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ABSTRACT

Economic load dispatch problem is one of the significant challenges in power generation
systems under deregulated environment. Since the problem is non-convex and multimodal in
nature, conventional programming models are not suitable to solve it. Traditional, but renowned
optimization algorithms such as Genetic algorithm (GA), Particle Swarm optimization (PSO) and
their variants need further development to reach global optima in a defined time. Our algorithm
of interest lies on PSO, because of its wide application and swarming intelligence. However, the
algorithm has a drawback of constant acceleration of particles towards global optima. As a result,
sticking with local optima, high computational complexity and identifying only near-optimal
solution often happens with PSO. This paper attempts to introduce an improved PSO in which the
acceleration constants are made adaptive. They tend to change dynamically based on the position
of the particle and the number of function evaluations. This directs the particles to search in a
systematic distributed environment, and hence we term the algorithm as PSO with Distributed
Acceleration Constant (PSODAC). Three test systems are adopted for experimental study through
which the performance of PSODAC over PSO is proved. The experimental investigation also
reveals that PSODAC exhibits higher particle dynamics than PSO.

1- INTRODUCTION

Economic load dispatch (ELD) is a significant methodology to determine cost efficient and
reliable power generation to meet the power demand (Bhattacharjee et al., 2014). The challenge
towards ELD has increased due to evolution of smart grid, which is often included with renewable
energy sources, electricity conveyors (Gungor et al., 2011; Gungor et al., 2013; Yao et al., 2012;
Zhao et al., 2012; Su et al., 2012; Siano et al., 2012). The primary objective of an ELD problem is
to minimize the total cost of a power generation unit without power scarcity and no compromise
on the operating constraints (Wood & Wollenberg, 1996; Ding et al., 2014; Somasundaram et al.,
2004). However, the multimodal property of ELD problem poses a great challenge to analysts
and experts on determining the optimal generation strategy. In other words, ELD problem has
numerous local optima, because of nonlinear fuel cost coefficients (Rabiee et al., 2014). Hence,
the probability of converging to local optimal strategy is higher than the converging towards global
optimal strategy (Panigrahi et al., 2006).

Despite the literature has been reported by ample number of optimization algorithms, they
do have sufficient enhancements to handle the aforesaid characteristics of ELD. For instance,
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classical calculus — based methods are able to handle only smooth and differentiable objective
functions (El-Keib et al., 1994). Linear programming models lag while handling piecewise linear
cost approximations (Fanshel & Lynes, 1964), whereas, dynamic programming models suffer due
to curse of dimensionality and high computational complexity (Wood & Wollenberg, 1984).

Few centralized approaches such as lambda iteration method and interior point method can
solve only convex optimization methods (Lin & Viviani, 1984; Lin & Chen, 2002). However,
ELD problems are practical problems and they are non-convex optimization problems (Wood &
Wollenberg, 1984; Yang et al., 1996).

In solving ELD problem, population based stochastic search algorithms have gained more
attention in the recent days. In fact, they are well known for its ability to handle non — convex
problems (Binetti et al., 2014). Genetic Algorithm (GA) (Chiang et al., 2009; Amjady & Nasiri-
Rad, 2009a; Amjady & Nasiri-Rad, 2009b; Walters & Sheble, 1993) and Differential Evolution
(DE) (Nomana & Iba, 2008) are the two of the popular evolutionary algorithms (Jayabharathi
et al., 2005; Hou et al., 2002; Nomana & Iba, 2008; Panigrahi et al., 2007) that are well known
for their specific computational intelligence on handling non-convex ELD problems, whereas
Particle Swarm Optimization (PSO) (Gaing, Z.-L. 2003; Kennedy & Eberhart, 1995; Selvakumar
& Thanushkodi, 2007; Chaturvedi et al., 2008; Panigrahi et al., 2008; Selvakumar & Thanushkodi,
2009; Sun et al.,2014) is one of the most popular swarm intelligent algorithms (Sun et al.,2014;
Panigrahi & Pandi, 2008; Bhattacharya & Chattopadhyay, 2010) to handle the problem effectively
(Binetti etal., 2014). Despite they enable fast searching of near global optimal generation strategies,
achieving global best remains open ended challenge in this platform.

