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الخـلا�صـة

م�شكلة �إر�ساء الحمولة الاقت�صادية هي واحدة من التحديات الكبيرة في �أنظمة توليد الطاقة في ظل بيئة 

�أن الم�شكلة غير محدبة ومتعددة الو�سائط بطبيعتها، ف�إن نماذج البرمجة التقليدية  خالية من ال�ضوابط. وبما 

لي�ست منا�سبة لحلها. خوارزميات التح�سين التقليدية، ولكن المعروفة مثل الخوارزمية الجينية )GA(، تح�سين 

المطلق في  الامثل  �إلى الحل  للو�صول  التطوير  �إلى مزيد من  بحاجة  الج�سيمات )PSO( ومتغيراتها  �سرب 

وقت محدد.

ومع  الوا�سع.  والزكاء  وا�سع  نطاق  على  تطبيقها  ب�سبب   ،)PSO( في  تكمن  تهمنا  التي  الخوارزمية 

ذلك، ف�إن الخوارزمية لديها عيب الت�سارع الم�ستمر من الج�سيمات نحو الحل الامثل المطلق. ونتيجة لذلك، 

والالت�صاق مع بالحل الامثل المحلي، ف�إن التعقيد الح�سابي العالي وتحديد فقط الحل القريب من الحل الأمثل 

غالبا ما يحدث با�ستعمال )PSO(.  تحاول هذه الورقة �إدخال تح�سين على )PSO( التي تتم فيها عمل ثوابت 

الت�سارع متكيفة.

يوجه  هذا  الوظائف.  تقييمات  وعدد  الج�سيمات  موقف  �أ�سا�س  على  ديناميكيا  التغيير  �إلى  تميل  فهي 

الج�سيمات للبحث في بيئة موزعة منهجية، وبالتالي نحن نطلق م�صطلح الخوارزمية كما )PSO( مع الت�سارع 

�أداء  �إثبات  يتم  خلالها  من  التجريبية  للدرا�سة  اختبار  �أنظمة  ثلاثة  اعتماد  تم   .)PSODAC( الثابت  الموزع 

)PSODAC على )PSO(. ويك�شف التحقيق التجريبي �أي�ضا �أن )PSODAC( يظهر ديناميكية الج�سيمات 

.)PSO( أعلى من�
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ABSTRACT
Economic load dispatch problem is one of the significant challenges in power generation 

systems under deregulated environment. Since the problem is non-convex and multimodal in 
nature, conventional programming models are not suitable to solve it. Traditional, but renowned 
optimization algorithms such as Genetic algorithm (GA), Particle Swarm optimization (PSO) and 
their variants need further development to reach global optima in a defined time. Our algorithm 
of interest lies on PSO, because of its wide application and swarming intelligence. However, the 
algorithm has a drawback of constant acceleration of particles towards global optima. As a result, 
sticking with local optima, high computational complexity and identifying only near-optimal 
solution often happens with PSO. This paper attempts to introduce an improved PSO in which the 
acceleration constants are made adaptive. They tend to change dynamically based on the position 
of the particle and the number of function evaluations. This directs the particles to search in a 
systematic distributed environment, and hence we term the algorithm as PSO with Distributed 
Acceleration Constant (PSODAC). Three test systems are adopted for experimental study through 
which the performance of PSODAC over PSO is proved. The experimental investigation also 
reveals that PSODAC exhibits higher particle dynamics than PSO.

1- INTRODUCTION
Economic load dispatch (ELD) is a significant methodology to determine cost efficient and 

reliable power generation to meet the power demand (Bhattacharjee et al., 2014). The challenge 
towards ELD has increased due to evolution of smart grid, which is often included with renewable 
energy sources, electricity conveyors (Gungor et al., 2011; Gungor et al., 2013; Yao et al., 2012; 
Zhao et al., 2012; Su et al., 2012; Siano et al., 2012). The primary objective of an ELD problem is 
to minimize the total cost of a power generation unit without power scarcity and no compromise 
on the operating constraints (Wood & Wollenberg, 1996; Ding et al., 2014; Somasundaram et al., 
2004). However, the multimodal property of ELD problem poses a great challenge to analysts 
and experts on determining the optimal generation strategy. In other words, ELD problem has 
numerous local optima, because of nonlinear fuel cost coefficients (Rabiee et al., 2014). Hence, 
the probability of converging to local optimal strategy is higher than the converging towards global 
optimal strategy (Panigrahi et al., 2006). 

