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ABSTRACT 

As common surrogate models, Kriging and RBF models have been widely used in various fields. 

Although the Kriging model and the RBF model have their own advantages, when the problems 

are complex and diverse, a single Kriging or RBF model usually cannot meet the requirements of 

global approximation. Luckily, the Kriging and the RBF model have good complementarity in 

performance. In view of this, an adaptive hybrid modeling method (AHM-CVH) based on 

cross-validation hypercube of Kriging and RBF is proposed in this paper. The CVH adaptive 

sampling strategy first generates a hypercube centered on the sample point with the largest 

cross-validation error, then candidate points are randomly sampled in the hypercube, and finally 

get a new sample point which is farthest from the center and surrounding samples. Eight 

benchmark functions ranging from 2 to 6 dimensions and an engineering example are validated, 

and the results show that the AHM-CVH method is superior to the single Kriging or RBF models 

in performance, and has the characteristics of high accuracy and strong stability. 

Keywords: Surrogate model; Ensemble method; Adaptive sampling; Cross validation. 

INTRODUCTION 

Recently, the exponential growth of computer performance has made simulation experiments 

widely used in the design of expensive products, such as aircraft, ships, cars, and other complex 

machinery. However, the simulation of high-precision models requires a lot of computing 

resources and time (Gu. L., 2001 & Stefan et al., 2010), and such models are often not applicable 

when time or computing power is limited. In these cases, an approximate surrogate model (or 

meta-model) built with a small number of sample points can greatly reduce the computation and 

time (Khuri et al., 2010). Typical surrogate models include kriging (KRG) (Krige. D. G., 1952, 

Sacks et al., 1989 & Van et al., 2004), radial basis functions (RBF) (Hardy, 1971 & Buhmann. M. 

D., 2000), support vector regression (SVR) (Gunn. S. R., 1997), artificial neural networks (ANN) 

(Cheng et al., 1994) and polynomial response surface (PRS) (Shahsavania et al., 2009), etc. 

Among the above surrogates, Kriging and RBF are the two most popular methods (Li et al., 2017, 

Echard et al., 2011, Michael et al., 2019 & Shi et al., 2019). The reason is that the Kriging model 

has excellent approximation accuracy on low-dimensional and high nonlinear problems (Li et al., 

2020), and the RBF model has the advantage that it can be applied to high-dimensional nonlinear 

problems without dimensionality reduction (Jin et al., 2001). 

Since the intrinsic characteristics of the function are not a priori, it is challenging to know which 
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surrogate model best fits the objective function (Zhang et al., 2021). Analogous to the neural 

network combination principle, Zerpa et al. presented a new surrogate model by weighting PRS 

model, RBF model and Kriging model, in which the weights were selected by the error of the 

model on the test set (Zerpa et al., 2005). The modeling accuracy of the model proposed by Zerpa 

et al. is higher than the individual surrogates. But the above method requires test samples to 

determine the weights, which is not feasible in practical applications. In view of this, Goel et al. 

proposed three weight determination methods independent of the test set, one of which is to 

assign weights based on a global metric named generalized mean square cross-validation error 

(GMSE) on the current training set (Goel et al., 2007). It is characterized by the same weight for 

all predicted points in the entire design space. In addition, (Acar et al., 2019) innovatively 

transformed weight selection into an optimization problem that minimizes GMSE or RMSE, 

which can avoid the problem of different weights caused by different training sets. By replacing 

GMSE with pointwise cross-validation error, Acar put forward a method for determining weights 

using local errors (Acar E., 2010). While the method reduces the number of cross-validations, 

they also suffer from a loss in performance, since pointwise cross-validation errors are inherently 

not a substitute for errors at a point. To make use of the advantages of both global and local 

measures, Chen et al. (Chen et al., 2018) ensembled surrogate models which combining the 

strengths of global and local measures. However, in their method, the design space should be 

pre-divided into outer and inner regions for each sample point, and different strategies for 

evaluating the weight factors are adopted accordingly. 