1.1. Motivation

To handle the open ended challenge, numerous variants such as improved GA and PSO have
been reported in the literature (Gaing, Z.-L. 2003; Kennedy & Eberhart, 1995; Selvakumar &
Thanushkodi, 2007; Chaturvedi et al., 2008; Panigrahi et al., 2008; Selvakumar & Thanushkodi,
2009; Sun et al., 2014). Since the proposed algorithm of interest relies on around PSO, this paper
has studied various improved version of PSO that have been attempted to solve the various non-
convex optimization problems (Vlachogiannis & Lee, 2009; Park et al., 2010). Selvakumar
and Thanushkodi have introduced an improved PSO in which the particle movement has been
exhibited not only based on the particle and global best positions but also based on the worst
position. Further, a simplified local random search (LRS) has also been employed in the improved
version (Selvakumar & Thanushkodi, 2007).

In (Panigrahi et al., 2008), the inertia weight has been made adaptive based on the particle
rank rather than iteration ratio. In (Chaturvedi et al., 2008), self — organizing hierarchical PSO has
been introduced. It has also been recommended to use adaptive acceleration constants to further
improve self — organizing PSO (Chaturvedi et al., 2008). The earlier two algorithms are complexity
oriented, whereas the latter embeds the process that coincides with regular PSO operation and so
the searching complexity will not be increased. Being motivated by the conclusion, this paper
attempts to introduce an improved PSO based on adaptive acceleration constants.
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1.2. Contributions

This paper intends to solve the ELD problem using a robust optimization algorithm.

The algorithm is an improved version of PSO in which the acceleration constants are made
adaptive.

Contribution 1: This paper formulates the acceleration constant as a function of number of
evaluations made on the particles generated till the instant.

The improved PSO is used to solve ELD problems and the performance comparison is made
with traditional PSO.

Contribution 2: This paper investigates the dynamics of the particle throughout the swarming
iteration and the performance is correlated with them

Since each particle is allowed to search with systematic distribution, this paper embodies the
PSO as PSO with distributed acceleration constant (PSODAC). Due to this property, PSODAC
exhibits wide particle dynamics. This results in evading from local optima and finding the global
optima efficiently.

The rest of the paper is organized as follows. Section 2 formulates the ELD problem and
Section 3 describes PSODAC and the procedure to solve ELD problem. Section 4 discusses the
experimental results. Section 5 investigates the particle dynamics and Section 6 concludes the
paper.

2- PROBLEM FORMULATION

Let f(P,):0=n=<N o be the cost nth of generation unit to generate 5, MW of power, where N, is

the number of generation units in the system. Since the objective of ELD problem is to minimize
the total cost of the generation system, the ELD problem can be formulated as :

Ng
G* = argmin f(P ) (1)
AL nz=l ’

Eq. (1) is subjected to the following constraints:

(1) Generation capacity constraint:
pMin < p < pmax (2

(i1) Real power balance constraint:
N

oq

P, -(Pp+P,)=0 3)

S
Il
—_

In Eq. (3), p, refers to the total power demand in MW and P, refers to transmission losses,

which can be represented as:
g
P anpn 2 Bonbn + Boo (4)

where, B, B, and B, are the loss coefficients, which are statically defined for bus systems

me

as given in Table 2 and 4. In Eq. (1), is obtained. which is the optimal generation schedule for the
given generation system. This paper attempts to solve Eq. (1) using traditional PSO and PSODAC
and further investigates the obtained generation schedule.
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3-PSODAC FOR ELD PROBLEM
3.1. Traditional PSO

Eberhart has introduced PSO based on swarming behavior of bird flocks and fish schools
(Kennedy & Eberhart, 1995). The basic steps reside in the standard PSO are given below.

