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Abstract:  

Highway bridges are vital components of infrastructure systems that support effective 
vehicle flow throughout the transportation network. Nevertheless, several factors, including the 
age of the bridge, operational characteristics, and exposure to the climate threaten the continuous 
function of such bridges. Because of this, it may be challenging to confidently anticipate the 
condition of bridges and prioritize needed maintenance tasks. In this article, we suggest a smart 
data-driven methodology for forecasting the condition of bridges based on a range of structural 
and operational aspects. In addition, several climatic factors were considered to assess the impact 
of environmental exposure on bridge conditions. 

Different machine learning algorithms including neutral network, support vectors machine, 
random forest, and others were trained utilizing historical bridge inspections in the U.S. Feature 
engineering and hyperparameter tuning techniques was used to identify the factors that have the 
most influence on the condition. With a mean relative error of 3.8%, GBT produced the most 
promising results. Additionally, the research demonstrated the predictive significance of 
some climatic parameters, particularly the freezing index. The developed model provides an 
accurate and timely assessment of their condition which can be leveraged to prioritize maintenance 
and renewal activities. 

Keywords: Bridge management, condition prediction, machine learning, data-driven modeling, 
climatic factors. 
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1. Introduction 

Highway bridges are essential for the safe and efficient movement of people and goods. 
Nonetheless, they face several challenges, including urbanization, deterioration, aging, and budget 
constraints. These challenges are compounded by the need to cope with natural disasters, increased 
traffic, aging, and environmental constraints. In the United States, for example, 42% of bridges 
were built before 1980 and 7.5% are structurally deficient according (ASCE 2021). To make it 
worse, climate change is having a significant impact on the transportation sector, with annual direct 
damages to road and rail assets estimated to be between 3.1 and 22 billion dollars (Liu et al. 2022). 
This damage is caused by a variety of factors, including extreme weather events, sea level rise, 
and changes in precipitation and temperature patterns. This necessitates a focus on asset 
management programs to ensure the long-term sustainability of bridges against this wide spectrum 
of disruptive sources. The first keystone in establishing such plans is to assess the condition of 
highway bridges. Such assessment can assist in determining the optimal plans for capital renewal 
projects and restoration activities following widespread hazards.   

This research aims to investigate the use of machine learning algorithms to assess the condition 
of highway bridges, considering the impact of climate factors. The study uses two datasets: the 
NBI database, which contains information on the condition of bridges in the United States, and the 
LTPP climate dataset, which contains information on weather stations in different location across 
the country. The research team developed several models to estimate the condition of highway 
bridges and identified the key influential highlighting the climatic factors impact on the condition 
of highway bridges. 

2. Literature review 

Condition assessment is essential for transportation agencies to accurately describe the extent 
of bridge deterioration. Several research efforts have presented methods to estimate the condition 
of highway bridges. Most of these attempts have focused on structural factors, such as the 
condition rating of various bridge components and the overall load-carrying capacity. For example, 
Amiri et al. (2019) presented an approach for ranking maintenance actions of highway bridges 
considering both structural and financial aspects. Multi-criteria decision-making techniques, such 
as the Analytic Hierarchy Process (AHP) and the Technique for Order Performance by Similarity 
to Ideal Solution (TOPSIS) were investigated to determine the relative importance of the 
considered factors. Prior to this, Alsharqawi et al. (2018) used Quality Function Deployment 
(QFD) to analyze several faults, including corrosion delamination, spalling, and fractures, to 
evaluate the condition of concrete bridge decks. In a different approach, Abu Dabous et al. (2017) 
evaluated the condition of bridge decks by creating an integrated model that used ground 
penetrating radar and infrared thermography maps. The ground penetrating radar and infrared 
thermography threshold values used in the created model were arbitrarily determined for each 
individual example. Dinh and Zayed (2016) employed fuzzy theory to develop computerized 
software that estimates the bridge deck corrosiveness index that takes into consideration the 
fuzziness associated with the expert opinions. 

