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Abstract  

  

Seawater pollution has been identified as being the most serious menace to both humankind 

and aquatic ecosystems. Any regulation or policy ought to be preceded by seawater evaluations. 

The conventional techniques for determining the quality of saltwater have been demonstrated to 

be laborious and expensive. On the contrary, using in-situ measurements, earth observation data 

from satellites can provide thorough, swiftly, and affordable information about water bodies. As a 

result, this research proposes an alternative strategy for identifying water quality index (WQI) 

utilizing machine learning techniques that simulate seawater characteristics using in-situ 

measurements and remotely sensed data. Fuzzy logic was utilized to estimate WQI in terms of six 

parameters which are chlorophyll, pH, dissolved oxygen (DO), conductivity, salinity, and turbidity. 

Data records of these parameters were collected over a year (2016-2017) from 15 buoy stations 

deployed in Kuwait’s territorial waters, five of which were in Kuwait Bay.  

Additionally, two different machine learning techniques were used to correlate spectral 

bands from Landsat-8 with in-situ measurements, which are Genetic Algorithm (GA) and Particle 

Swarm Optimization (PSO). An appropriate estimate of WQI in Kuwaiti territorial seas was 

determined by fuzzy logic. Furthermore, it was discovered that GA outperformed PSO in its 

capacity to observe WQI over the Bay of Kuwait. Based on spatial mapping, it was revealed that 

there is a pressure on Kuwait bay due to the concentration of anthropogenic activities. For further 

studies, it is recommended to apply other methods to estimate WQI and compare the results to 

fuzzy logic results.  
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1. Introduction  

Human waste has a wide range of environmental effects when urbanization grows in intensity 

in nations with dense populations. Severe environmental risks, especially for aquatic life, are 

associated with the unauthorized discharge of wastewater into the ocean. By contracting an 

infection from eating tainted seafood, people may also be affected by unlawful sewage effluent 

indirectly (Banana et al., 2016). Sewage discharges have been identified as a major contributor to 

coastal contamination in the Arabian Gulf countries (Mamoon et al., 2015).  

It is essential to evaluate the ocean's water quality before executing a seawater protection 

strategy. The quality of the water cannot be accurately described by a single criterion. In order to 

assess the quality of the water, various physical and chemical saltwater parameters have been 

found. The Water Quality Index (WQI) can be used to gauge a water body's total water quality 

(Kachroud et al., 2019).  

The assessment of WQI has been the focus of thousands of approaches since its founding in 

1965. The most recent method for evaluating WQI is fuzzy logic (Icaga, 2007). The concentration 

levels that are either very close to or very distant from the limits are grouped together in 

conventional ways of categorizing water quality measures using an unambiguous set. The 

distinctions between the classes of parameters may therefore be misleading. Contrary, when 

assessing the quality of water using fuzzy logic, the standard quality classes are converted into 

continuous form. The sum of the concentration values of the various quality metrics is then 

subjected to fuzzy rules. Finally, a WQI estimate is produced by De-fuzzifying the addition of 

concentration values (Icaga, 2006).  

  

When compared to alternatives including remote sensing technologies, traditional, time- 

consuming, and expensive laboratory analysis is used to measure and analyse water quality 

variables needed to calculate WQI. In addition to the expanding use of technology, new techniques 

for assessing water quality are being developed. These include remote sensing and geographic 

information systems (GIS), which use satellite data to determine the quality of the water. These 

methods work on increasing the accuracy of the observed data and decrease time and cost 

(Abdelmalik, 2018).  

  

2. Objectives  

This paper mainly aims to evaluate water quality index (WQI) of the study region using fuzzy 

logic as well as assessing the spatial and seasonal variation of WQI. In addition to using machine 

learning techniques specifically, Genetic Algorithm (GA) and Particle Swarm Optimization (PSO) 

to correlate between in-situ measurements and spectral bands to ascertain the coefficients of each 

band and develop a reliable equation that estimates WQI in the Bay of Kuwait.  