Step 1: Initialize Iteration count N; and Number of function evaluations Ny as 0 and 0,
respectively

Step 2: Initialize arbitrary particles [P,,]k :0 <k =< Py, Where P, is the size of particle set. The
particles are subjected to the constraints given in Eq. (2) and (3).

Step 3: Initialize arbitrary velocities [v, ], in the interval [-1,1]
Step 4: Determine fitness of each particle using Eq. (1)

Step 5: Save p,,, G,,, and the associated fitness values, where size of Py iS Pz, xn and size
of Gy 1S 1x 1

Set N;and Npto zero
Set P, ;and Gy, as null vector

Set f(Pyus )and f(Gpes Jto a Large number, say 10'0
Initialize [P, ]k and [v, ]k

Calculate fitness of every particle B, , i.e. f(P, Wk = f;(P,)
Update p,,

For every k'particle,
Phogt (k) = {[P" ]k Sie(Pn)< £(A best (k)
Prest (k ), otherwise
For End
RS Gl G {[P" D02z 0l (e 1) = 1B i (e 1 98) < 1 (e )

Ghegts Otherwise

Increase N;yand Npby 1 and P, respectively

ize>
While sufficient number of function evaluations are not met, i.e., Np < Ng™
Do for each particle
Calculate ¢j;and ¢y using Eq. (7)
Update velocity using Eq. (6)
Update particle using Eq. (5)
Calculate Fitness
Update Prest
Increase Npby 1
End Do
Increase N; by 1
Update Gy,
End While
Return Gp, and f (Gbest)

Fig. 1. Pseudo code of PSODAC
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Step 6: Increase N; and N by 1 and P,.,, respectively

Step 7: If termination criteria is met, go to Step 12

Step 8: Update particle set using Eq. (5)

Step 9: Determine fitness of updated particle set using Eq. (1)

Step 10: Update B, G, and the associated fitness values, when they undergo any improvement
due to the particle updates

Step 11: Go to Step 7
Step 12: Return Gy, and the fitness value

The termination of the process, as mentioned in Step 7, can be done, when either the algorithms
satisfies Ny > N"™ or n, > ¥ or combinations of both, where y™¥*and NP** are maximum
number of iterations and function evaluations, respectively.

3.2. PSODAC

PSODAC differs from PSO in the particle update process by introducing adaptive acceleration
constants. The pseudo code of PSODAC is presented in Fig. 1.

Traditionally, the updating process on particles in PSO (Kennedy & Eberhart, 1995; Shi, Y. &
Eberhart, R. 1998) is performed as follows:

[Pn ]Ilzpdated _ [P” ]k . [Vn :b:pdated (5)
[Vn jr/zpdated = W[Vn ]k + cl’l[Pn]k - [Pbest (” )]k

+02"2|:Pn]1f _[Gbest (”)]
In Eq. (6), w refers to an inertia weight, ¢; and ¢, refer to acceleration constants and refer to

(6)

arbitrary integers at [0.1]. Here, ¢, and ¢, are set as constant, usually set at 2, whereas 7 and 7, are
generated for each particle update throughout the iterations. However, the significance of these
parameters is high because they define the amount of deviation of particle with respect to B, and
Gpes to be considered for updating the particles. In this work, these parameters are varied based on
the position of each particle and the number of function evaluations that are made till the current

ey = Oy =™ 4 [cmax —cmm]i (7
NpE™

whereas, ¢™ and ¢™® are minimum and maximum limits of the acceleration constants, say

iteration. They can be given as

0 and 2, respectively, within which the cj; and c,; are dynamically varied, N, is the number
of evaluations of particles made till the current iteration and Ng® is the maximum number of
iterations. Hence by eq. (7), the ¢, and ¢y, are gradually increased from ¢™ and ¢™ based on the
position of the particle that is determined from the place where the evaluation of the particle takes
place. While the parameters the ¢, and ¢, are made adaptive, the rest of the parameters such as w
has to be tuned properly because of its sensitivity towards problem domain, system characteristics
and relation between the independent and its dependent variables. Even though the 5 and r, are
arbitrary integers, as per the basics of PSO, they can also be tuned to a definite and systematically
varying parameters for better convergence.
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Table 1. Generation limits and cost coefficients of Test System A

