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ABSTRACT

In this article, the effect of several process parameters such as tool nose radius, speed, 
feed and depth of cut on the machining performance of turning operation has been 
studied using AISI O1 tool steel as a work material. The machining characteristics 
that are being studied are material removal rate (MRR) and surface roughness (SR) 
of machined surface. Taguchi method is utilized for single response optimization. For 
multi-response optimization, weighted signal-to-noise ratio (WSN), grey relational 
analysis (GRA), utility concept and technique for order preference by similarity to 
ideal solution (TOPSIS) method have been utilized and their performance is evaluated. 
WSN method has been found to produce best results for multi-response optimization 
for this study.

Keywords: Material removal rate; multi-response optimization; surface roughness; 
Taguchi method; weighted signal-to-noise ratio.

INTRODUCTION

The turning operation is the oldest and most common machining process, in which 
the removal of material takes place from the outer diameter of a rotating cylindrical 
work piece. Parts are held at the center and supported in a jaw chuck. In the turning 
operation, the machining performance is based on different characteristics such as 
material removal rate, tool life, cutting force and surface roughness. Basically these 
performance characteristics are correlated with process parameters such as cutting 
speed, feed rate, depth of cut and tool nose radius. The proper selection of these process 
parameters plays a vital role as it enhances the tool life, increases material removal 
rate, and improves the surface finish. A schematic diagram of turning operation is 
shown in Figure 1.
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Fig. 1. Process of turning operation (Yoon & Hawang, 1995).

Many researchers have attempted to optimize process parameters for turning 
operation for different response variables using Taguchi method. By employing 
Taguchi method, the effects of a large number of process parameters can be assessed 
using lesser number of experimental trials. Taguchi method optimizes the process with 
respect to signal-to-noise (S/N) ratio of the response instead of the response itself 
and thus, it can make the performance of a process to be insensitive to noise factors. 
However, the limitation of Taguchi method is that it optimizes single performance 
characteristic at a time.

Singh & Kumar, (2006) reported the optimization of process parameters for turning 
EN24 steel bars using spindle speed, depth of cut and feed rate as controlled factors 
and feed force as response variable through the Taguchi approach. Ozel, et al. (2005) 
performed an experimental investigation and results revealed that the effect of spindle 
speed on the surface roughness was the most significant where the effect of cutting 
tool material was the least significant. Singh, (2008) investigated the tool life of Tic 
coated carbide inserts while turning EN 24 steel (0.4%C). The results indicated that 
cutting speed, depth of cut and feed rate have 34.89%, 25.80% and 8.78% contribution 
to the variation observed in the tool life, respectively. The predicted value of optimum 
tool life was 20.19 min. Bhattacharya, et al. (2009) estimated the effect of cutting 
parameters on surface finish and power consumption during high speed machining 
of AISI 1045 steel using Taguchi design and Analysis of variance (ANOVA). The 
cutting speed was most significant for the surface roughness and power consumption. 
Dhabale, et al. (2014) utilized genetic algorithm to find out the optimal setting of 
process parameters that optimize surface roughness. Feng & Wang, (2002) performed 
experimentation for the prediction of surface roughness in finish turning operation 
by developing an empirical model through considering working parameters as work 
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piece hardness (material), feed, cutting tool point angle, depth of cut, spindle speed, 
and cutting time. Data mining techniques and, nonlinear regression analysis with 
logarithmic data transformation were employed for developing the empirical model 
to predict the surface roughness. Yang & Tarng, (1998) employed Taguchi method 
to find the optimal cutting parameters for turning operations. The signal-to-noise 
(SN) ratio was computed and the analysis of variance (ANOVA) was performed to 
investigate the cutting characteristics of S45C steel bars using tungsten carbide cutting 
tools. Kaladhar, et al (2010) performed the optimization of machining parameters in 
turning of AISI 202 Authentic stainless steel using CVD coated cemented carbide tool. 
The Full factorial design and ANOVA were used for study of the effect of process 
parameters (i.e., speed, feed, depth of cut, and nose radius) on surface roughness. 
It was observed from the result that the Feed rate was the most significant factor 
that influences the surface roughness. Neselia & Yaldiz, (2011) studied the effect of 
tool geometry parameters on the surface roughness of AISI 1040 steel in the turning 
operation. The result highlighted the tool noise radius as the dominant factor on surface 
roughness.