The accuracy of a surrogate model largely depends on its sampling strategy, which can be 

assorted into one-shot sampling and adaptive sampling. Adaptive sampling does not select all 

sampling points at once, it uses the existing response and surrogate model to determine the next 

new sampling point, which can greatly improve the over sampling and under sampling problems 

caused by one-shot sampling. Thus, this paper developed a novel hybrid model based on adaptive 

sampling strategy CVH to improve the accuracy of the surrogate models. First, leave-one-out 

method is used to calculate the cross-validation error (CVE) for each sample point. Usually there 

is a large uncertainty around the point with large CVE, so a hypercube is generated which is 

centered on the sample point with the largest CVE. Then a certain number of candidate points are 

randomly sampled in the hypercube. Finally, we selected the one farthest from the center of the 

hypercube and neighborhoods as a new sample point, which can avoid the samples from being 

too dense. The results show that the AHM-CVH model improves the accuracy and robustness of 

the model. 

RELEATED THEORY 

2.1 Kriging model 

Kriging model consists of a regression model and a stochastic process, its general form can be 

written as  

�̂� = ∑ 𝛽𝑖𝑓𝑖(𝑥) + 𝑧(𝑥)
𝑘
𝑖=1 (1) 

where 𝑓𝑖(𝑥) is the regression polynomial (with zero order, first order and second order), 𝛽𝑖 is 

the unknown coefficient, 𝑧(𝑥) is the realization of a stochastic process with zero mean and 

covariance of 
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𝐶𝑜𝑣[𝑧(𝑥1), 𝑧(𝑥2)] = 𝜎
2𝑅(𝜃, 𝑥1, 𝑥2) (2) 

where 𝜎2 is the process variance, and 𝑅(𝜃, 𝑥1, 𝑥2) is the spatial correlation function with a

hyperparameter 𝜃 which takes 𝑑 = ‖𝑥1 − 𝑥2‖ as the independent variable.

𝑅(𝜃, 𝑥1, 𝑥2) = ∏ 𝑅𝑖(𝜃𝑖, 𝑥1𝑖 − 𝑥2𝑖)
𝑛
𝑖=1 (3) 

Given𝑛sample points 𝑥1, 𝑥2, ⋯ , 𝑥𝑛 and their corresponding responses 𝑌1, 𝑌2, ⋯ 𝑌𝑛, the predicted 

value of the Kriging model at any point is 

�̂� = 𝑓𝑇(𝑥)�̂� + 𝑟(𝑥)𝑅−1(𝑌 − 𝐹�̂�) (4) 

The parameters �̂� are obtained according to the optimal linear unbiased estimation as 

�̂� = (𝐹𝑇𝑅−1𝐹)−1𝐹𝑇𝑅−1𝑌 (5) 

2.2 Radial basis functions 

The RBF model is a linear combination of a set of basis functions, its basic expression is 

�̂� = ∑ 𝜆𝑤𝜙(𝑟𝑤)
𝑁
𝑤=1 = ∑ 𝜆𝑤𝜙(||𝑥 − 𝑥𝑤||)

𝑁
𝑤=1  (6) 

where 𝑟𝑤 is the Euclidean norm of the matrix, 𝜙 is a basis function, 𝜆𝑤 is the weight 

coefficients for the 𝑤-th basis function. 

Generally, if the selected sampling points {𝑥𝑤} are different in pairs, then {𝜙(𝑥 − 𝑥𝑤)} is 
linearly independent and can be used as a set of basis for the function space. When {𝑥𝑤} almost 
fills the space 𝑅𝑑, {𝜙(𝑥 − 𝑥𝑤)}and its linear combination can approximate almost any function. 
The commonly-used basis functions of RBF model are listed in Table 1. 

Table 1. Type of RBF basis functions. 