Despite the literature has been reported by ample number of optimization algorithms, they 
do have sufficient enhancements to handle the aforesaid characteristics of ELD. For instance, 
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classical calculus – based methods are able to handle only smooth and differentiable objective 
functions (El-Keib et al., 1994). Linear programming models lag while handling piecewise linear 
cost approximations (Fanshel & Lynes, 1964), whereas, dynamic programming models suffer due 
to curse of dimensionality and high computational complexity (Wood & Wollenberg, 1984). 

Few centralized approaches such as lambda iteration method and interior point method can 
solve only convex optimization methods (Lin & Viviani, 1984; Lin & Chen, 2002). However, 
ELD problems are practical problems and they are non-convex optimization problems (Wood & 
Wollenberg, 1984; Yang et al., 1996).  

In solving ELD problem, population based stochastic search algorithms have gained more 
attention in the recent days. In fact, they are well known for its ability to handle non – convex 
problems (Binetti et al., 2014). Genetic Algorithm (GA) (Chiang et al., 2009; Amjady & Nasiri-
Rad, 2009a; Amjady & Nasiri-Rad, 2009b; Walters & Sheble, 1993)  and Differential Evolution 
(DE) (Nomana & Iba, 2008) are the two of the popular evolutionary algorithms (Jayabharathi 
et al., 2005; Hou et al., 2002; Nomana & Iba, 2008; Panigrahi et al., 2007) that are well known 
for their specific computational intelligence on handling non-convex ELD problems, whereas 
Particle Swarm Optimization (PSO) (Gaing, Z.-L. 2003; Kennedy & Eberhart, 1995; Selvakumar 
& Thanushkodi, 2007; Chaturvedi et al., 2008; Panigrahi et al., 2008; Selvakumar & Thanushkodi, 
2009; Sun et al.,2014) is one of the most popular swarm intelligent algorithms (Sun et al.,2014; 
Panigrahi & Pandi, 2008; Bhattacharya & Chattopadhyay, 2010) to handle the problem effectively 
(Binetti et al., 2014). Despite they enable fast searching of near global optimal generation strategies, 
achieving global best remains open ended challenge in this platform. 

1.1. Motivation

To handle the open ended challenge, numerous variants such as improved GA and PSO have 
been reported in the literature (Gaing, Z.-L. 2003; Kennedy & Eberhart, 1995; Selvakumar & 
Thanushkodi, 2007; Chaturvedi et al., 2008; Panigrahi et al., 2008; Selvakumar & Thanushkodi, 
2009; Sun et al., 2014). Since the proposed algorithm of interest relies on around PSO, this paper 
has studied various improved version of PSO that have been attempted to solve the various non-
convex optimization problems (Vlachogiannis  & Lee, 2009; Park et al., 2010). Selvakumar 
and Thanushkodi have introduced an improved PSO in which the particle movement has been 
exhibited not only based on the particle and global best positions but also based on the worst 
position. Further, a simplified local random search (LRS) has also been employed in the improved 
version (Selvakumar & Thanushkodi, 2007). 

In (Panigrahi et al., 2008), the inertia weight has been made adaptive based on the particle 
rank rather than iteration ratio. In (Chaturvedi et al., 2008), self – organizing hierarchical PSO has 
been introduced. It has also been recommended to use adaptive acceleration constants to further 
improve self – organizing PSO (Chaturvedi et al., 2008). The earlier two algorithms are complexity 
oriented, whereas the latter embeds the process that coincides with regular PSO operation and so 
the searching complexity will not be increased. Being motivated by the conclusion, this paper 
attempts to introduce an improved PSO based on adaptive acceleration constants. 
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1.2. Contributions

This paper intends to solve the ELD problem using a robust optimization algorithm. 
The algorithm is an improved version of PSO in which the acceleration constants are made 

adaptive. 

Contribution 1: This paper formulates the acceleration constant as a function of number of 
evaluations made on the particles generated till the instant.

The improved PSO is used to solve ELD problems and the performance comparison is made 
with traditional PSO. 