It is evident, in view of previous studies, that the accuracy and comprehensiveness of prior 
condition assessment of concrete bridges can be improved by addressing several issues that should 
have been considered. For instance, there is still a need for a single integrated model that can 
accurately represent the multidimensional nature of bridge condition assessment. Global warming 
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is set to accelerate the structural deterioration of bridges by 31%, decrease their service life by 15 
years (Bastisdas-Arteaga et al., 2013), and increase the maintenance and repair costs (Ekolu 2020). 
Nonetheless, the influence of climatic conditions on the properties of concrete bridge decks was 
investigated by only a few models. It is necessary to develop a comprehensive model that takes 
operational, structural, and climatic elements into account. It would be beneficial to assess the 
respective capabilities of more advanced algorithms such as deep learning, bagging, and boosting, 
and others. This would expand the knowledge about the appropriateness and efficacy of machine 
learning methods for forecasting bridge conditions while taking the climatic conditions into 
account. 

3. Methodology 

Figure 1 depicts a flowchart methodology followed to fulfill the objective of this study. After 
reviewing the relevant literature, the study proceeds in the data acquisition stage. In this phase data 
about structural, operational, and climatic influential factors were gathered as well as the observed 
condition ratings of highway bridges. Data pre-processing protocol then started to prepare the data 
for model calibration. Next, feature engineering is carried out to determine the most influential 
factors and reduce the model’s complexity. Several data-driven models were then calibrated based 
on machine learning algorithms, with each model’s hyperparameters automatically tuned through 
a cross-validation procedure to improve the model’s performance. Finally, the best performing 
model was determined exploiting several performance measures. Underlying concepts and 
mathematical formulation are detailed in the subsequent section.  

3.1.Data collection and pre-processing 

The data was extracted from NBI database, Long-Term Pavement Performance (LTPP) climate 
tool, both controlled by Federal Highway Administration (FHWA 1995). The bridge dataset 
includes information about the location, geometrical aspects, structural elements, construction 
parameters, and conditions of the bridge, among more than 120 parameters. Furthermore, historical 
conditions from the years 2021 and 2020 have also been extracted. The Federal Highway 
Administration exploits a 10-point rating system ranging from 0-9 to evaluate concrete bridge 
decks condition. In this inventory, condition rating 9 represents the highest condition or the least 
maintenance requirement, and vice versa.  

The LTPP dataset that was acquired contains details on the locations of several weather stations 
as well as details on climatic factors like precipitation, temperature, freeze and thaw, and 
evaporation. Based on the locations of the bridges and weather stations, two datasets were 
combined. To guarantee that each bridge would be paired with the closest weather station, the 
weather stations in the surrounding states of the state under study were also checked.  

Before constructing the various machine learning models, several data preparation tasks 
were carried out to make sure the dataset has been cleaned and translated into the proper format 
for prediction. The dataset was first cleared of incorrectly coded, redundant, and missing attributes. 
Any data point that had the value NA, not applicable, was similarly eliminated from the database. 
Major rehabilitation renewal efforts would normally change the deteriorating behavior of concrete 
bridge decks. Bridges that had undergone such measures were excluded. When a bridge is rebuilt, 
its age is determined using the new reconstruction year.   
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Figure 1. Methodology Framework 

3.2.Model calibration and testing 

In this phase, the data was first split into two main classes with percentages of 90% and 10% 
for training and validation and testing, respectively. Cross-validation is used to further divide the 
early portion of the data for model-building process into training and validation sets. By lowering 
the bias in selecting the validation set, cross-validation helps to provide a more accurate assessment 
of the prediction accuracy and prevents overfitting. During cross-validation, the dataset is 
separated into K groups and then shuffled. The Kth group is left for validation after fitting and 
training the prediction model using K-1 groups. A new group is then held for validation while the 
remaining ones are used for training as the operation is iteratively repeated. Next, each iteration's 
average performance is exploited to calculate performance. Through an optimization procedure 
that automatically modifies the settings of the prediction algorithms, the cross-validation 
classification error will be reduced. Testing set,10% of the data, that neither the training nor the 
validation processes have seen will be used in the final accuracy assessment. This holdout 
collection is essential for generalization to ensure that tested prediction models perform well on 
fresh datasets for upcoming applications.  
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Hyperparameter tuning is employed in this study during the training phase. Hyperparameters 
are predetermined settings that have a large impact on the performance of the model though cannot 
be discovered by data-driven learning. Grid search was used in this work to automatically explore 
possible combinations of hyperparameter values for the algorithms under investigation. Grid 
search allowed finding the ideal setup that enhances the performance of the model by thoroughly 
scanning the predefined hyperparameter space.  