  

3. Data and methods  

3.1 Study Region  

The data was collected from 15 monitoring buoy stations deployed in Kuwait’s waters. five 

buoy stations are in Kuwait Bay, and the other monitoring stations are in the Arabian Gulf as 

presented in Figure 1, stations names are provided in Table 1. As indicated in Figure 1, the current 

investigation was carried out within Kuwait's territorial seas. Kuwait's territorial waters encompass 
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an area of around 8000 km2, and they are separated into three distinct areas: Kuwait Bay, Southern 

Waters, and Northern Waters (Al-bannai, 2021). The most important subregion is Kuwait Bay, 

which is a shallow water tongue that spans 750 km2.  

Table 1 Monitoring stations  

  

Station No.  Station  Station No.  Station  Station No.  Station  

St-1  Southeast of 

Ras Al-Khaid  

St-2  Khor 

Boubyan  

St-3  Khor  

AlSabiya  

Entrance  

St-4  Northeast of 

Ras Ajuzha  

St-5  Northeast of 

Doha Port  

St-6  Northeast of 

Doha Port 2  

St-7  West of Doha 

Port  

St-8  West of 

AlAkaz  

St-9  Southeast of 

Al-Beda’a  

St-10  Ahmadi Port  St-11  Southeast of  

Abdullah 

Port  

St-12  Northeast of  

Kubbar  

Island  

St-13  Southest of 

Qaruh Island  

St-14  Northeast of  

Um  

AlMaradim  

Island  

St-15  Southeast of  

Mina Az- 

Zour  

  

  

 

Figure 1. Kuwait map showing study region.  
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3.2 Data Collection  

The seawater quality parameters data set obtained from Kuwait Environmental Public 

Authority (KEPA) was recorded over a year (2016–2017). The measured parameters were recorded 

every 24 hours including six parameters which are provided in Table2.  

Table 2 Seawater quality parameters 

  

Parameter  Unit  Importance in marine ecosystem  

pH  -  It indicates the  relative acidity or  alkalinity of 

water  

Turbidity  NTU  It is defined by the quantity of light scattering 

generated by suspended matter in water  

Chlorophyll  Ug/L  It is a critical chemical property for photosynthesis  

Conductivity  mS/cm  It  is  a  significant  indicator  of  ocean  

electromagnetic properties  

Dissolved Oxygen  mg/L  It facilitates the respiration of aquatic organisms 

and aids in the breakdown of organic materials  

Salinity  %  It quantifies the amount of salt in seawater.  

3.3 Landsat-8 Image Processing  

Landsat-8 images were collected from Earth Explorer website The outcomes have been made 

accessible for identifying, and the one that is clear of clouds and debris is preferable. As a result, 

it is strongly advised that satellite image acquisition occur on the same day as in-situ sample 

collection to decrease errors and provide more accurate calibration of the algorithms used to assess 

water quality (Bonansea et al., 2015). For this study, a total of ten cloud-free scenes of Landsat-8 

over the study period, covering all Kuwait Bay stations and all seasons of the year. Only six of 

them were suitable for utilization and the other four were disregarded.  

Atmospheric Calibration of images has been performed on ENVI 5.2 software, to remove 

atmospheric influences and translate radiometric readings into radiation. While Radiometric 

calibration was performed to convert the digital numbers of remotely sensed satellite images to 

absolute values per unit wavelength or reflectance (Chavez, 1996). Five bands were used in this 

study which are provided in Table 3. Bands pixel values are required for the machine learning 

techniques which use the correlation spectral bands (pixel values) and in-situ data.  