Almost all of the studies mentioned above have made the use of single response 
optimization concept. When we deal with practical problems, there is always a need 
to determine the process parameters in such a manner that multiple responses can be 
optimized simultaneously. In the literature, quite a few systematic procedures have 
been proposed for dealing with the multi-response optimization problems. While most 
of the methods use complex mathematics, some of them utilize simple procedures, 
which can easily be realized by the researchers. All the needed calculations for these 
methods can be executed using excel worksheet.

 The objective of this research work is to optimize the process parameters for turning 
process using Taguchi method and also to carry out multi response optimization with 
various multi optimization techniques such as weighted signal-to-noise ratio (WSN), 
grey relational analysis (GRA), utility concept and technique for order preference by 
similarity to ideal solution (TOPSIS). Comparative analysis of the results produced 
by different multi-response optimization techniques has also been performed so as to 
identify the best technique for multi-response optimization of the turning operation of 
AISI O1 tool steel.

LITERATURE REVIEW ON MULTI-RESPONSE 
OPTIMIZATION METHODS

There are many different techniques proposed for the optimization of multiple-
response problems in the available literature. The goal of multi response optimization 
is to find out a single, composite setting of the input variables that can achieve an 
optimal compromise of the response variables.
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The desirability function approach was initially performed by Harrington (1965) 
and then modified by Derringer & Suich (1980). Castillo, et al. (1996) and Kim & 
Lin (2000) also developed desirability function based multi-response optimization 
methods. Pasandideh & Niaki (2006) proposed a methodology which would integrate 
desirability function and simulation approach using a genetic algorithm. Aggarwal & 
Singh (2008) also utilized the desirability function for multi-response optimization. 
Khuri & Conlon (1981) optimized various responses using polynomial regression 
models. These results have been achieved firstly by defining a distance function 
by considering the ideal solution, and then determined the optimal condition by 
minimizing this function.   

Tong & Su (1997) developed a systematic procedure via the application of fuzzy set 
theory to optimize multi-response production processes. Hsieh & Tong (2001) resolved 
the multi-response problems with the application of artificial neural networks (ANN). 
Homami, et al. (2014) and Chiang & Su (2003) utilized techniques of ANN and GA 
together to perform optimization. Umar, et al. (2014), Mahapatra & Patnaik (2007), 
and Jeyapaul, et al. (2005) used multiple objective genetic algorithms. Chi, et al. 
(2002) utilized the neuro-fuzzy and genetic algorithm in multi response optimization. 
Deng, (1982) had proposed a new technique, Grey relation analysis which is used 
for the multi-response optimization. Pan et al. (2007) and Haq et al. (2007) used this 
technique. The basic concept of GRA is to find a Grey relational grade (GRG), which 
can be used for the optimization conversion from a multi-objective case to a single-
objective case. Kumar & Singh (2014), Kaladhar, et al. (2011), Kumar  et al. (2000), 
Walia et al. (2006) and Kumar & Khamba (2010) used Taguchi method and utility 
concept for multi response optimization. Tong et al. (2007) performed multi response 
optimization by using VIKOR method.   

Pearson (1901) introduced the principal component analysis (PCA) and then 
developed by Hotelling, (1933). Su and Tong, (1997), Antony, (2000), and Liao, 
(2006) employed the principal component analysis (PCA) to solve multi-response 
problems. The PCA technique can transform several related original variables into a 
smaller number of uncorrelated principal components, which are linear combinations 
of the original variables. The optimal parametric settings are then determined based 
on one or more principal components. Tong & Wang, (2002) and Gauri, et al. (2008) 
proposed PCA- based GRA and Tong, et al. (2005) presented the PCA- based TOPSIS 
methods to optimize the multiple responses.  

