour et al. (2014), Soleimani & Hadizadeh (2014), Zhang et al.
(2014), and Khedmati & Niaki (2015).

Most studies of monitoring autocorrelated profiles have considered a single-response
variable. To the best of our knowledge, there are only two studies of monitoring multivariate
autocorrelated profiles. Soleimani et al. (2013b) monitored multivariate simple linear profiles
in Phase II in the case of within-profile autocorrelation. They proposed a remedial approach
based on a transformation method to eliminate the autocorrelation structure within multivariate
profiles. They also presented a case study to show the application of their proposed model in real
practice. Soleimani & Noorossana (2014) studied Phase II monitoring of multivariate simple linear
profiles in the presence of between-profile autocorrelation. They proposed three time-series-based
methods to eliminate the effect of autocorrelation. Both studies aimed at monitoring multivariate
autocorrelated profiles in Phase II.

To motivate our study, we refer to a real example in the body shop of an automotive industrial
corporation. In this example, which is provided by Noorossana et al. (2010a), the relationship
between four correlated response variables and one explanatory variable is expressed by a linear
function. The explanatory variable is the nominal force of the press machine, which is exerted
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by cylinders on metal plates. The response variables are the values of the real forces collected
from the four cylinders of the press, which are measured by a programmable logic controller. The
response values within each profile are assumed to be independent from each other. However,
sometimes the successive observations within each profile are collected at short time intervals.
In such situations, the independency assumption of the response values within each profile is
violated. Hence, it is important to take into account the within-profile autocorrelation structure to
monitor autocorrelated multivariate profiles in Phase I, a topic which is neglected in the area of
profile monitoring.

Hence, in this paper, we take into account within-profile autocorrelation to monitor multivariate
linear profiles in Phase I. For this purpose, first, a transformation method is presented to eliminate
the within-profile autocorrelation. Then, two control charts, Hotelling’s T? and Wilks’ lambda/M,
are proposed for Phase I monitoring of multivariate simple linear profiles where the response
values within each profile are autocorrelated and follow the autoregressive-moving average
(ARMA(1,1)) model.

The rest of this paper is organized as follows. In Section 2, the multivariate simple linear profile
model when the observations within each profile are autocorrelated is discussed. In Section 3, two
monitoring approaches based on transformation of autocorrelated response values are extended.
In Section 4, the performance of the extended approaches is evaluated and compared through a
numerical example. In Section 5, conclusions and recommendations for future study are discussed.

SIMPLE LINEAR PROFILE IN THE PRESENCE OF
WITHIN-PROFILE AUTOCORRELATION

Assume that the p-dimensional observations of the kth k =1,...,m profile are collected as

follows:
X Ve Ve o Vi
Xo Yok Vo o Vo
RGO NG| ()
xn ynlk yn2k ynpk

where Vysi=L..,n, j=1..,p, k=1,..,m is the jth response variable at ith treatment of the kth
profile. For the ith treatment of the kth profile, the following model is used to relate the multivariate
response variables with the explanatory variable when the process is statistically in control:

Va =B +xB, +&,51=12,...,n, @)

where X, is the value of the explanatory variable at the ith observation, ¥;, is aIx p vector of the

response variables, |30 and P, are 1x p vectors of the intercept and slope parameters, and €, is a
1x p vector of the error terms with the following distribution:

€, ~MVN(0,X) 3)
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The matrix form of Equation (2) is given as
Y, =XB+E,;k=12,..,m 4)

In Equation (4), B=(B,.B,)" is a 2x p matrix of the regression model, and E, = (£,,, &5 €0.)"
is an n x p matrix of error terms in the kth profile. In the case of independency, the rows of E, are
independent from each other, while the elements of each row are correlated. One of the most basic
assumptions of the least squares method is the independency assumption for error terms. Hence,
using the least squares method to estimate the regression parameters in the presence of within-
profile autocorrelation leads to misleading results. Here, we suppose that the error terms in the
successive multivariate simple profiles are autocorrelated. Therefore, the multivariate simple linear
profile model in the presence of within-profile autocorrelation according to an autoregressive-
moving average or ARMA(1,1) process is given as follows:

Vi =B +xB, +&,:i=1L2,...,nk=12,.. 5)
ik =& Pty — ui-l,k9

It can be proven that this structure leads to a similar autocorrelation structure (ARMA(1,1))
within observations of each profile as follows (Soleimani et al., 2013b):