Feature engineering plays a crucial role in enhancing the model's performance. Feature 
selection involves identifying and retaining the most relevant features while eliminating irrelevant 
or redundant ones. By doing so, we ensured that the model focuses on the most informative aspects 
of the data, reducing noise and preventing overfitting. In this study, 20 factors out of the 120 
available on the original database were selected to build the models. This was done based on their 
relevance to the deterioration of highway bridges and overall impact on the models’ accuracy. 
Different models have been developed in this work, based on naïve base, support vector machines, 
decision trees, random forests, gradient-boosted trees, deep learning, and generalized linear 
models. These models were picked because they are frequently used in asset management systems 
and can mimic complex interactions, such as those influencing the deterioration of 
highway bridges (Assad and Bouferguene 2022). The constructed prediction models are briefly 
discussed below followed by a comparison of each model's accuracy.  

Generalized Linear Model (GLM) 
With this strategy, linear regression may be generalized to include any exponential family 

distribution instead of just the normal distribution for the dependent variable. This exponential 
family includes several probability distributions, such as the normal, binomial, gamma, and others. 
Equation (1) provides a link function that can be used to relate the mean value of the dependent 
variable distribution to the independent variables. A penalty term is also added to control the error 
variance and lessen the variability of the projected values. To select the best family distribution 
and link function, a parameter tuning optimization is carried out. The best GLM model used in this 
study makes use of the logarithmic link function and Gaussian family distributions. 

𝜇 = 	𝐸 𝑌 𝑋 = 𝑔()(𝑋𝛽) (1)  

Where E(Y│X) is the mean value of the dependent variable Y conditioned on X, Xβ is a 
linear combination of the dependent variables and unknown weighting coefficients, and g is the 
link function. 

Naïve Bayes (NB)  
NB serves as a high-bias, low-variance algorithm that may produce useful models with a 

small amount of data and at a low computational cost. The core tenet of Naive Bayes is that each 
attribute's value is independent of all other attribute values, given the value of the class. This 
assumption may be theoretically erroneous and naive, but numerous real-world applications show 
that the NB algorithm typically works well. The calculations necessary to generate the NB 
probability model are considerably simplified by the independence requirement. To complete the 
probability model, the conditional probability distributions for each Attribute, given the class, must 
be presupposed. The attribute data was modelled using Gaussian probability densities. 

Deep Learning (DL) 
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A more complex version of neural networks with several processing layers, each capable 
of difficult nonlinear transformations, is shown by DL architecture. DL networks, in contrast to 
standard ANNs, can learn from extremely complicated functions of the raw data by automatically 
extracting significant features at multiple tiers. The regularization method is used to limit the 
probability of overfitting by introducing a term of penalization to the cost function. In this study, 
a three-layer DL network with a total of 10 epochs and a Rectifier linear unit activation function 
yielded the best accuracy. 

Table 1. Bridge deck attributes list  

Attribute Brief Description   Data Type 

Age The age of the bridge Numerical 

Functional class The functional classification of the bridge  Categorical 

Traffic lanes  The number of lanes being carried. Numerical  

ADT The average daily traffic volume.  Numerical  

Status Actual operational status of the structure  Categorical  
Service  The type of service on the bridge  Categorical  

Structure type  The predominant type of construction  Categorical  

Max span length  The length of the maximum span measured along the centerline 
of the bridge  

Numerical  

Structure length The length of the structure;  Numerical  

Left and right curb  The width of the left curb or sidewalk  Numerical  

Deck width  The out-to-out width of the deck  Numerical  

Operating rating  The absolute maximum permissible load  Numerical  

Inventory rating  The load level  Numerical  

Structural evaluation The structure evaluation of the bridge  Ordinal  

Truck ADT The average daily traffic associated to truck  Numerical  

Deck area The area of the bridge deck  Numerical 

Bridge condition 21 Bridge condition as observed in year 2021 Categorical  

Temperature average Average of the daily mean air temperatures. Numerical  

Freeze index Summation of difference between 0 degrees Celsius and mean 
daily air temperature. 