T E

C 𝜙(𝑟

Thi 𝜙(𝑟

Ga 𝜙(𝑟

𝜙(𝑟

Inv 𝜙(𝑟

Given 𝑛 samples {𝑥𝑤, 𝑦𝑤} (𝑤 = 1,2, . . . , 𝑛), weight coefficients 𝜆𝑤 are obtained by solving the

following linear equations.  

𝛷𝜆 = 𝑦 (7) 

where 𝛷𝑖𝑗 = 𝜙(||𝑥𝑖 − 𝑥𝑗||), 𝜆 = {𝜆1, 𝜆2, . . . , 𝜆𝑁}, 𝑦 = {𝑦1, 𝑦2, . . . , 𝑦𝑁} 

Type Expression 

Cubic 

Thin plate spline 

Gaussian 

𝜙𝜙(𝑟𝑟) = (𝑟𝑟 + 𝑐)3  

𝜙𝜙(𝑟𝑟) = 𝑟𝑟2 𝑙𝑙𝑛𝑛( 𝑐𝑟𝑟) 

𝜙𝜙(𝑟𝑟) = 𝑒𝑒−𝑐𝑐𝑐𝑐2  

𝜙𝜙(𝑟𝑟) = √𝑟𝑟2 + 𝑐2 Multiquadric 

Inverse-multiquadric 𝜙𝜙(𝑟𝑟) = 1
√𝑐𝑐2+𝑐𝑐2
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2.3 Theory of ensemble model 

The principle of ensemble model, which combines multiple single surrogate models and weights 

linearly (Cheng et al., 2020 & Ye et al., 2020), its general form is 

�̂�𝑒𝑛𝑠(𝑥) = ∑ 𝑤𝑖(𝑥)�̂�𝑖(𝑥)
𝑀
𝑖=1 , ∑ 𝑤𝑖(𝑥) = 1

𝑀
𝑖=1 (8) 

where �̂�𝑒𝑛𝑠(𝑥) represents the predicted response value of the hybrid model at 𝑥, 𝑀 is the 

number of surrogates constituting the hybrid model, �̂�(𝑥𝑖) is the predicted value of the surrogate 

at 𝑥, and 𝑤𝑖(𝑥) represents the weight of the 𝑖th surrogate. In general, the weight factors are 

selected such that the metamodels with high accuracy have large weight factors and vice versa 

(Zhou et al., 2011).  

CONSTRUCTION OF AHM-CVH MODEL 

3.1 Cross validation hypercube (CVH) criterion 

This paper proposes a novel and versatile adaptive sequence sampling CVH criterion, which 

selects a new sampling point in the hypercube that is far enough away from the existing sample 

point to avoid sample clustering.  

Assume that 𝑛𝑖𝑛𝑖𝑡𝑖𝑎𝑙 initial sample points have been generated by the Latin hypercube sampling 

(LHS) method. First, the leave-one-out method is used to calculate the cross-validation error of 

each sample point as formula (9). 

𝑒𝐿𝑜𝑜(𝑥𝑖) = |𝑦(𝑥𝑖) − 𝑓
−𝑖(𝑥𝑖)| (9)

Then, identify the largest 𝑒𝐿𝑜𝑜 in the current sample set defined as 𝑥𝑐𝑒𝑛𝑡𝑟𝑒, the definition of 

𝑥𝑐𝑒𝑛𝑡𝑟𝑒 is show in formula (10). 

𝑥𝑐𝑒𝑛𝑡𝑟𝑒 = argmax(𝑒𝐿𝑜𝑜(𝑥𝑖)) (10) 

The vicinity of 𝑥𝑐𝑒𝑛𝑡𝑟𝑒 is an area with great uncertainty. Adding new sampling points in this area 

can greatly improve the accuracy of the surrogate model. Therefore, we generate a hypercube 

with side length 2𝜀 centered on 𝑥𝑐𝑒𝑛𝑡𝑟𝑒. 