Generation Generation limits Cost coefficients
Units P (MW) P (MW) a ($/MWhr) b ($/MWhr) c($)
Unit 1 10 0.008 7 200
Unit 2 10 0.009 6.3 180
Unit 3 10 0.007 6.8 140

Table 2. Transmission loss coefficients of Test System A

Loss Coefficients Bun B Boo
Generation units 2 3
1 .00218 | .00093 | .00028 | .0003
2 .00093 | .00028 | .00017 | .0031 | .030523
3 .00028 | .00017 | .00179 | .0015
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4 - RESULTS AND DISCUSSION
4.1. Test System A

116

In system A, this paper attempts to connect three generation units and the experimentation is
carried out. The power demand is set to 150MW. The generation limits, cost coefficients and loss
coefficients are given in Table 1 and 2, respectively. Both the algorithms are executed and the
obtained generation strategies are tabulated in Table 5. Table 6 gives the solution quality of both
the algorithms, while solving ELD problem in System A and Fig. 2 illustrates the convergence
performance of PSO and PSODAC. To ensure fair results, each algorithm is initiated with 10
particles and executed for 10000 number of function evaluations. Similar set of experiments have
been conducted for 100 rounds and the results are collected to determine the statistical metrics
such as best value, worst value, mean, median and standard deviation of performance from the

mean value.
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Optimal Load Dispatch
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Fig. 3. Strategic variations between PSO and PSODAC
under the environment of Test System A

Table 3. Generation limits and cost coefficients of Test System B

Generation limits Cost coefficients
Generation Units | P"™ (MW) | P (MW) | a ($/MWhr) | b ($/MWhr) | ¢ (5)
Unit 1 100 500 0.007 7 240
Unit 2 50 200 0.0095 10 200
Unit 3 80 300 0.009 8.5 220
Unit 4 50 150 0.009 11 200
Unit 5 50 200 0.008 10.5 220
Unit 6 50 120 0.0075 12 120

As a best case performance, PSO derives a generation strategy of $1626, whereas PSODAC
derives a generation strategy of $1607. The cost proposed by PSODAC is 2% lesser than the
cost proposed by PSO. The similar ratio has been maintained in the worst case performance
and statistical metrics such as mean and median costs. The convergence plot given in Fig. 2
is acquired from one of the experiments. Despite the initial particles are same for both PSO
and PSODAC, the updating operator produces varying solutions, which are considered as initial
solutions in the convergence analysis (in all the test systems). The polynomial fitting exhibits
varying visualization on the initial conditions. It has been shown in the plot that PSODAC has
been initialized by strategy with higher cost than PSO, but it converges better than PSO. A raise
at 8000th function evaluation is due to polynomial fitting exhibited by the plot. Yet, it has been
observed from Fig. 2 that there is a potential evading from local optima after 4000 evaluations.
Similar kind of evading property can be observed for other test systems as per Fig. 4 and 7,
which are discussed in the subsequent sections. Hence, the optimal number of evaluations can be
determined as 4000 - 5000. For better illustration, the strategic variation is plotted between PSO
and PSODAC in Fig. 3. Here, PSO proposes to generation around 60MW, 80MW and 10MW
using unit 1, 2 and 3, respectively, to meet I50MW demand, whereas PSODAC strategizes to
generate 10MW using unit 1, 70MW using unit 2 and 70MW using unit 3. This strategic variation
has reduced around 2% of total fuel cost.

4.2. Test System B

In system B, there are six generation units that are operated to meet the demand of 700MW.
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The generation limits, cost coefficients and loss coefficients are given in Table 3 and 4,
respectively. The generation strategies obtained using both the algorithms is given in Table 5,
whereas Table 6 details the quality of the solutions provided by the algorithms. Under best case
environment, PSODAC has incurred 95.6% of total cost incurred by PSO. It has been slightly
varied to 95.9% under worst case environment.