Table 3 Landsat-8 Bands combination (USGS, 2019) 

  

Sensor  Spectral 

Band  

Use Area  Wavelength 

(µm)  

Resolution  

OLI  Band 1  Coastal/Aerosol  0.433 - 0.453  30 m  

OLI  Band 2  Blue  0.450 - 0.515  30 m  

OLI  Band 3  Green  0.525 - 0.600  30 m  

OLI  Band 4  Red  0.630 – 0.680  30 m  

OLI  Band 5  Near Infrared (NIR)  0.845 – 0.885  30  
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3.4 Estimating WQI using Fuzzy Logic  

Fuzzy logic was used to calculate WQI of water bodies in Kuwait according to seasonal 

variations. The process of developing WQI using Fuzzy Interface System (FIS) transforms the 

output set to a crisp one. The selection of seawater parameters serves as the foundation for WQI 

development. In addition, six characteristics were used to assess the water quality of 15 stations. 

According to the KEPA data that is currently accessible, from December 2016 to December 2017. 

The one-year analysis was divided into four seasons: winter, spring, summer, and autumn. The 

included parameters and their ranges are presented in Table 4.  

Table 3  

Parameters used in determining WQI using fuzzy logic.  

 

  

Turbidity 

(NTU)  

Azisa et al. (2015)  

   

Conductivity 
     

(mS/cm)  

 30 to 60  Normal  Zheng et al. (2018)  

 
*Some modifications were made (merging some ranges together) to meet the standard criteria of the 

parameter by KEPA.  

WQI was added as an output and its classes are presented in Table 5, according to the 

Canadian Council of Ministries of the Environment (CCME) method (CCME, 2001). 24 rules were 

constructed based on global criteria and according to the available data ranges to develop WQI. 

Then, these 24 rules were successfully used in the rule base step according to Mamdani fuzzy 

inference. For the computation of the fuzzy rule, the minimum operator “and” was used to ensure 

having all parameters within the specified ranges. Finally, WQI was developed.  

 

 

15-25  Fairly turbid  

25-35  Rather turbid  

35-50  Turbid  

Parameter   Range   Indication   Reference   

  0 - 6.5   Acidic     
pH   6.5 - 8   Neutral   ( Husada   &   Nurhidayat,   2020)   

  8 - 14   Alkaline     
  <4   Unaccepted   ( Vigueras - Velázquez et   

al.,2020)*   DO   ( mg/L )   4 - 8   Normal   

  <15   Good     

>50   Very   turbid   

Chlorophyll   
) ( Ug/L   

<3   Excellent   
3 - 10   Average   

Lin &   Huang   (2015)*   
>10   Poor   

  <33   Low     
Salinity   % ( )   33 - 45   Excellent   KEPA   

  >45   High   
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Table 5: Water quality categories per CCME approach (CCME, 2001).  

  

Class 

No.  

WQI  Quality 

Class  

Description  

1  <44  Poor  Water quality is almost always threatened or harmed; conditions are 

frequently.  

2  45-64 Bad Water quality is typically protected, but it is periodically 

threatened or harmed; conditions occasionally deviate from natural or 

optimal levels. Water quality is typically protected, but it is 

periodically threatened or harmed; conditions occasionally deviate 

from natural or optimal levels.  
 4  80-94  Good  Water quality is preserved with only minimum risk or impairment; 

conditions rarely deviate from natural or optimal levels.  

 5  95-100  Excellent  Water quality is preserved with virtually little threat or impairment; 

circumstances are astonishingly close to natural or pristine levels.  

  
3.5 Machine Learning Techniques  

In this research, two machine learning techniques were adopted to correlate spectral bands with 

in-situ measurements, which are Genetic Algorithm (GA) and Particle Swarm Optimization (PSO). 