Since the LHS sampling is quite uniform, theoretically the 𝑛𝑖𝑛𝑖𝑡𝑖𝑎𝑙 initial sample points will 

divide each dimension of the design space into 𝑛𝑖𝑛𝑖𝑡𝑖𝑎𝑙 − 1 parts. Thus, the point spacing 𝐿𝑗 is 

calculated in each dimension direction, and the largest 𝐿𝑗 is chosen as 𝜀. 

𝐿𝑗 =
𝑢𝑝𝑝𝑒𝑟𝑗−𝑙𝑜𝑤𝑒𝑟𝑗

𝑛𝑖𝑛𝑖𝑡𝑖𝑎𝑙−1
, 𝜀 = 𝑚𝑎𝑥

𝑗
{𝐿𝑗},   𝑗 = 1,2,⋯𝐷 (11) 

where 𝑢𝑝𝑝𝑒𝑟𝑗  and 𝑙𝑜𝑤𝑒𝑟𝑗  represent the upper and lower bounds on the 𝑗 th dimension 

respectively, 𝐷 is the size of the dimension. Besides, the 𝑚 candidate points were randomly 

generated by LHS method in the hypercube, denoted as 𝑃𝑐𝑎𝑛. 

Finally, select a new sample point 𝑥𝑛𝑒𝑤 in 𝑃𝑐𝑎𝑛 that is farthest from 𝑥𝑐𝑒𝑛𝑡𝑟𝑒 and 𝑁, where 

𝑥𝑛𝑒𝑤 can be written as 
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𝑥𝑛𝑒𝑤 = arg max
  𝑥∈𝑃𝑐𝑎𝑛

‖𝑥 − (𝑥𝑐𝑒𝑛𝑡𝑟𝑒 ∪ 𝑁)‖ (12) 

where ‖𝑥 − (𝑥𝑐𝑒𝑛𝑡𝑟𝑒 ∪ 𝑁)‖ represents the sum of the distances from 𝑥 to each point in the set

(𝑥𝑐𝑒𝑛𝑡𝑟𝑒 ∪ 𝑁), and 𝑁 represents the neighborhoods of 𝑥𝑐𝑒𝑛𝑡𝑟𝑒.

Neighborhoods 𝑁 are found according to the following rules. 

𝑑𝑚𝑒𝑎𝑛 = 𝑚𝑒𝑎𝑛(‖𝑥𝑐𝑒𝑛𝑡𝑟𝑒 − 𝑆‖)

𝑁 = {𝑥 ∈ 𝑆\{𝑥𝑐𝑒𝑛𝑡𝑟𝑒}|  ‖𝑥 − 𝑥𝑐𝑒𝑛𝑡𝑟𝑒‖ < 𝛼 ∙ 𝑑𝑚𝑒𝑎𝑛} (13) 

where α is an adjustable parameter ranged from 0 to 1. 

To visualize the CVH strategy, the one-dimensional test function is selected to establish an 

ensemble model of Kriging and RBF (Forrester et al., 2009), and the expression of the 

one-dimensional function is 

𝑓(𝑥) = (6𝑥 − 2)2 sin(12𝑥 − 4),where 𝑥 ∈ [0,1]. (14) 

The local error of each point after the initial sampling of 5 points is shown in Figure 2(a). It is 

observed from Figure 1(a) that the 5th point has the largest cross-validation error, and the CVH 

method will select a new point as shown in Figure 1(b).  

Figure 1. Schematic diagram of CVH strategy. (a) CVE of the hybrid model, (b) Example of 

CVH strategy(1D). 

3.2 Modeling process 

Based on the adaptive sampling strategy CVH, an adaptive ensemble model of Kriging and RBF 

can be established, where the weights are selected using the inverse proportional method. The 

modeling process is shown in Figure 2, and the specific implementation steps of modeling are as 

follows. 
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Figure 2. Flowchart of AHM-CVH modeling. 