Performance plot
T

9300

i L i i L i i H i
1000 2000 3000 4000 5000 6000 7000 BO00 9000 10000
Evaluations

Fig. 4. Performance illustration between PSO and PSODAC (Convergence plot of Test System B)

Table 4. Transmission loss coefficients of Test System B

Loss Coefficients B 10'4)

Generation units 1 2 3 4 5 6
1 0.14 1 0.17 | 0.15 ] 0.19 | 0.26 | 0.22
2 0.17 ] 0.6 | 0.13]0.16 | 0.15] 0.2
3 0.15 1 0.13 1 0.65 | 0.17 | 0.24 | 0.19
4 0.19 | 0.16 | 0.17 | 0.71 | 0.3 | 0.25
5 0.26 | 0.15]0.24 | 0.3 | 0.69 | 0.32
6 0.22 | 0.2 |0.19|0.25 | 0.32] 0.85

Optimal Load Dispatch
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T
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‘| I FsoDAC
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Generation Units

Fig. 5. Strategic variations between PSO and PSODAC
under the environment of Test System B

On average, PSODAC incurs 95.9% of the total cost incurred by PSO. The performance plot of
both the algorithms given in Fig. 4 illustrates the gradual convergence of PSO and steep convergence
of PSODAC. Fig. 5 represents the generation strategy proposed by PSO and PSODAC. PSO
proposes to generate [00MW from unit 1, whereas PSODAC almost doubles the generation of unit
1. Unit 3 generates around 260MW as per PSO strategy, but it is allowed to generate only 200MW
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by PSODAC. PSO generates only SOMW from unit 4, but PSODAC generates three times of the
generation quantity proposed by PSO. In unit 5, PSODAC recommends just 25% of the power
generated by PSO strategy. In unit 2 and unit 6, both the algorithms recommend SOMW generation.
As a result, PSODAC reduces nearly 5% of the cost incurred by PSO strategy.

4.3. Test System C

In Test System C, IEEE 24 bus RTS system is utilized in which 12 generation units are
connected. 24 hour load profile is used to investigate the performance of PSODAC and PSO. The
simulated load profile is depicted in Fig. 6. The system is experimented under no transmission loss
constraints. Table 5 and 6 give the details of the generation strategy and solution quality, respectively.
The performance plot is illustrated in Fig. 7, where the PSODAC potentially dominates PSO by
exhibiting early convergence and converging to near-optimal solution. Despite there is degradation
on convergence over PSO, when 8000 particles have undergone evaluation, the PSODAC further
improves its searching ability and attempts to minimize the cost far better than PSO. Moreover, the
PSO has almost reached a saturation point after 8000 function evaluations have been done, while the
PSODAC sill improves the solution to minimize the gap between the ideal and converged solution.
In the best case scenario, both the algorithms are found to be equivalent to each other. However,
the performance of PSODAC is better than PSO in worst case scenario. As a result, the mean and
median performance of PSODAC is better than PSO. Since best case scenario is considered to define
the strategic variations between PSO and PSODAC, they exhibit similar generation strategies.
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Fig. 6. 24 hour load profile of IEEE 24 bus RTS system

w10’ Performance plot
T T T T T

5.2

T T T
e (15
o | —DS00AC |

Cost (in$)

7% I N N I T NN B
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Evaluations

Fig. 7. Performance illustration between PSO and PSODAC (Convergence plot of Test System C)
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5 - Investigation on particle dynamics