Tong & Su, (1997) solved a multi-response robust design problem using a 
multiple-attribute decision-making (MADM) method. They considered the quality 
loss of each response and then adopted a MADM method - a technique for order 
preference by similarity to ideal solution (TOPSIS) to optimize the multi-response 
robust design problem. Their approach precisely considered the sampling variability 
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of each response by the Taguchi quality loss function. There are several common 
methodologies for MADM-simple additive weighting (SAW), technique for order 
preference by similarity to ideal solution (TOPSIS), analytical hierarchy process 
(AHP), data envelopment analysis (DEA) and so on.  

METHODS USED FOR MULTI-RESPONSE OPTIMIZATION

Taguchi categorized the response variables into three different types, e.g. STB, LTB 
and NTB (Phadke, 1989). The formulae for the computation of MSD (mean square 
deviation) for yth response corresponding to jth trial are different for different types of 
response variables and these are given as below:

Larger the better

                                                                                   (1)

               where

                                   

         Smaller the better

                                                                                    (2)

                   Where

                               

         Nominal the best

                                                                                   (3)

                     Where

                               

                            R = Number of repetition;

It is a standard practice to first normalize or scale the input data for each response 
variable within a certain interval. The aim of this normalization procedure is to 
reduce the variability amongst different responses. The overall understanding and 
comparison of various methodologies can be better if these methods are applied using 
similarly transformed values. Different researchers have adopted different formulas 
for normalization of the input data. For example, Ramakrishna & Karunamoorthy, 
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(2006) and Singh, et al. (2004) have normalized the input data using the following 
equation:

                                                
                                                                              (4)

Where Zjyi 
is the input data and Zjys is the normalized data for yth response in jth trial, 

and  is the average value of input data for yth response, whereas Singh et al. (2004) 
have normalized the input data using the following equation: 

                                                                                                   (5)

Where min Zyi = min {Z1yi, Z2yi,……..,Zmyi}and max Zyi = max { Z1yi, Z2yi,……..,Zmyi}

Thus, in this paper, all the four methods are described considering SN ratio values 
as the input data and the SN ratio of all the responses are scaled into (0,1) interval 
using the equation (5).

To solve a multi-response optimization problem, all the four methods considered 
in this paper involves the following three basic steps: (i) conversion of the multiple 
responses into a single PPI, (ii) estimation of the factor effects on the PPI and then 
determining the optimal factor-level combination that can optimize the PPI value, and 
(iii) validation of the optimal factor-level combination using confirmatory experiment. 
The four methods differ mainly with respect to the adopted approaches for conversion 
of the multiple responses into a single PPI and the second & third basic steps are the 
same for all the four methods.  

WSN ratio method 

In the WSN ratio method, the weighted signal-to-noise (WSN) ratio is considered as 
the PPI value. The procedure for calculation of WSN values for different trials and 
determination of the optimal process condition can be described as below:

Step 1: Compute the SN ratio values of each response for all the trials using Eqns. 
(1) – (3) as appropriate;

Step 2: Obtain the scaled SN ratio values of each response for all the trials using 
Eqn. (5) 

Step 3: Compute the WSN ratio value for jth trial using the following equation:

                                                                                            (6)

where Zjys is the scaled SN ratio for yth response in jth trial, and Wy is the assigned 
weight for yth response and  
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GRA method 

In this method, the grey relational grade (GRG) is considered as the PPI. The procedure 
for computation of GRG value for different trials and determination of the optimal 
process condition can be described as below:

Step 1: Compute the SN ratio values of each response for all the trials using Eqns. 
(1) – (3).

Step 2: Obtain the scaled SN ratio values for all the responses for all the trials using 
Eqn. (5).

Step 3: Compute the grey relational coefficients of each response for all the trials. 