Vi = (By +x,B,) = [y(i-l)k -(Bo +x_BDlo +uy, - u(i-l)k99 (6)

where W, isalx p vector of the independent error terms that follows u, ~ MVN(0,X,,), and
¢ and 0 are both (p X p) diagonal matrices. For the sake of simplicity, the diagonal elements for
both @ and @ are considered equal. Hence,

¢ 0 0 6 0 0
0 - 0 0 &
0= . ¢ L o=
: C o
0 0 - ¢ 0o 0 --- @

Here, without loss of generality, we suppose that the independency assumption of within-
profile observations is violated, according to the following equation:

COV(yn ’yi'l) Cov(yil’yi'Z) T Cov(ymyi'p) Y 0 - 0

Cov(in > Vi ) Cov(in s Vi ) T Cov(yiz ) yi’p) . 0 v, - 0

Cov(yl.p Vi) Cov(yip y Vi) e Cov(yip, yz.,p) 0o 0 .. v, (8)
where
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Note that i and i’ in Equation (8) are two adjacent treatments. For more elaboration, the
explained autocorrelation structure of a bivariate profile with n=4 treatments is written as follows:

Sie G - - Uy Uy - -
Sk Eonn e S ¢ 0 Uy Uy Uy Uy 6 0
= X + - X (10)
Ee € Ee 0 ¢ Ugy Uz Uy Uy 0 0
Eae Eank & ik Uy Uy Uy Uz

It is pointed out in the literature on statistical process monitoring that autocorrelation affects
the performance of different control charts. Therefore, the transformation presented by Golnabi &
Houshmand (1999) is extended and utilized to remove the within-profile autocorrelation structure.
For the kth profile, this transformation is given as follows:

Y, =12 (Y-E(Y) (v

where E(Y) =XB and 7y is the covariance matrix of each profile that can be obtained for an
ARMAC(1,1) process as follows:

P (@-0)1-90)

(1+6°-200) . (9-0)1-90) , ¢P-0)1-¢0) .
I-¢) " =¢) " -¢)
(@-0)1-90) ,  (1+6°-200) , (p-0)1-¢0) ,
Y e N
pO-0N1-¢0) , (@-0)1-90) , (+6"-290) ,
I-¢) ' =) =)

P @-0)1-90) . ¢p-0)1-40) . ($-0)i-¢0) .
I-¢) " a=g) " =g)

(1-¢%) !
¢¢-0)1-¢0) -
(1-¢%) !
(¢-0)1-¢0) -
(1-¢%) ’
(1+92-2¢9)U2
(i-¢) "

12)

After using the transformation in Equation (11), the following model is obtained when the

process is statistically in control:

! o
Y =0 +x0,+8,;i=12,..,nk=12,..

MONITORING APPROACHES

(13)

In this section, two methods, Hotelling’s T?> and Wilks’ lambda/M, are extended to monitor

multivariate simple linear profiles in the presence of within-profile autocorrelation in Phase I.

the least squares method is obtained based on the transformed response values as follows:

3.1. Hotelling’s T*> method

To construct the T? statistic, first, the estimation of matrix a = (a,,a,)" (a 1x2p matrix) using

a, =(a,,a,) =X'X)"'X"Y,,

(14)
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The elements of ﬁk can also be estimated as

a, =(a,,0, ) = (XTX)_IXTY,:, (15)
I n _ n - 1 & . R S e
where X=—}x, S, =2(xi_'x)29 va’(j) =2(xi_f)yl;'k9 Yir =_Eyijk and i =§—(/)‘
n 4= = : = n 4= l r

Then, for the kth k =1,2,....m profile, the extended T? statistic to monitor the autocorrelated
multivariate simple linear profile in Phase I is obtained as follows:

2 A ANTQl A A
T’ =(a, -a)'S;(a, -a), (16)
where the mean estimate of the regression parameters is obtained as
= l &, 17
a'=—HNa,. an
m =

A

To compute matrix S, first, matrix V= [01 VeV ]Tis constructed, in which
A AT AT
v, =a, -0 ;k=12,..m-1. (18)
Finally, the estimate of a covariance matrix for the regression parameters is derived as
VixV (19)
Y 2x(m-1)