Contribution 2: This paper investigates the dynamics of the particle throughout the swarming 
iteration and the performance is correlated with them

Since each particle is allowed to search with systematic distribution, this paper embodies the 
PSO as PSO with distributed acceleration constant (PSODAC). Due to this property, PSODAC 
exhibits wide particle dynamics. This results in evading from local optima and finding the global 
optima efficiently.  

The rest of the paper is organized as follows. Section 2 formulates the ELD problem and 
Section 3 describes PSODAC and the procedure to solve ELD problem. Section 4 discusses the 
experimental results. Section 5 investigates the particle dynamics and Section 6 concludes the 
paper.  

2- PROBLEM FORMULATION
Let  be the cost  of generation unit to generate  MW of power, where  is 

the number of generation units in the system. Since the objective of ELD problem is to minimize 
the total cost of the generation system, the ELD problem can be formulated as :

                                                           (1)

Eq. (1) is subjected to the following constraints:

(i) Generation capacity constraint: 
                                                             (2)

(ii) Real power balance constraint: 

                                                          (3)

In Eq. (3),  refers to the total power demand in MW and  refers to transmission losses, 

which can be represented as:

                                           (4)

where, ,  and  are the loss coefficients, which are statically defined for bus systems 
as given in Table 2 and 4. In Eq. (1), is obtained. which is the optimal generation schedule for the 
given generation system. This paper attempts to solve Eq. (1) using traditional PSO and PSODAC 
and further investigates the obtained generation schedule.
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3 - PSODAC FOR ELD PROBLEM
3.1. Traditional PSO

Eberhart has introduced PSO based on swarming behavior of bird flocks and fish schools 
(Kennedy & Eberhart, 1995). The basic steps reside in the standard PSO are given below. 

Step 1: Initialize Iteration count  and Number of function evaluations  as 0 and 0, 
respectively

Step 2: Initialize arbitrary particles , where  is the size of particle set. The 
particles are subjected to the constraints given in Eq. (2) and (3). 

Step 3: Initialize arbitrary velocities  in the interval 

Step 4: Determine fitness of each particle using Eq. (1)

Step 5: Save  and the associated fitness values, where size of  is  and size 
of  is 

Fig. 1. Pseudo code of PSODAC
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Step 6: Increase  and  by 1 and , respectively

Step 7: If termination criteria is met, go to Step 12

Step 8: Update particle set using Eq. (5)

Step 9: Determine fitness of updated particle set using Eq. (1)

Step 10: Update  and the associated fitness values, when they undergo any improvement 
due to the particle updates

Step 11: Go to Step 7

Step 12: Return  and the fitness value

The termination of the process, as mentioned in Step 7, can be done, when either the algorithms 
satisfies  or  or combinations of both, where  are maximum 
number of iterations and function evaluations, respectively. 

3.2. PSODAC

PSODAC differs from PSO in the particle update process by introducing adaptive acceleration 
constants. The pseudo code of PSODAC is presented in Fig. 1. 

Traditionally, the updating process on particles in PSO (Kennedy &  Eberhart, 1995; Shi, Y. & 
Eberhart, R. 1998) is performed as follows:

                                               (5)

				                                         (6)

In Eq. (6),  refers to an inertia weight,  and  refer to acceleration constants and refer to 

arbitrary integers at . Here,  and  are set as constant, usually set at 2, whereas  and  are 
generated for each particle update throughout the iterations. However, the significance of these 
parameters is high because they define the amount of deviation of particle with respect to  and 

 to be considered for updating the particles. In this work, these parameters are varied based on 
the position of each particle and the number of function evaluations that are made till the current 
iteration. They can be given as

                                    (7)

whereas,  and  are minimum and maximum limits of the acceleration constants, say 
0 and 2, respectively,  within which the  and  are dynamically varied,  is the number 
of evaluations of particles made till the current iteration and  is the maximum number of 
iterations. Hence by eq. (7), the  and  are gradually increased from  and  based on the 
position of the particle that is determined from the place where the evaluation of the particle takes 
place. While the parameters the  and  are made adaptive, the rest of the parameters such as w 
has to be tuned properly because of its sensitivity towards problem domain, system characteristics 
and relation between the independent and its dependent variables. Even though the  and  are 
arbitrary integers, as per the basics of PSO, they can also be tuned to a definite and systematically 
varying parameters for better convergence. 
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 Table 1. Generation limits and cost coefficients of Test System A

Table 2. Transmission loss coefficients of Test System A

Fig. 2. Performance illustration between PSO and PSODAC
(Convergence plot of Test System A)