Numerical  

Freeze thaw Number of days in the year when the maximum air temperature is 
greater than 0 degrees Celsius and minimum air temperature is 
less than 0 degrees Celsius on the same day. 

Numerical  

 

Support Vector Machine (SVM) 
SVM is a supervised learning technique built on statistical theory that may be used for 

tasks such as classification. Typically, the SVM algorithm uses a hyperplane, a higher-dimensional 
space, to map and classify input data into a certain category. By mapping in a higher-dimensional 
space, it becomes simpler to separate datasets that are challenging to separate in the original space. 
To ensure computational viability, the mapping technique includes developing a kernel function 
using the variables suited for the current issue. The most effective SVM in the current investigation 
uses a radial kernel type with a C value of 1000 and a kernel gamma of 5.0. 
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Decision Tree (DT) 
DT is a predictive learning technique based on the divide-and-conquer approach. 

DT provides straightforward technique that can be used for prediction and classification tasks 
(Velasco et al. 2021). To estimate a target variable and divide the prediction space into different 
areas, several predictive rules are coupled in a hierarchical, tree-like form. The procedure is 
separated into decision nodes depending on predictor qualities, starting with a root node that 
utilizes all the initial attributes. At each branch, the process is repeated until no further 
classification is possible. The nodes at which the procedure for splitting is completed are called 
leaves. The decision tree model in this application with the highest accuracy has a maximum depth 
of 25.  

Random Forest (RF)  
RF is used to address overfitting, a serious problem with decision trees (Assad and 

Bouferguene 2022). RF is a variant of traditional DTs that divides the initial data set into several 
subgroups using the bootstrap method. Using randomly selected decision factors, a separate tree 
is then constructed from each subgroup using the optimal split criterion. Finally, to provide more 
precise forecasts, these trees are bagged and aggregated. The bagging technique only applies a 
greedy algorithm to randomly chosen portions of the initial predictors at each split, reducing the 
correlation between different trees. The random forest model in this study that produces the best 
results has a maximum depth of 10 and 100 trees.  

Gradient Boosted Algorithm (GBT) 
Boosting methods combine numerous weak models to produce a robust model, which 

improves prediction accuracy and prevents overfitting by optimizing a differentiable loss function 
(Velasco et al. 2021). The training starts with a single tree that represents a weak learner that will 
be continuously improved. After each iteration, the tree is changed based on the previous forecast. 
The parameters optimization is guided by the gradient and the second-order derivative of the loss 
function. The current investigation produced a 150-tree GBT model with a maximum depth of 7 
and a learning rate of 10%.  

To evaluate each model's performance, accuracy was calculated as illustrated below: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 	
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 (2)  

Where TP, TN, FP, and FN mean true positive, true negative, false positive and false negative, 
respectively.  

4. Results and Discussion 

To direct the feature engineering process, the correlations between the considered factors were 
investigated. As previously mentioned, feature engineering entails creating new features or 
modifying current ones to enhance the performance of a machine learning model. One aspect of 
feature engineering is analyzing the correlations between factors, which is typically accomplished 
with the aid of a correlation matrix. The correlation matrix can be used as a guide for choosing 
features or managing correlated features by quantifying the relationships between features. 

The correlation coefficients between the considered attributes, factor, are depicted in a square 
matrix. The Pearson correlation coefficient was used in this study to assess the significance and 
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direction of the link between two variables. Its value can be anything between -1 and 1, with -1 
denoting a perfect negative correlation, 1 denoting a perfect positive correlation, and 0 denoting 
no correlation at all. The heat map of the correlation between the attribute variables in this study 
is shown in Figure 2. A stronger association is denoted by a deeper hue, while a weaker or absent 
correlation is denoted by a lighter color. One attribute is retained from each pair of factors with the 
same correlation behavior, coefficient of more than 0.5, with other attributes to prevent 
redundancy. On the other hand, some attributes might exclusively exhibit high correlation 
coefficients among each other which implies a degree of correlation. Nonetheless, these factors 
are kept in the analysis as they inherit vital information to the deterioration problem with no 
sufficient statistical evidence of co-linearity. In addition, various regularization techniques were 
employed within the utilized modeling algorithms to address this issue to avoid overfitting and 
facilitate generalizing the obtained results with a higher confidence level. 