The grey relational coefficient ( γ
jy
 ) for yth response in jth trial can be computed as 

below:

                                       Δy
min + ξ Δy

max

                              γjy =                                                    (7)  
                                       Δjy + ξ Δy

max

where Δjy = │1 −Zjys │
 , ∆y

min = min{ ∆1y,∆2y, ...,∆my}, ∆y
max = max{∆1y ,∆2y, ...,∆my} 

and ξ is the distinguishing coefficient ( ξ ∈ [0,1] ). The purpose of the distinguishing 
coefficient is to expand or compress the range of the grey relational coefficient and 
usually, it is set equal to 0.5

Step 4: Calculate the grey relational grade (GRGj ) corresponding to jth trial using the 
following equation:

                                                                                       (8)

Step 5: Use arithmetic average to calculate the factor effects on GRG value and then 
decide the optimal factor level combination by higher-the-better factor effects.

The utility concept and method

Utility can be defined as the usefulness of a product or a process in reference to the 
expectations of the users. The overall usefulness of a process/product can be represented 
by a unified index termed as utility which is the sum of the individual utilities of 
various quality characteristics of the process/product. The methodological basis for 
utility approach is to transform the estimated value of each quality characteristic into 
a common index.

If Xy is the measure of effectiveness of an attribute or quality characteristic 
(response) y and there are p attributes evaluating the outcome space, and then the joint 
utility function can be expressed as:

U( X1, X2 ,..., Xp ) = f (U1( X1 ),U2 ( X2 ),...,Up ( X p ))                         (9)
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where Uy ( Xy ) is the utility of the yth attribute or quality characteristic. The overall 
utility function is the sum of individual utilities if the attributes are independent, and 
is given as follows:

                                                             p
                               U(X1, X2,…, Xp) 

= ∑ Uy 
(Xy)                                   (10)

                                                             y=1

The attributes may be assigned weights depending upon the relative importance or 
priorities of the characteristics. The overall utility function after assigning weights to 
the attributes can be expressed as:

                                                             p
                               U(X1, X2,…, Xp) 

= ∑ WyUy 
(Xy),                                               (11)

                                                            y=1

where Wy is the weight assigned to the attribute y . The sum of the weights for all 
the attributes must be equal to 1. A preference scale for each attribute or response 
variable is constructed for determining its utility value. Two arbitrary numerical values 
(preference number) 0 and 9 are assigned to the just acceptable and the best value of 
the response variable respectively. The preference number ( Py ) for the yth response 
variable can be expressed on a logarithmic scale as follows:

                               Py = Ay  
x log(Xy 

/ X’y),                                                 (12)

where Xy = value of yth response variable, Xyʹ = just acceptable value of yth response 
variable and Ay = constant for the yth response variable. The value of Ay 

can be found 
by the condition that if Xy = X*

y (where X*
y is the optimal or best value for the yth 

response), then Py = 9. Therefore,

                                           9
                               Ay 

=                                                                     (13)
                                       log(X*

y / X’
y)

The overall utility (U) can be calculated as follows:

                                       p
                               U

 
= ∑ WyPy,                                                                           (14)

                                     y=1

                                              p
subject to the condition that ∑ Wy = 1      
                                             y=1

The overall utility value is considered as the PPI in the utility method for multi-
response optimization. This method can be implemented using the following six steps:

Step 1: Compute the SN ratio values for each response for all the trials using Eqns. 
(1) – (3) as appropriate.
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Step 2: Determine the optimal process condition separately for each response variable 
using Taguchi method and then predict optimal value for each response variable.

For a response variable, the optimal process condition will be the one which 
maximizes the SN ratio value. The optimal SN ratio for the response variable can be 
estimated using additive model. Suppose the optimal SN ratio for a response variable 
is Zopt. Then, the optimal value (Vopt) of the STB and LTB type response variable can 
be obtained using Eqns. (15) and (16) respectively.

Vopt = √(10  − (Zopt / 10) )                                    (15)

Vopt  = √(1 / 10  − (Zopt / 10) )           (16)

Step 3: Determine the just acceptable values for all the response variables.

If the response variable is STB type, the maximum observed value of the response 
variable will be taken as the just acceptable value for the variable. On the other hand, 
if the variable is LTB type, the minimum observed value of the variable will be taken 
as the just acceptable value for the variable.