3.2. Wilks’ lambda/M method

Noorossana et al. (2010) used the Wilks’ lambda/M method to monitor multivariate simple
linear profiles. Here, we extend this approach and utilize it to monitor multivariate simple linear
profiles in the case of within-profile autocorrelation. Suppose that there are a total of m profiles,
each of size n. To extend the Wilks’ lambda statistic, first, we merge all m samples and construct a
single sample of size mn . Then the m-1 indicator variables are defined as follows:

1 if ith observation belongs to jth sample )
= ) ii=1..,mn;j=1,..,m-1. (20)
710 Otherwise

The mth profile is considered as the reference sample, and then for the ith; i = 1,...,mn observation
of the pooled profiles, we have

!
Yi=0,+ al)(i + ‘lmZu + “0222,' oot aOm'Zm'i + unqui + alZZZi)(i oot alm’Zm'i)(i +&, (21)

1

wherem' = m —1.Then to check the stability of the process, the following hypothesis is considered:

Hy:0,=..=0y,=0a, =0,=0,=...=0a, =0 2
H, :otherwise
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The reduced regression model under the null hypothesis is given as follows:
Vi =0, +0,x +£;0i=1,...,mn. (23)
The extended Wilks’ lambda statistic is obtained as
_ Y'Y -aX7Y|
Y'Y -a XY

(24)

where Y' is an mnx p matrix of transformed response values for the merged samples, X, is an
mnx2m matrix of the independent variables for the full model, and X, is an mnx2 matrix of the
independent variables for the reduced model. Note that @ . is a 2mx p matrix of the estimated
regression parameters for the full model, while @, is a 2x p matrix of the estimated regression
parameters for the reduced model. The extended Wilks’ lambda chart triggers an out-of-control
signal when A > UCL, where UCL is set such that the desired probability value for a Type I error
is obtained.

To monitor the covariance matrix, first, the unbiased estimator of the covariance matrix for the
kth sample is computed as follows:

Y/TYI _ ATXTYI
kT “2" Ef=1,.m (25)
n_

where Y, is an 71X p matrix of transformed response values in the kth profile, X is an nx2

S, =

matrix of the explanatory variables, and @, is the estimate of a at the kth profile. To obtain the
statistic for checking the stability of the covariance matrix, the value of M is computed as follows:

n— - n— (n-2)/2
_ S, |( 2)/2| S, |( 2)/2 IS, |( 2)/2 _ (‘ S, xS, [x..x|S, \) 26)

| Spl |m(n—2)/2 | Spl |m(n—2)/2

M

where

N (n-2s, IS,

;mj(n—z) m

The values of the M statistic are obtained in the range of [0,1] . The chart triggers an out-of-
control signal when M < CV, in which CV is the threshold of the control chart that is set such that
a desired probability of Type I error is obtained. Finally, the M statistic is used in conjunction with

S

the Wilks’ lambda statistic. The procedure triggers a signal when at least one of these statistics
shows an out-of-control situation.
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PERFORMANCE EVALUATION

In this section, the performance of the proposed methods to monitor multivariate simple linear
profiles in the case of within-profile autocorrelation in Phase I is investigated and compared
through a numerical example. Consider a bivariate simple linear profile as ), = 3+42x+ &, and
V= 2+x+ &,, where n = 4andm = 20 . To compare the performance of the proposed methods
in Phase I, the overall probability of Type I errors for each is set approximately equal to 0.05. Note
that, in Wilks’ lambda/M (WL/M) method, to obtain an overall probability of Type I error equal to
0.05, the value of & for each statistic is considered equal to 0.025. Then, the power of these charts
to detect different out-of-control scenarios is compared through 10,000 simulation runs in terms
of signal probability criterion. The design matrix of the explanatory variables is considered as
X =[2,4,6,8]".. It is also assumed that 3, - (015 Ois ) The following tables show the values of