Step1. Design of initial experimental. Using Latin Hypercube Design (LHD) to obtain 

initial sample points, then perform expensive simulation evaluations of the sample 

points.  

Step2. Re/construct the single surrogate model. Re/construct the Kriging model and RBF 

model respectively with sample points. 

Step3. Determine the weights. The initial weight is set to 0.5, and the weight is calculated 

using the inverse proportional (IP) method after updating the points (Zerpa et al., 

2005). The calculations are show in formula (15)-(17). 

𝐺𝑀𝑆𝐸𝑘 =
1

𝑁
∑ (𝑦(𝑥𝑖) − 𝑓

−𝑖(𝑥𝑖))
𝑁
𝑖=1

2

(15) 

𝐺𝑀𝑆𝐸𝑟 =
1

𝑁
∑ (𝑦(𝑥𝑖) − �̂�

−𝑖(𝑥𝑖))
𝑁
𝑖=1

2
(16) 

𝑤𝑘 =

1

𝐺𝑀𝑆𝐸𝑘
1

𝐺𝑀𝑆𝐸𝑘
+

1

𝐺𝑀𝑆𝐸𝑟

, 𝑤𝑟 =

1

𝐺𝑀𝑆𝐸𝑟
1

𝐺𝑀𝑆𝐸𝑘
+

1

𝐺𝑀𝑆𝐸𝑟

(17)
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Step4. Re/construct ensemble of models. A new ensemble model is obtained by linearly 

combining the updated single model and the updated weights, and the formula is as 

follows. 

�̂�𝑒𝑛𝑠(𝑥) = 𝑤𝑘�̂�𝑘(𝑥) + 𝑤𝑟�̂�𝑟(𝑥) (18) 

Step5. Implement CVH criterion. Implement the CVH criterion to obtain a new point 

𝑥𝑛𝑒𝑤, and calculate its true response value 𝑦𝑛𝑒𝑤, see 3.1 for details. 

Step6. Stop criterion. Since computing resources are limited and using the same number of 

evaluations facilitates comparisons between different methods, a fixed number of 

expensive evaluations are used as the stopping criterion. If the model satisfies the 

stopping condition, the modeling process is terminated. Otherwise, add 𝑥𝑛𝑒𝑤 to the 

sample set and return to Step2. 

The prediction accuracy of the approximate model directly affects the feasibility and rationality 

of the optimal solution. Generally, as the accuracy of the model increases, the confidence in the 

optimal solution based on the approximate model increases. In this paper, a global error metric 

root mean square error (RMSE) is selected as model evaluation indicators, its mathematical 

expressions are show in formula (19). 

where 𝑦(𝑥𝑖) is the true value of the objective function at 𝑥𝑖, �̂�(𝑥𝑖) is the predicted value of the 

surrogate model at 𝑥𝑖, and 𝑁𝑡𝑒𝑠𝑡is the number of test samples. 

NUMERICAL APPLICATION 

4.1 Trial setup 

To test the modeling accuracy and stability of the AHM-CVH model, the Kriging model, the RBF 

model, and the AHM-CVH model were used to establish surrogate models for eight benchmark 

functions respectively. The formula of benchmark functions is shown in Table 2.  

Table 2. Formula of benchmark functions. 

Fun

Alpi 2 𝑓(𝑥)
 

Cr 2
𝑓(𝑥)

𝑥1,2
 

Dr 2 𝑓(𝑥)

Function Dim Expression 
Alpine 2 𝑓𝑓(𝑥𝑥) = 𝑠𝑖𝑖𝑛𝑛(𝑥𝑥1) 𝑠𝑖𝑖𝑛𝑛(𝑥𝑥2)√𝑥𝑥1𝑥𝑥2, where 𝑥𝑥1,2 ∈ [0,10]. 