Both techniques are considered as optimization techniques. In this case, both are solving an 

unconstrained, single objective optimization problem. Moreover, the main objective of these 

techniques is to discover the optimum coefficient for each band that lessen the absolute difference 

between bands and the in-situ measurement of WQI. Each station has its own objective function, 

where it includes WQI measured over several days, in addition to spectral bands retrieved from 

images collected on the same days as WQI was measured. The developed equation will be used 

later to measure WQI over the same station. In details, each station will have a single equation that 

is used to measure WQI during any season. The validity of the resultant equation will be evaluated 

using statistical tests. For both techniques, the objective function used is presented by the following 

equation:  

  

  

   𝑛    

 𝑓  𝑐𝑜𝑒𝑓𝑓𝑖𝑒𝑐𝑖𝑒𝑛𝑡 (𝑖𝑛 𝑠𝑖𝑡𝑢 𝑚𝑒𝑠𝑢𝑟𝑒𝑚𝑒𝑛𝑡) |  (1)  

 𝑖   𝑑𝑎𝑦   

Where b is the pixel value of each band, which was obtained from ArcMap, n is the number of 

days included in the equation and it is also equal to the number of images collected for the same 

station, while coefficient is the number to be obtained by the machine learning techniques. The 

following equations were used in PSO (Eberhart & Kennedy, 1995).  

  

  𝑉  𝑟𝑎𝑛𝑑 (𝑋𝑝𝑏𝑒𝑠𝑡  𝑟𝑎𝑛𝑑  (𝑋𝑔𝑏𝑒𝑠𝑡 − 𝑋(𝑡))  (2)  

 𝑋   (3)  

3   65 - 79   Marginal   
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Where:  

V(t): Velocity of the particle at time t  

X(t): Particle position at time t 

w: Inertia weight c1: personal 

factor. c2: global factor.  

rand: uniformly distributed random number between 0 and 1  

Xpbest: Particle’s personal best position  

Xgbest: Particle’s global best position  

3.6 Spatial Mapping  

Spatial mapping of WQI over stations during the four seasons were generated using ArcMap 

10.8.2 software. Spatial mapping can help in visualizing the spatial distribution of WQI in all 

regions of Kuwait waters. Additionally, the most affected regions can be pointed out from the 

developed maps.  

3.7 Goodness of fit measures  

Model evaluation is a crucial aspect in the development of a system model. Goodness of fit is 

being measured by several tests to evaluate the validity of the model. Four statistical tests were 

applied to assess the validation of PSO and GA equations. The applied statistical tests are: Mean 

Squared Error (MSE), Root Mean Squared Error (RMSE), Mean Absolute Error (MAE), 

Coefficient of determination (R2). Where MSE estimates how close a regression line is to a group 

of data points. A smaller MSE indicates that the data points are dispersed closely around its mean 

(Gupta, 2023). On the other hand, RMSE measures the average differences between estimated 

values by a model and the actual ones. The lower the RMSE value, the better the model is. A perfect 

model would have an RMSE value of 0 (Moody, 2019). Additionally, R2 represents the variance 

proportion for a dependent variable which is explained by an independent variable in a regression 

model, the closer R2 to 1, the better the model. While MAE measures the errors between estimated 

values and observed ones, the model shows more accuracy as MAE gets closer to 0 (Hiregoudar, 

2020).  

The previous statistical tests are given by the following equations:  
  𝑛    

 MSE ̂ 𝑛  (4)  
𝑖=1  

   

 
 𝑛    

̂ 

𝑅𝑀𝑆𝐸  

 𝑛  (5)  
𝑖=1  
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  ∑   𝑛  (𝑦̂𝑖 − 𝑦𝑖)2    

 𝑅2 = 1 − ∑𝑖=1𝑖=1𝑛     (𝑦𝑖 − 𝑦 )2   (6)  

  
  𝑛  

 𝑀𝐴𝐸  𝑦𝑖|    
 𝑛  (7)  

𝑖=1  

  

Where:  

𝑦̂𝑖: is the predicted value. 𝑦𝑖: is 

the observed value. n: number 

of observations. 𝑦 : the mean of 

observed values.  