signal probability considering different step shifts taking place after sample 7 for T =10,13,16
under different scenarios of autocorrelation parameters, that is, (¢, 0) - Table 1 shows the signal
probability values of both methods under different step shifts from S, to f3,, + 4,0, under
different values of parameter A, - Based on the results in Table 1, as the magnitude of step change
in f3,, increases, the power of the both methods to detect out-of-control situations increases. The
results of Table 1 also confirm that the extended Wilks’ lambda/M method outperforms the T?
chart for all step changes occurring in Poi under all values of parameter 7 . The values of signal
probability for both methods under different step shifts from £, to B, + 6,0, are summarized
in Table 2, which shows results similar to those of Table 1. In other words, as expected, increases
in the value of parameter &, lead to increases in the value of signal probability for both methods
under different values of (g, ). We can also observe that the capability of the extended Wilks’
lambda/M method to detect shifts in parameter A1 is better than that of the T2 chart for all values
of parameter 7 . Table 3 contains the values for signal probability when O changes to }/; O . The
results of Table 3 show that when 7 =10, , the performance of the extended T? chart is better than
that of the Wilks’ lambda/M method under small shifts. However, for medium to large shifts, the
Wilks’ lambda/M method outperforms the T?> method. Moreover, when 7 =13 and 7 =16 , the
signal probability values obtained by the Wilks’ lambda/M method are larger than those from the
T2 chart under almost all step changes.
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Table 1. Probability of an out-of-control signal under the sustained shifts from Boito Bor + A0,

A
0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
7=10
T2 0.059 0.086 0.127 0.178 0.256 0329 0394 0473 0539 0.585
@=0,0=0
WL/M 0.061 0.094 0.131 0.186 0.298 0.351 0423 0.511 0.578 0.623
T2 0.049 0.061 0.069 0.082 0.102 0.122 0.146 0.183 0.216 0.253
@=0.9,0=0.1
WL/M 0.051 0.066 0.076 0.093 0.109 0.132 0.155 0.198 0.220 0.280
T? 0.095 0.209 0377 0530 0.634 0.714 0.762 0.802 0.824 0.858
@=0.1,0=0.9
WL/M 0.108 0.254 0398 0.587 0.687 0.754 0.821 0.882 0911 0.962
7=13
T? 0.061 0.081 0.119 0.180 0.256 0.348 0.434 0.522 0.594 0.661
@=0,0=0
WL/M 0.061 0.092 0.126 0.201 0.289 0.392 0472 0.572 0.622 0.710
T2 0.052 0.060 0.070 0.084 0.102 0.126 0.162 0.189 0.223 0.259
@=0.9,0=0.1
WL/M 0.055 0.070  0.082 0.099 0.120 0.137 0.182 0.210 0.243 0.286
T? 0.094 0.223 0420 0597 0.733 0.813 0876 0916 0.930 0.955
@=0.1,0=0.9
WL/M 0.111 0.276 0490 0.623 0.789 0.841 0.890 0.923 0.955 0.976
7=16
T? 0.058 0.083 0.116 0.180 0.258 0.362 0.473 0.567 0.663 0.750
@=0,0=0
WL/M 0.062 0.090 0.132 0.200 0.280 0.392 0.492 0.589 0.671 0.762
T 0.049 0.057 0.068 0.080 0.094 0.115 0.144 0.180 0.215 0.255
@=0.9,0=0.1
WL/M 0.051 0.063 0.076 0.095 0.101 0.130 0.154 0.198 0.225 0.267
T? 0.077 0.212 0445 0.672 0.817 0909 0960 0.981 0.992 0.996
@=0.1,0=0.9

WL/M 0.088 0234 0470 0.683 0.880 0.920 0.985 1 1 1
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Table 2. Probability of an out-of-control signal under the sustained shifts from g, to S, + 6,0,

0.025 0.05 0.075 0.1 0.125 0.15 0.175 0.2 0.225 0.25
7=10
T? 0.055 0.064 0.085 0.113 0.148 0.189 0.235 0.292 0.335 0.386
@=0,6=0
WL/M 0.063 0.075 0.093 0.123 0.158 0.192 0.255 0.302 0.351 0.410
T2 0.060 0.057 0.063 0.065 0.076 0.081 0.095 0.102 0.112 0.131
@=0.9,0=0.1
WL/M 0.066 0.065 0.071 0.077 0.089 0.091 0.105 0302 0.341 0.395
T2 0.067 0.109 0.179 0.264 0365 0456 0.539 0.604 0.654 0.710
@=0.1,6=09
WL/ M 0.080 0.129 0.193 0.301 0398 0471 0.587 0.623 0.671 0.725
7=13
T2 0.060 0.065 0.087 0.110 0.145 0.195 0.249 0.307 0363 0.423
9=0,0=0
WL/M 0.060 0.071 0.088 0.120 0.155 0.200 0.267 0310 0.377 0.439
T2 0.050 0.063 0.063 0.065 0.076 0.081 0.095 0.102 0.112 0.131
@=0.9,0=0.1
WL/M 0.052 0.065 0.070 0.075 0.080 0.085 0.098 0.110 0.118 0.140
T2 0.061 0.109 0.179 0.281 0387 0.504 0.601 0.691 0.752 0.806
@=0.1,6=09
WL/M 0.060 0.112 0.182 0.300 0.400 0.521 0.650 0.710 0.776  0.820
7=16
T? 0.051 0.064 0.074 0.103 0.135 0.176  0.243 0.309 0377 0.451
@=0,6=0
WL/M 0.050 0.080 0.122 0.140 0.193 0.287 0.325 0.395 0412 0.476
T2 0.052 0.054 0.056 0.059 0.066 0.078 0.085 0.095 0.105 0.120
@=09,0=0.1
WL/M 0.057 0.057 0.060 0.066 0.091 0.109 0.115 0.121 0.127 0.138
T2 0.060 0.102 0.167 0.267 0410 0.559 0.678 0.776  0.842 0.895
@=0.1,6=09
WL/M 0.070 0.127 0.183 0.296 0.571 0.703 0.792 0.811 0.846 0.908
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Table 3. Probability of an out-of-control signal under the sustained shifts from o, to y,0,.