4 - RESULTS AND DISCUSSION
4.1. Test System A

In system A, this paper attempts to connect three generation units and the experimentation is 
carried out. The power demand is set to 150MW. The generation limits, cost coefficients and loss 
coefficients are given in Table 1 and 2, respectively. Both the algorithms are executed and the 
obtained generation strategies are tabulated in Table 5. Table 6 gives the solution quality of both 
the algorithms, while solving ELD problem in System A and Fig. 2 illustrates the convergence 
performance of PSO and PSODAC. To ensure fair results, each algorithm is initiated with 10 
particles and executed for 10000 number of function evaluations. Similar set of experiments have 
been conducted for 100 rounds and the results are collected to determine the statistical metrics 
such as best value, worst value, mean, median and standard deviation of performance from the 
mean value. 
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Fig. 3. Strategic variations between PSO and PSODAC
under the environment of Test System A

Table 3. Generation limits and cost coefficients of Test System B

As a best case performance, PSO derives a generation strategy of $1626, whereas PSODAC 
derives a generation strategy of $1607. The cost proposed by PSODAC is 2% lesser than the 
cost proposed by PSO. The similar ratio has been maintained in the worst case performance 
and statistical metrics such as mean and median costs. The convergence plot given in Fig. 2 
is acquired from one of the experiments. Despite the initial particles are same for both PSO 
and PSODAC, the updating operator produces varying solutions, which are considered as initial 
solutions in the convergence analysis (in all the test systems). The polynomial fitting exhibits 
varying visualization on the initial conditions. It has been shown in the plot that PSODAC has 
been initialized by strategy with higher cost than PSO, but it converges better than PSO. A raise 
at 8000th function evaluation is due to polynomial fitting exhibited by the plot. Yet, it has been 
observed from Fig. 2 that there is a potential evading from local optima after 4000 evaluations. 
Similar kind of evading property can be observed for other test systems as per Fig. 4 and 7, 
which are discussed in the subsequent sections. Hence, the optimal number of evaluations can be 
determined as 4000 - 5000. For better illustration, the strategic variation is plotted between PSO 
and PSODAC in Fig. 3. Here, PSO proposes to generation around 60MW, 80MW and 10MW 
using unit 1, 2 and 3, respectively, to meet 150MW demand, whereas PSODAC strategizes to 
generate 10MW using unit 1, 70MW using unit 2 and 70MW using unit 3. This strategic variation 
has reduced around 2% of total fuel cost.  

4.2. Test System B

In system B, there are six generation units that are operated to meet the demand of 700MW. 
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The generation limits, cost coefficients and loss coefficients are given in Table 3 and 4, 
respectively. The generation strategies obtained using both the algorithms is given in Table 5, 
whereas Table 6 details the quality of the solutions provided by the algorithms. Under best case 
environment, PSODAC has incurred 95.6% of total cost incurred by PSO. It has been slightly 
varied to 95.9% under worst case environment.

Fig. 4. Performance illustration between PSO and PSODAC (Convergence plot of Test System B)

Table 4. Transmission loss coefficients of Test System B

Fig. 5. Strategic variations between PSO and PSODAC
under the environment of Test System B

On average, PSODAC incurs 95.9% of the total cost incurred by PSO. The performance plot of 
both the algorithms given in Fig. 4 illustrates the gradual convergence of PSO and steep convergence 
of PSODAC. Fig. 5 represents the generation strategy proposed by PSO and PSODAC.  PSO 
proposes to generate 100MW from unit 1, whereas PSODAC almost doubles the generation of unit 
1. Unit 3 generates around 260MW as per PSO strategy, but it is allowed to generate only 200MW 
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by PSODAC. PSO generates only 50MW from unit 4, but PSODAC generates three times of the 
generation quantity proposed by PSO. In unit 5, PSODAC recommends just 25% of the power 
generated by PSO strategy. In unit 2 and unit 6, both the algorithms recommend 50MW generation. 
As a result, PSODAC reduces nearly 5% of the cost incurred by PSO strategy. 