Cross in Tray 2 
�𝑥𝑥12+𝑥𝑥22

𝜋
��� + 1�

0.1

, 𝑓𝑓(𝑥𝑥) = −0.0001��𝑠𝑖𝑖𝑛𝑛(𝑥𝑥1) 𝑠𝑖𝑖𝑛𝑛(𝑥𝑥2) 𝑒𝑒𝑥𝑥𝑢𝑢��100 −

where 𝑥𝑥1,2 ∈ [−10,10]. 

DropWave 2 𝑓𝑓(𝑥𝑥) = −
1+𝑐𝑐𝐿𝐿𝑒𝑒�12�𝑥𝑥12+𝑥𝑥22�

0.5�𝑥𝑥12+𝑥𝑥22�+2
, where 𝑥𝑥1,2 ∈ [−5.12,5.12]. 

𝑅𝑅𝑀𝑀𝑆𝑆𝐸𝐸 = � 1
𝑁𝑁𝑖𝑖𝑡𝑡𝑡𝑡𝑖𝑖

∑𝑁𝑁𝑖𝑖𝑡𝑡𝑡𝑡𝑖𝑖�𝑦𝑦(𝑥𝑥𝑖𝑖) − 𝑦𝑦�(𝑥𝑥𝑖𝑖)�𝑖𝑖=1
2

(19)
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Lanf 2

𝑓(𝑥)

wher

Levy 3

𝑓(𝑥)

sin2

whe

Shek 4

𝑓(𝑥)

wher

Styb 5

𝑓(𝑥)

whe

Sch 6
𝑓(𝑥)

wher

Both training and test sets were sampled by the LHS method, and 10 trials were run to eliminate 

the effect of random sampling on the results. The specific design of the experimental design is 

shown in Table 3. This paper selected the linear trend and the exponential correlation function to 

construct an ordinary Kriging model, the parameter 𝜃 is 10. Additionally, the basis function of 

the RBF model is the cubic function. 

Table 3. Test function experiment design. 

4.2 Results of test functions

The results of the four 2D benchmark functions are shown in Figures 3 to 6, and the means of 

RMSE for 10 trials are shown in Table 4. Each graph contains four subgraphs. The subgraph (a) 

refers to the true function figure; the subgraph (b) is the notched boxplot; the subgraph (c) is the 

line chart; the subgraph (d) is the mean bar chart with specific values. The middle line of the 

notched boxplot represents the median, and the length of the box reflects the degree of RMSE 

fluctuation to a certain extent. The smaller the RMSE, the higher the prediction accuracy of the 

model. 

Tr In

Lanfermann 2 

𝑓𝑓(𝑥𝑥) = ∑ =1 𝑐𝑖𝑖𝑒𝑒𝑥𝑥𝑢𝑢 �−
1
𝜋
∑ �𝑥𝑥𝑖𝑖 − 𝐴𝑖𝑖𝑖𝑖�

22
𝑖𝑖=1 �5

𝑖𝑖 cos �𝜋∑ �𝑥𝑥𝑖𝑖 − 𝐴𝑖𝑖𝑖𝑖�
22

𝑖𝑖=1 �， 

where 𝑥𝑥1,2 ∈ [0,10], 𝐴 =
⎛
⎜

3 5
5 2
2 1
1 4

⎞
⎟,𝑐 =

⎛
⎜

1
2
5
2

⎞
⎟

Levy3 3 

⎝7 9⎠ ⎝3⎠
𝑓𝑓(𝑥𝑥) = sin2(𝜋𝜔1) + ∑𝑖𝑖

𝑑𝑑
=
−
1
1(𝜔1 − 1)2[1 + sin2(𝜋𝜔1 + 1)] +

(𝜔𝑑𝑑 − 1)2[1 + sin2(2𝜋𝜔𝑑𝑑 + 1)],   

where 𝑥𝑥𝑖𝑖 ∈ [−10,10],𝜔𝑖𝑖 = 1 + 𝑥𝑥𝑖𝑖−1
4

, 𝑓𝑓𝐶𝐶𝑟𝑟 𝑚𝑚𝑙𝑙𝑙𝑙 𝑖𝑖 = 1, 2, … ,𝐷𝐷. 