Step 4: Construct the preference scale for each response variable using Eqns. (12) 
and (13)

Step 5: Determine the overall utility value for each trial using Eqn. (14)

Step 6: Use arithmetic average to calculate the factor effects on the overall utility 
value and then decide the optimal factor-level combination by higher-the-better factor 
effects.

Technique for order preference by similarity to ideal solution 
(TOPSIS) method 

The TOPSIS method was developed by Yoon & Hwang, (1995). This method is 
based on the concept that the chosen alternative should have the shortest Euclidean 
distance from the ideal solution, and the farthest from the negative ideal solution. 
The ideal solution is a hypothetical solution for which all attribute values correspond 
to the maximum attribute values in the database comprising the satisfying solutions; 
the negative ideal solution is the hypothetical solution for which all attribute values 
correspond to the minimum attribute values in the database. TOPSIS thus gives a 
solution that is not only closest to the hypothetically best, but also the farthest from 
the hypothetically worst. The main procedure of the TOPSIS method consists of the 
following steps:

Step 1: Compute the SN ratio values for each response for all the trials using Eqns. 
(1) – (3) as appropriate.
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Step 2: Obtain the scaled SN ratio values for all the responses for all the trials using 
Eqn. (5).

Step 3: Decide on the relative importance of different attributes with respect to the 
objective. A set of weights wy such that ∑ wy =1 may be decided upon.

Step 4: Calculate the weighted normalized decision matrix. The weighted normalized 
value Vjy is calculated as;

Vjy=wyRjy                                                              
(17)

Step 6: Determine the ideal and negative-ideal solution in this step. The ideal and 
negative ideal solutions can be expressed as:

V+ = {(max. Vjy/yϵY),(min. Vjy/yϵY’)};         (18)

      = {V1
+, V2

+ ,V3
+ ,……….Vn

+}

V- = {(min. Vjy/yϵY),(max. Vjy/yϵY’)};                                   (19)

                                   = {V1
-, V2

- ,V3
- ,……….Vn

-}

where Y=(y=1,2,3….p)/y is associated with beneficial attributes, and

           Y’=(y=1,2,3….p)/y is associated with non-beneficial attributes.

Step 7: Obtain the separation measures. The separation of each alternative from the 
ideal one is given by the Euclidean distance in the following equations.

            p
Sj

+ = { ∑ (Vjy 
– Vy

+)2}1/2 ,               j= 1,2,…………,m        (20)
           y=1

Similarly, the separation from the negative ideal solution is given as;

            p
Sj

- = { ∑ (Vjy 
– Vy

-)2}1/2 ,                j= 1,2,…………,m        (21)
           y=1

Step 8: The relative closeness of a particular alternative to the ideal solution, Pj, can be 
expressed in this step as follows;

Pj = Sj
-
 
/ (Sj

+ + Sj
-)                       (22)

Step 9: Pj is also called the overall or composite performance score of corresponding 
alternative. Use arithmetic average to calculate the factor effects on the composite 
performance score and then decide the optimal factor-level combination by higher-
the-better factor effects.
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EXPERIMENTATION

AISI O1 tool steel was selected for investigation. AISI O1 (general purpose oil-
hardening) tool steel is a versatile manganese-chromium-tungsten steel suitable 
for a wide variety of cold-work applications. Its main characteristics include good 
machinability, good dimensional stability in hardening and good combination of high 
surface hardness and toughness after hardening and tempering. These characteristics 
combine to give steel suitable for the manufacture of tooling with good tool life and 
production economy. Chemical composition and properties of AISI O1 tool steel are 
represented in table 1 and table 2 respectively.

Table 1. Chemical composition of AISI O1 tool steel

Typical Analysis %
C - 0.95     Mn - 1.1   Cr - 0.6    W - 0.6

Standard specification   AISI O1, W-Nr 1.2510

Color code                      Yellow

Table 2. Properties of AISI O1 tool steel

Temperature 20 0C 200 0C 400 0C

Density kg/M3 7800 7750 7700

Modulus of elasticity N/mm2 190000 185000 170000

Coefficient of thermal exp.
Per 0C from 20 0C

-- 11.7 x 10-6 11.4 x 10-6

Thermal conductivity W/m 0C 32 33 34

Specific heat J/kg C 460 -- --

Hindustan machine tool (NH22) lathe machine was used for this experimentation. 
The size and the shape of work piece were selected based on the availability from the 
supplier. Also the work piece design was finalized keeping in view the capabilities 
of the lathe machine to ensure better performance in machining the work piece. The 
Figure 2 (a) & (b) shows the experimental setup and machining zone respectively.
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                                            (a)                                                                   (b)
Fig. 2. (a) Experimental setup; (b) Machining zone