4.3. Test System C

In Test System C, IEEE 24 bus RTS system is utilized in which 12 generation units are 
connected. 24 hour load profile is used to investigate the performance of PSODAC and PSO. The 
simulated load profile is depicted in Fig. 6. The system is experimented under no transmission loss 
constraints. Table 5 and 6 give the details of the generation strategy and solution quality, respectively. 
The performance plot is illustrated in Fig. 7, where the PSODAC potentially dominates PSO by 
exhibiting early convergence and converging to near-optimal solution. Despite there is degradation 
on convergence over PSO, when 8000 particles have undergone evaluation, the PSODAC further 
improves its searching ability and attempts to minimize the cost far better than PSO. Moreover, the 
PSO has almost reached a saturation point after 8000 function evaluations have been done, while the 
PSODAC sill improves the solution to minimize the gap between the ideal and converged solution.  
In the best case scenario, both the algorithms are found to be equivalent to each other. However, 
the performance of PSODAC is better than PSO in worst case scenario. As a result, the mean and 
median performance of PSODAC is better than PSO. Since best case scenario is considered to define 
the strategic variations between PSO and PSODAC, they exhibit similar generation strategies.

Fig. 6. 24 hour load profile of IEEE 24 bus RTS system

Fig. 7. Performance illustration between PSO and PSODAC (Convergence plot of Test System C)
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5 - Investigation on particle dynamics

Investigating the particle dynamics can effectively illustrate the movement of a particle towards 
global minima/optima. The particle dynamics of the proposed PSODAC is better than the PSO 
because the proposed PSODAC uses adaptive acceleration coefficients. To observe the property, 
fitness of each particle at all iteration levels are obtained. The unique set of fitness values are 
plotted against iteration in Fig. 8. The illustration represents test system C. If the particle dynamics 
are high, then more number of unique number particle fitness values, i.e. more number of , shall 
be obtained. In other words, high particle dynamics means (higher value of ) each particle varies 
its position at wide range for obtaining global optima. Few number of unique particles represent 
the particle is finding difficult to skip from its current position. The current position may be either 
global optima or local optima. Since ELD is multimodal in nature, there is more number of local 
optima. Hence, the probability of identifying global optima through PSO becomes less, say ; if 
there is one global optima and  local optima. Increased  often leads PSO to find difficulty in 
evading from local optima. From Fig. 8, it can be observed that traditional PSO exhibits particle 
dynamics only at few initial iterations and lags to search widely at the end of the iterations, despite 
the converged cost is not the least cost. However, PSODAC is active in searching till the end of the 
iterations and hence the possibility of evading from local optima and finding global optima is higher 
than PSO. Moreover, the effect of DAC on the intermittent generation and the performance can 
also be studied using Fig. 8. Since the constant acceleration coefficients in PSO enable a constant 
search space, the updated solution can be either drastically improved or deteriorated. In contrast, 
the PSODAC enables a gradual increase in the search space for exploration and hence the strength 
of searching in a huge dimension can be increased gradually. This results in a gradual improvement 
on the updated solution. Since the number of accomplished improvements are mapped to dynamics 
of the particle,  of PSODAC is said to be higher than PSO. 

Table 5. Comparison between PSO and PSODAC in terms of
generation strategies and minimizing cost 

Table 6. Quality of solutions obtained from PSO and PSODAC:
statistical measurement of total generation cost 
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Fig. 8. Dynamics of Particles (Individuals) at every iteration.
(The graphs are acquired for IEEE24 bus RTS system;

here  refers to the number of unique particles that exhibited varying fitness)
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6 - Conclusion and Future scope
This paper introduced an improved version of PSO, termed as PSODAC, to solve ELD problem 

in deregulated electricity generation system. The proposed PSODAC has recommended adaptive 
acceleration coefficients for particle updates phenomenon. As a result, each particle is accelerated 
in accordance to its position to reach the global optima. The efficacy of solving ELD problem 
is experimented under three cases. First case is a generation system with three generation units, 
second case has six generation units and third case is an IEEE24 benchmark RTS system with 12 
generation units. The experimental results have demonstrated that the performance of PSODAC is 
better than PSO. Further, this paper has investigated the dynamics of particle movement exhibited 
by PSO and PSODAC. The investigation has resulted in higher particle dynamics in PSODAC 
and lower particle dynamics in PSO. The results are encouraging and hence, this paper define the 
future research to focus. on solving dynamic ELD problem using PSODAC under wide constrained 
environment that includes systems with hybrid renewable energy sources such as wind turbine, 
photovoltaic panels and hydro units. 
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