Shekel4 4 

𝑓𝑓(𝑥𝑥) = −∑ =1�−∑ =1(𝑥𝑥𝑖𝑖 − 𝐶𝐶𝑖𝑖𝑖𝑖)24
𝑖𝑖 + 𝛽𝛽𝑖𝑖�𝑚𝑚

𝑖𝑖
−1
，

where 𝑥𝑥𝑖𝑖 ∈ [−2,2]，𝑗𝑗 = 1,⋯ ,𝐷𝐷, 𝐶𝐶 =

⎝

⎛
⎜

4 4 4 4
1 1 1 1
8 8 8 8
6 6 6 6
3 7 3 7⎠

⎞
⎟,𝛽𝛽 =

⎝

⎛
⎜

0.1
0.2
0.2
0.4
0.6⎠

⎞
⎟

StyblinskiTang5 5 
𝑓𝑓(𝑥𝑥) = 1

2
𝑑𝑑∑𝑖𝑖=1(𝑥𝑥𝑖𝑖

4 − 16𝑥𝑥𝑖𝑖2 + 5𝑥𝑥𝑖𝑖) 

Schwefel6 6 
𝑑𝑑

where 𝑥𝑥𝑖𝑖 ∈ [−5,5],𝑓𝑓𝐶𝐶𝑟𝑟 𝑚𝑚𝑙𝑙𝑙𝑙 𝑖𝑖 = 1, 2, … ,𝐷𝐷 

𝑓𝑓(𝑥𝑥) = 418.9829𝑑𝑑 − ∑𝑖𝑖=1 𝑥𝑥𝑖𝑖 sin��|𝑥𝑥𝑖𝑖|�,  
where 𝑥𝑥𝑖𝑖 ∈ [−500,500], 𝑓𝑓𝐶𝐶𝑟𝑟 𝑚𝑚𝑙𝑙𝑙𝑙 𝑖𝑖 = 1, 2, … ,𝐷𝐷 

Dimension Trial times Initial sampling Update sampling Number of test 
2 10 5*dim 8*dim 1000 

3-6 10 5*dim 6*dim 5000 
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Table 4. Results of Means and standard deviation of RMSE. 

Figure 3. Trial results for the Alpine function. (a) Alpine function, (b) Boxplot, (c) Results of ten 

replicates of the experiment. (d) Means of RMSE. 

Figures 3-6 illustrate the results of the 2D test function, and Figure 7 shows the test results for 

other dimensions (3 - 6D). These test functions are multimodal and have multiple local extrema. 

It can be observed that the AHM-CVH model outperforms the single model almost every time for 

ten replicates (as show in Figure 3 (c), Figure 5 (c) and Figure 6 (c)). Meanwhile, in all 2D test 

functions, the mean RMSE of the AHM-CVH model outperforms other single functions. In 

addition, as shown in Figure 7, in the test functions of other dimensions, the performance of the 

AHM-CVH model is inferior to the single model only under the Schwefel6 function. At this time, 

as shown in Table 4, the Kriging model has the best performance with an RMSE of 1117.6252, 

while the RMSE of AHM-CVH is 1130.6589. Nevertheless, the RMSE of the AHM-CVH model 

is not significantly different from that of the Kriging model, and even better than the single RBF 

model. In addition, it can be noticed that the range of the boxplot of the AHM-CVH model is 

Functions Kriging AHM-CVH RBF 
3.8019/ 0.4295 
0.2708/ 0.0237 
0.2365/ 0.0658 
1.3296/ 0.3451 
53.0577/ 3.9070 
0.2600/ 0.0190 

3.3945/ 0.3199 
0.2440/ 0.0388 
0.1643/ 0.0220 
1.1166/ 0.0970 
47.4220/ 6.7056 
0.2159/ 0.0237 