To measure the MRR, the time taken for each operation was recorded using stop 
watch. The calculation for MRR was performed by taking the ratio of weight loss 
of workpiece during each operation to the machining time. Surface roughness was 
measured by using Perthometer. The experiments were planned using Taguchi’s 
orthogonal array in the design of experiments (Ross, 1996). The experiments were 
conducted according to 3-level L-9 orthogonal array (Table: 4). Machining parameters 
and their levels are represented in Table 3. 

Table 3. Process parameters and their levels

Symbol Cutting Parameter Level 1 Level 2 Level 3 Unit

A Tool nose radius 0.2 0.4 0.8 mm

B Speed 192 325 490 rpm

C Feed 0.05 0.1 0.2 mm/rev

D Depth of cut 0.2 0.4 0.6 mm



A comparison of the different multiple response optimization techniques for turning operation of AISI O1 tool steel 174

Table 4. Control log for experimentation based on L9 OA

Exp.
 No.

Run 
order

Nose 
radius
(mm)

Spindle 
speed
(rpm)

Feed
(mm/rev)

DOC
(mm)

1 5 0.2 192 0.05 0.2

2 3 0.2 325 0.1 0.4

3 6 0.2 490 0.2 0.6

4 1 0.4 192 0.1 0.6

5 7 0.4 325 0.2 0.2

6 2 0.4 490 0.05 0.4

7 9 0.8 192 0.2 0.4

8 7 0.8 325 0.05 0.6

9 8 0.8 490 0.1 0.2

Table 5. Experimental results for material removal and surface roughness

Exp.
No.

Material removal rate (MRR) Mean 
value

SN Ratio Surface roughness Mean 
value

SN Ratio

1 2 3 1 2 3

1 0.01615 0.01575 0.0163 0.0161 -35.8687 2.19 1.64 1.84 1.890 -5.5916

2 0.11255 0.12058 0.11692 0.1166 -18.6698 2.89 3.17 2.59 2.883 -9.2271

3 0.53336 0.44647 0.51815 0.4993 -6.11244 2.16 2.44 1.99 2.196 -6.86615

4 0.10444 0.08743 0.09508 0.0956 -20.4543 4.53 2.16 3.53 3.406 -10.9861

5 0.10951 0.10678 0.11489 0.1104 -19.1529 4.4 2.61 3.89 3.633 -11.3887

6 0.08517 0.0912 0.09367 0.0900 -20.9326 4.44 3.9 3.47 3.936 -11.9465

7 0.13322 0.14266 0.15124 0.1423 -16.9663 5.15 3.3 4.21 4.220 -12.6432

8 0.08821 0.07386 0.08010 0.0807 -21.9276 1.9 2.59 1.69 2.060 -6.42603

9 0.08244 0.08041 0.09172 0.0848 -21.4674 1.28 2.71 1.32 1.770 -5.53272

RESULTS AND DISCUSSION

A complete residual analysis has also been done for surface roughness and the graphs 
are shown in Figure 3. Normal probability plot (Figure 3a) of residuals shows that 
residuals are falling on a straight line, which means that the errors are normally 
distributed, confirming a good correlation between experimental and predicted values 
for the response. In graph of residuals versus fitted values (Figure 3(b)), only small 
variations can be seen. The histogram of residuals is also shown in Figure 3(c). 
Residuals against the order of experimentations are plotted as shown in Figure 3(d), 
both negative and positive residuals are apparent indicating no special trend which is 
worthy from statistical point of view. As a whole, all the yielded models do not show 
any inadequacy.
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Fig. 3. Residual plot for surface roughness 
((a) Normal probability plot of residuals, (b) residuals versus the fitted values, (c) histogram of the 

residuals, and (d) residuals against the order of data)