Investigating the particle dynamics can effectively illustrate the movement of a particle towards
global minima/optima. The particle dynamics of the proposed PSODAC is better than the PSO
because the proposed PSODAC uses adaptive acceleration coefficients. To observe the property,
fitness of each particle at all iteration levels are obtained. The unique set of fitness values are
plotted against iteration in Fig. 8. The illustration represents test system C. If the particle dynamics
are high, then more number of unique number particle fitness values, i.e. more number of v, shall
be obtained. In other words, high particle dynamics means (higher value of ¥ ) each particle varies
its position at wide range for obtaining global optima. Few number of unique particles represent
the particle is finding difficult to skip from its current position. The current position may be either
global optima or local optima. Since ELD is multimodal in nature, there is more number of local
optima. Hence, the probability of identifying global optima through PSO becomes less, say %; if
there is one global optima and » -1 local optima. Increased N often leads PSO to find difficulty in
evading from local optima. From Fig. &, it can be observed that traditional PSO exhibits particle
dynamics only at few initial iterations and lags to search widely at the end of the iterations, despite
the converged cost is not the least cost. However, PSODAC is active in searching till the end of the
iterations and hence the possibility of evading from local optima and finding global optima is higher
than PSO. Moreover, the effect of DAC on the intermittent generation and the performance can
also be studied using Fig. 8. Since the constant acceleration coefficients in PSO enable a constant
search space, the updated solution can be either drastically improved or deteriorated. In contrast,
the PSODAC enables a gradual increase in the search space for exploration and hence the strength
of searching in a huge dimension can be increased gradually. This results in a gradual improvement
on the updated solution. Since the number of accomplished improvements are mapped to dynamics
of the particle, ¥, of PSODAC is said to be higher than PSO.

Table 5. Comparison between PSO and PSODAC in terms of
generation strategies and minimizing cost

Generator IDs

Test Case | Algorithms | 1 2 3 4 5 6 7 8 9 | 10 | 11| 12
A PSO 63 | 80 | 10
PSODAC 10 | 72 | 70
B PSO 100 | 50 | 266 | 50 | 200 | 50
PSODAC | 212 | 50 | 201 | 150 | 50 | 50
C PSO 100 | 400 | 30 | 30 | 54 | 54| 109 | 140 | 75 | 207 | 12 | 300
PSODAC | 100 | 100 | 30 | 30 | 54 |54 | 109 | 140 | 75 | 207 | 12 | 300

Table 6. Quality of solutions obtained from PSO and PSODAC:
statistical measurement of total generation cost

Test Algorithms Cost (in $) Execution time (seconds)
Case Best Worst Mean Median SD Best | Worst | Mean | Median SD
A PSO 1626.54 | 1634.51 1630.50 | 1630.44 2.36 1.62 1.62 1.62 1.62 0.00
PSODAC 1607.98 1615.74 1611.83 1611.89 2.32 1.83 1.84 1.84 1.84 0.002
B PSO 9007.29 | 9053.06 | 9029.41 9029.77 13.33 1.63 1.64 1.64 1.63 0.002
PSODAC 8644.66 | 8686.26 | 8666.52 | 8665.86 12.62 1.64 1.65 1.64 1.64 0.002
C PSO 3951.7e4 | 3973.3e4 | 3962.1e4 | 3962.1e4 | 6.21e4 | 4.049 | 4.070 | 4.059 | 4.059 0.006
PSODAC | 3951.7e4 | 3970.7¢4 | 3961.1e4 | 3960.9¢4 | 5.35¢4 | 3.603 | 3.621 | 3.611 3.611 0.005
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6 - Conclusion and Future scope

This paper introduced an improved version of PSO, termed as PSODAC, to solve ELD problem
in deregulated electricity generation system. The proposed PSODAC has recommended adaptive
acceleration coefficients for particle updates phenomenon. As a result, each particle is accelerated
in accordance to its position to reach the global optima. The efficacy of solving ELD problem
is experimented under three cases. First case is a generation system with three generation units,
second case has six generation units and third case is an IEEE24 benchmark RTS system with 12
generation units. The experimental results have demonstrated that the performance of PSODAC is
better than PSO. Further, this paper has investigated the dynamics of particle movement exhibited
by PSO and PSODAC. The investigation has resulted in higher particle dynamics in PSODAC
and lower particle dynamics in PSO. The results are encouraging and hence, this paper define the
future research to focus. on solving dynamic ELD problem using PSODAC under wide constrained
environment that includes systems with hybrid renewable energy sources such as wind turbine,
photovoltaic panels and hydro units.
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