  

4. Results and discussion  

4.1 WQI over seasons  

Six criteria related to saltwater quality constitute the water quality index. As a result, any of 

them changing will affect the total quality of seawater. The variation in WQI over stations in the 

winter is illustrated in Figure 2. It is clear that station 2 (Khor Bobyan), with its 22% WQI, 

undesirable water, had the lowest WQI. It is noticed that 60% of Kuwait Bay stations had bad water 

quality while the remaining 40% had marginal water quality. Maximum observed WQI was 72% 

which is marginal WQI. The high inflow of freshwater from Shat Al-Arab during winter to Kuwait 

waters also contribute to decrease the WQI in some stations in Kuwait marine.  
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Figure 4. Variation of WQI in winter over stations  

Figure 3 reveals that stations 1, 2, and 3 established no improvement and no degradation in 

WQI. 80% of the stations in Kuwait Bay had poor WQI. The West of Doha Port displayed a 20% 

decrease in WQI, placing it in the poor category rather than the marginal one observed during 

winter. WQI in Ahmadi Port also decreased to be in the bad range. An 18% improvement in WQI 

in Southeast of Qaruh Island was observed. The last five stations had the same trend of WQI.  

 
Figure 3. Variation of WQI in spring over stations  

As shown in Figure 4 summer season indicated an elevation in WQI in some stations namely 

Southeast of Ras Al-Khaid, Khor Boubyan and Khor Alsabiya Entrance stations. On the other hand, 

Kuwait bay showed constant WQI in its all stations which is considered as bad water quality. 

Furthermore, it is examined as the lowest detected WQI compared to other Kuwait territorial 

waters. Which is justified by the concentration of anthropogenic activities along the bay of Kuwait 

Al-Abdulghani et. al (2013). Other stations emphasized no variation in WQI. Regarding stations 

where WQI has been changed, these changes can be related to the inflow from sat Al-Arab river. 

Al-Mutairi et. al (2014) mentioned that inflow from Shat Al-Arab plays a role in fluctuating 
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seawater quality in Kuwait marine. Additionally, during summer season the discharge from Shat 

Al-Arab reaches its lowest levels which lessen the amount of nutrients that plays a role in 

deteriorating seawater quality in Kuwait waters (Devlin et al., 2015).  

  

 
Figure 4. Variation of WQI in summer over stations  

Figure 5 delineates the variation of WQI among stations in autumn season. Compared to 

summer season, Ras Al-Khaid WQI changed to be poor water quality. Water quality in Khor 

Boubyan and Khor Alsabiya Entrance stations also decreased. Conversely, Northeast of Ras Ajuzha 

showed an improvement in WQI. Whereas other Kuwait bay stations did not depict any variation. 

A significant upsurge in WQI in Station 11 was noticed while other stations clarified no variation 

in WQI compared to summer season. During Autumn season water circulation is low since there 

is no significant input from Shat Al-Arab river (Devlin. et al,2015) Which contributes to the 

deteriorating WQI in some stations.  

 

Figure 5. Variation of WQI in autumn over stations  
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4.2 Goodness of fit measures  

Estimated WQI from the resultant equations of GA and PSO are plotted versus measured  

WQI and presented in Figures 6 and 7, respectively. Regarding WQI estimated using GA equation, 

R2 ranges from 0.7084 (West of Doha Port station) to 0.9998 (Northeast of Doha Port). Indicating 

strong reliability of the resultant equations from GA. Whereas WQI estimated using PSO 

equations, the resultant R2 ranges from 0.5517 (West of Doha Port) to 0.8623 (West of AlAkaz). 