After conducting the experiments, the results are shown in Table 5. The S/N ratio 
is obtained using Taguchi’s method. The S/N ratio represents the amount of variation 
present in performance characteristics. On the basis of objective of performance 
characteristics, there are three types of S/N ratios in Taguchi method. Here, the 
desirable objective is to maximize MRR while keeping the SR at minimum. 
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                  Optimized process setting for MRR response (raw data)

                         Tool nose radius - 0.2 mm
                         Cutting speed     - 490 rpm
                         Feed rate            -  0.2mm/rev
                         DOC                  -  0.6 mm

Fig. 4. Effect of process parameters on MRR (raw data)

                    Optimized process setting for MRR response (S/N data)

                                  Type of S/N- Larger-the-better
                           Tool nose radius -  0.2 mm
                           Cutting speed     -  490 rpm
                           Feed rate            -  0.2mm/rev
                           DOC                  -  0.6 mm

Fig. 5. Effect of process parameters on MRR (S/N data)
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                  Optimized process setting for SR response (raw Data)

                        Tool nose radius -  0.2 mm
                        Cutting speed     -  490 rpm
                        Feed rate             -  0.05mm/rev
                        DOC                   -  0.2 mm

Fig. 6. Effect of process parameters on surface roughness (raw data)

   

          Optimized process setting for SR response (S/N data) 

                         Type of S/N- Lower-the-better
                        Tool nose radius -  0.2 mm
                        Cutting speed     -  490 rpm
                        Feed rate            -  0.05mm/rev
                        DOC                   -  0.2 mm

Fig. 7. Effect of process parameters on surface roughness (S/N data)
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The main effect can be studied by the level average response analysis of raw 
data or of S/N data. The analysis is performed by averaging the raw or S/N data at 
each level of each parameter (Montgomery, 2001) and plotting the value in graphical 
form. The level average response from the S/N data helps in optimizing the objective 
function. The main effect of raw data and those of the S/N ratio have been estimated 
and obtained in Figures 4-7.

In order to compare different multi-response optimization methods i.e. WSN, 
GRA, Utility concept and TOPSIS, the calculation is performed by considering the 
weights for MRR and SR 0.5 and 0.5 respectively. All the computations involved in 
estimation of the PPI for the different methods have been done in accordance with 
the procedure specified in previous section (please refer section- Methods used for 
multi-response optimization). Figures 8-11 illustrates the main effect plots for WSN, 
GRG, UT and TOPSIS. The PPI values for WSN, GRA, Utility theory and TOPSIS 
techniques are calculated in sections 3. Table 5 shows the calculated values of PPI for 
the four multi-response optimization techniques. 

                  Optimized process setting for turning operation (for WSN method)

                        Tool nose radius -  0.2 mm
                        Cutting Speed     -  490 rpm
                        Feed rate            -  0.1mm/rev
                        DOC                   -  0.6 mm

Fig. 8. Main effect plots for weighted S/N ratio
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                  Optimized process setting for turning operation (for GRA method)

                       Tool nose radius -  0.4 mm
                        Cutting speed    -  192 rpm
                        Feed rate            -  0.05mm/rev
                        DOC                  -  0.4 mm

Fig. 9. Main effect plots for grey relational grade

                  Optimized process setting for turning operation (for UT method)

                       Tool nose radius -  0.4 mm
                        Cutting speed    -  490 rpm
                        Feed rate            -  0.2mm/rev
                        DOC                  -  0.4 mm

Fig. 10. Main effect plots for utility value
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                  Optimized process setting for turning operation (for TOPSIS method)

                        Tool nose radius -  0.4 mm
                        Cutting speed     -  4325 rpm
                        Feed rate            -  0.2mm/rev
                        DOC                   -  0.4 mm

Fig. 11. Main effect plots for TOPSIS

Table 6. Computed PPI values

Exp. 
No.