172.2294/ 10.9866 161.3217/ 11.4607 

4.6165/ 0.6452 
0.2897/ 0.0368 
0.2116/ 0.0585 
1.6175/ 0.4438 
49.2320/ 6.8529 
0.2330/ 0.0632 

163.9585/ 7.3009 

Alpine 
Cross in Tray 

DropWave 
Lanfermann 

Levy3 
Shekel4 

StyblinskiTang5 
Schwefel6 1117.6252/ 49.1597 1130.6589/ 85.2069 1415.1231/112.1433 
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smaller than that of the single Kriging model and the RBF model, which shows that the method 

has better stability. 

Figure 4. Trial results for the Cross in Tray function. (a) Cross in Tray function, (b) Boxplot, 

(c) Results of ten replicates of the experiment. (d) Means of RMSE.

Therefore, compared with the single Kriging model and the RBF model, in most cases, the 

proposed AHM-CVH model has better performance and generalization ability, which is of great 

significance. 
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Figure 5. Trial results for the DropWave function. (a) DropWave function, (b) Boxplot, (c) 

Results of ten replicates of the experiment. (d) Means of RMSE. 

Figure 6. Trial results for the Lanfermann function. (a) Lanfermann function, (b) Boxplot, (c) 

Results of ten replicates of the experiment. (d) Means of RMSE. 
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Figure 7. Test results for other dimensions. (a) Levy3 function, (b)Shekel4 function, (c) 

StyblinskiTang5 function, (d) Schwefel6 function. 

4.3 Engineering example 

An engineering example is used to verify the validity of the model, this example is a Helical 

tension cylindrical springs (HTCS) design problem. HTCS are made of wires with circular cross 

section, which are widely used in automobile, aerospace, construction machinery, elevators and 

other fields. A schematic diagram of the HTCS design is illustrated in Figure 8.  

Figure 8. Diagram of the HTCS design 

The HTCS design problem has three variables: 𝑥1, 𝑥2, and 𝑥3. Where 𝑥1 is the diameter, 𝑥2 is

the mean coil diameter, and 𝑥3 is the number of active coils. Besides, the response function of 

HTCS is shown in formula (20). 

𝑓(𝑥) = (2 + 𝑥3)𝑥1
2𝑥2. (20) 

where 𝑥1 ∈ [0.05,2], 𝑥2 ∈ [0.25,1.3], 𝑥3 ∈ [2,15].
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The proposed AHM-CVH model is compared with a single Kriging and RBF model, and the 

RMSE results are shown in Table 5. 

Table 5. Results of RMSE. 

Kriging AHM-CVH RBF 

13.1411 8.3552 9.5571 

As shown in Table 5, the RMSE value of the proposed AHM-CVH model is 8.3552, which 

outperforms the single Kriging and RBF models. This shows that the AHM-CVH model does 

have superior performance and is suitable for practical engineering problems. 

CONCLUSION 

This paper proposed an adaptive update sampling strategy suitable for any surrogate model, and 

then the Kriging model and the RBF model are ensembled to obtain the AHM-CVH model based 

on CVH strategy. The effectiveness of AHM-CVH is verified through eight benchmark functions. 

Finally, the results show that compared with the single kriging model and the RBF model, the 

proposed AHM-CVH model performs well on most of the test problems, and the generalization 

ability is significantly better than the single approximate model. At the same time, the model has 

high accuracy, strong stability and low sensitivity to experimental design. However, the 

AHM-CVH model does not perform well on all problems. However, it must be mentioned that 

the proposed AHM-CVH model is based on Kriging and RBF models for ensemble. The existing 

problems mainly include that with the increase of the function dimension, the modeling time of 

the Kriging model will increase exponentially. This problem also caused the ensemble model to 

slow down considerably. In addition, it may affect the accuracy of the model. Consequently, 

future research can focus on Kriging and RBF ensemble models for high-dimensional problems, 

especially the time and accuracy of ensemble modeling. 
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