Il

1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3
=10
0.6-0 T 0.055 0.063 0.069 0.084 0.091 0.100 0.116 0.121 0.127 0.133
reneE WL/M 0.050 0.061 0.065 0.092 0.108 0.118 0.144 0.156 0.165 0.171
. T 0.057 0.062 0.071 0.083 0.098 0.100 0.108 0.118 0.128 0.143
#=090=0 WL/M 0.050 0.057 0.062 0.090 0.113 0.122 0.140 0.150 0.169 0.184
010209 T 0.052 0.062 0.072 0.077 0.094 0.099 0.112 0.116 0.130 0.136
pemLoEn WL/M 0.051 0.060 0.064 0.081 0.110 0.120 0.145 0.151 0.170 0.180
7=13
0.0 T2 0.063 0.068 0.092 0.101 0.130 0.147 0.163 0.190 0.201 0.231
pnrE WL/M 0.063 0.070  0.102 0.108 0.137 0.156 0.173 0.200 0.209 0.286
0.9.9-0.1 T 0.056 0.067 0.085 0.105 0.133 0.135 0.160 0.186 0.207 0.221
g WL/M 0.055 0.066 0.088 0.111 0.142 0.151 0.178 0.209 0.223  0.254
o1 09 T 0.056 0.067 0.082 0.103 0.123 0.134 0.164 0.189 0.209 0.227
=0L0=0 WL/M 0.056 0.068 0.090 0.120 0.133 0.148 0.174 0.192 0.217 0.239
7=16
T 0.067 0.074  0.099 0.124 0.155 0.198 0.228 0.270 0.309 0.333
7=0.0=0 WL/M 0.066 0.071  0.105 0.125 0.164 0.210 0.237 0.290 0.312 0.345
@=0.9,6=0.1 T 0.063 0.074  0.102 0.129 0.162 0.199 0.227 0.263 0300 0.336
WL/M 0.067 0.080 0.105 0.133 0.168 0.218 0.245 0.300 0315 0.358
0.16-09 T? 0.061 0.079  0.100 0.124 0.161 0.198 0236 0.260 0307 0.341
@=0.1,6=0.

WL/M 0.060 0.085 0.103 0.130 0.165 0.225 0248 0.310 0322 0.364

CONCLUSIONS AND FUTURE RESEARCH

In this paper, Phase I monitoring of multivariate simple linear profiles in the case of within-
profile autocorrelation was studied. First, a transformation method was utilized to eliminate the
autocorrelation structure of consecutive response values within each profile. Then, two methods,
Hotelling’s T? and Wilks’ lambda/M, were proposed based on the transformation applied to response
values. A simulation study in terms of signal probability criterion was applied to evaluate and
compare the power of the two methods to detect different step shifts in the regression parameters.
The results of the simulation showed that the performance of both methods is satisfactory for Phase
I monitoring of multivariate simple linear profiles when the response values within each profile
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follow autoregressive-moving average (ARMA(1,1)) model. The results of the simulation also
indicate that the Wilks” lambda/M method outperforms the T?> method under most step changes.
For future research, we recommend taking into account other autocorrelation structures such as
AR(1) and MA(1) to monitor multivariate simple linear profiles.
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