           Process Performance Index (PPI)

WSN GRG Utility Value TOPSIS

1. 0.4959 0.6676 0.0576 0.0058

2. 0.5292 0.4869 4.4454 0.5486

3. 0.9062 0.3571 5.6757 0.5560

4. 0.3755 0.5866 5.1633 0.6335

5. 0.3691 0.6050 5.5265 0.6785

6. 0.3000 0.6676 5.5609 0.6704

7. 0.3176 0.7202 6.4037 0.7646

8. 0.6714 0.4400 2.0664 0.3216

9. 0.7420 0.4207 1.3054 0.3007

The level average of control factors on the PPI value of the four methods are given 
in Table 7. The optimal process setting for MRR and SR using Taguchi single response 
optimization is A1B3C3D3 and A1B3C1D1 respectively. While considering multi-
response optimization techniques i.e. WSN, GRA, Utility concept and TOPSIS the 
optimized process setting is A1B3C2D3, A2B1C1D2, A2B3C3D2 and A2B2C3D2 
respectively. 
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Table 7. Level averages on the WSN, GRG, Utility concept and TOPSIS

WSN GRG Utility Concept TOPSIS

Factor
Level

1
Level

2
Level 

3
Level

1
Level

2
Level

3
Level

1
Level

2
Level

3
Level

1
Level

2
Level

3

TNR 0.6438 0.3482 0.5770 0.5039 0.6198 0.5270 3.393 5.417 3.259 0.3702 0.6608 0.4623

Speed 0.3963 0.5232 0.6494 0.6581 0.5107 0.4818 3.875 4.013 4.181 0.4680 0.5162 0.5090

Feed 0.4891 0.5489 0.5310 0.5917 0.4981 0.5608 2.562 3.638 5.869 0.3326 0.4943 0.6664

DOC 0.5356 0.3823 0.6511 0.5645 0.6249 0.4613 2.297 5.470 4.302 0.3284 0.6612 0.5037

Table 8 shows the predicted SN ratio of responses for different methods. Based on 
the optimal condition, WSN method gives highest SN ratio which is preferable from 
the point of view of “robustness’, as the larger value of S/N response is desirable for 
obtaining a better response with minimum noise. Hence, WSN method has yielded 
best results for multi-response optimization of the S/N responses considered in the 
study (MRR and SR) and using the optimized process setting obtained through the 
application of this method (A1B3C2D3) would enable the machinist to realize highly 
robust process performance.

Table 8. Predicted SN ratios of different optimization methods

Optimization 

Method

Performance 

characteristics  

Optimized

 setting

Predicted SN ratio Total(dB)

MRR(dB) SR(dB)

Taguchi method MRR A1B3C3D3 -6.113 - -

Taguchi method SR A1B3C1D1 - -3.965 -

WSN method WSN ratio A1B3C2D3 -12.233 -5.149 -17.482

GRA method GRG A2B1C1D2 -29.193 -13.751 -42.944

Utility concept Utility value A2B3C3D2 -8.773 -14.257 -23.030

TOPSIS CPS A2B2C3D2 -12.523 -15.156 -27.679

CONCLUSIONS

In present work, turning operation for AISI O1 tool steel has been optimized. Taguchi 
method, WSN, GRA, Utility Concept and TOPSIS methods were used to optimize the 
material removal rate (MRR) and surface roughness (SR) responses collectively. On 
the basis of results, the following conclusions can be drawn-

The optimal parametric setting for material removal rate is A1B3C3D3, with • 
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predicted optimal S/N ratio -6.113. The optimal parameter setting for surface 
roughness is A1B3C1D1, with predicted optimal S/N ratio -3.965.    

For multi-response optimization, the optimal parametric settings for WSN, • 
GRA, Utility Concept and TOPSIS are A1B3C2D3, A2B1C1D2, A2B3C3D2 
and A2B2C3D3 respectively. Hence, there has been considerable difference 
among the optimal settings yielded by the methods investigated. 

On the basis of computations performed, WSN method yielded highest • 
magnitude of S/N response (-17.482 dB) and therefore, may be recommended, 
provided that the range of parameters investigated is kept fixed.
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