MSE of the resultant equations by GA ranged from 0.0128 (Northeast of Doha Port) to 33.43 (West 

of Doha Port). While it ranged from 34.75 (Northeast of Doha Port 2) to 316.09 (Northeast of Doha 

Port) using PSO. The best estimated RMSE of GA equations was 0.113 (Northeast of Doha Port), 

while the worst was 5.78 (West of Doha Port). Regarding PSO equations, minimum RMSE was 

5.77 (West of Alakaz) while the maximum was (17.78) (Northeast of Doha Port). Moreover, the 

results showed that MAE for GA was in the range from 0.0529 (Northeast of Doha Port) to 4.08 

(West of Doha Port). On the other hand, MAE estimates using PSO ranged from 3.36 (Northeast of 

Doha Port 2) to 11.38 (Northeast of Ras Ajuzha). According to the previous values, it can be 

concluded that GA is superior to PSO in estimating WQI among Kuwait bay stations.  
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(e)  

Figure 6. Comparison between measured WQI and calculated WQI over stations using GA: (a): 

station 4, (b): station 5, (c): station 6, (d): station 7, (e): station 8  
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(e)  

Figure 7. Comparison between measured WQI and calculated WQI over stations using PSO: (a): 

station 4, (b): station 5, (c): station 6, (d): station 7, (e): station 8  

4.3 Spatial mapping  

The following figures represent the spatial mapping of WQI over the four seasons in 

Kuwait. Generally, Kuwait bay’s WQI was worse than other territorial waters except for Khor  
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Boubyan in winter and spring at which the lowest WQI was detected. The discharge from Shat Al- 

Arab River plays a significant role in changing WQI in Kuwait. It results in an increase in 

freshwater into Kuwait which mixes with Kuwait waters and increases water circulation there. 

Conversely, it holds sediments and other nutrients which tend to increase the water quality in  

Kuwait. In winter and spring WQI is lower close to the outfall’s locations. The dark colors in the 

Kuwait bay indicates less quality of water there particularly close to AlDoha power and 

desalination plants. Moreover, it can be referred to the concentrated man-made activities there, 

especially Shuwaikh power plant. It is obvious that the water quality in the Arabian gulf is much 

better due to the higher water mixing and circulation compared to the bay of Kuwait (Al-Mutairi 

& Al-Battay, 2014). According to these figures, WQI at any location in Kuwait waters can be 

detected.  

  

 

  

  
  

( a )   

    

  
  

( b )   
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 (c)  (d)  

Figure 8. WQI over stations along the four seasons: (a):winter, (b):spring, (c):summer, (d) autumn  

  

5. Conclusion  

Water quality features provide the base for analysing the suitability of water for different uses 

and improve the current conditions. In order to detect WQI, this paper introduces dynamical 

models and model-based data assimilation (optimization) techniques, which simulate WQI using 

in-situ measurements and remotely sensed data. In addition to estimate WQI using non-traditional 

method which is fuzzy logic. Two other machine learning techniques were employed, which are 

GA and PSO to correlate between spectral bands and in-situ measurements, to develop a 

sustainable equation that can be used for each station to estimate WQI along any season. The study 

was implemented in Kuwait, data was collected from 15 buoy stations deployed in Kuwait 

territorial waters, five stations of them are in Kuwait Bay. WQI was assessed upon fuzzy logic, it 

varied from 22% in winter to 87% in autumn. GA and PSO showed good results in estimating WQI 

based on Landsat-8 bands and in-situ measurements in five stations in Kuwait bay. For WQI R2 

ranged from 0.7084 to 0.9988 and from 0.5517 to 0.8623 using GA and PSO, respectively. MAE 

of WQI using GA equation was in the range from 0.0529 to 4.0 while it was in the range of 3.36 

to 11.38 using PSO equation. It can be concluded that the GA showed higher efficiency than PSO 

in detecting all parameters. Using spatial mapping techniques, it was demonstrated in this research 

that WQI may be discovered across the ocean, regardless of the presence of buoy stations. The 

pressure on Kuwait Bay was seen on the maps since it is suffering more than other Kuwaiti 

territorial seas. Furthermore, this can be justified that by the anthropogenic activities that have 

impact on the Bay’s marine, the loads from Shat Al-Arab River, as well as the wastewater 

discharge. In conclusion, it is recommended to apply these machine learning techniques and 

include more stations in further studies.  
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