 

 Figure 2. Correlation heat map of input attributes  

 

The accuracy of the constructed condition prediction models is shown in Table 2 as 
performance indicators. The results show that the GBT model surpasses 96% accuracy, which is 
the highest obtained. The GBT model is extremely desirable due to its remarkable accuracy, 
particularly for decision-makers looking to embrace and include it in their asset management plans 
for highway bridges. The GBT model has the additional advantage of not offering a black box 
model, which makes it simpler to understand and use. It is also important to note that Table 
2 displays the standard deviation of accuracy for all generated models which is typically around1% 
or less. The consistency and dependability of the forecasts were ensured by such low standard 
deviation values. The GBT model is ultimately the best option based on the results due to its 
remarkable accuracy, transparency, and stability. 

A measure of importance of each input attribute used in the GBT-based condition 
prediction model is shown in Figure 3. By indicating the predictive significance of each factor, this 
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measure provides additional insights into the condition assessment of highway bridges. The 
relative weights in Figure 3 show how each feature contributed to the final bridge condition rating. 
The highest weight indicates that the prior condition of the bridge is very important in determining 
the current condition. Data from the past condition inspection is very insightful and significantly 
affects the prediction. Additionally, the structural capacity of the bridge has a significant impact 
on the condition rating of the bridge since it indicates the load-bearing capacity and overall 
strength, which controls the failure mechanism. 

Table 2. Accuracy of the developed models  

Model Accuracy  
Standard 
Deviation  

NB 88.3% ±0.5% 

GLM 94.3% ±0.5% 

DL 94.8% ±0.8% 

DT  91.8% ±1.1% 

RF 92.5% ±1.0% 

GBT 96.2% ±0.9% 

SVM 54.22% ±1.59% 

 

Our analysis shows that the weather and exposure to subfreezing temperatures have a 
significant impact on the condition of bridges. When the mean daily air temperature is less than 0 
degrees Celsius, the LTPP defines the freezing index attribute as the total of the difference between 
0 degrees Celsius and mean daily air temperature. Temperature changes can cause the bridge 
material to expand and compress, which has a direct impact on its resilience and structural 
integrity.  

In addition, precipitation—including snowfall or rain—has a tangible effect on the 
condition of the bridge. Corrosion, erosion, or other sorts of damage that affect the bridge's 
condition might be brought on by excessive moisture or constant exposure to water. These findings 
shed important light on how the condition rating of highway bridges varies depending on climatic 
variables. Hence, it is crucial to incorporate climatic-based characteristics in bridge 
condition assessment to enable well-informed decision-making regarding the rehabilitation, repair, 
and renewal of these bridges. 
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Figure 3. Attributes weights of importance  

5. Conclusion 

An investigation on the use of machine learning algorithms to forecast bridge conditions is 
presented in this publication. To carry out the condition assessment, the authors utilized open 
datasets from the Federal Highway Agency that included operational, structural, and climatic 
elements. Linear regression, decision trees, random forests, gradient boosted trees, naïve bases, 
and deep learning neural networks were the models whose performance was assessed. A chunk of 
the data was set aside solely for accuracy testing, whereas a portion was used to build and validate 
the prediction models. Cross-validation coupled with grid optimization were leveraged to 
automatically tune the hyperparameter and improve efficacy of prediction models. With a relative 
error of less than 4%, GBT was the best model to forecast the bridges’ conditions. The freezing 
index was shown to be particularly important in forecasting the condition of concrete bridges 
among the climatic elements examined.   

To address some of the limitations of this study, ongoing efforts are being made to construct 
timely-based deterioration curves and consider the dynamic nature of condition evaluation. 
Another extension would involve considering humidity and other climatic factors as they become 
available. 
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