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ABSTRACT 

 

We present a transfer learning method named Special Application Transfer (SAT) for special 

object detection in a real life scenario. Our method improves fine-tuning hyper-parameter and 

adds unrecognized samples to detect special samples when training object detection neural 

networks for classification. We implement the model of NanoDet on special supervised 

datasets and fine-tune the hyper-parameter on a target task. More importantly, we combine a 

few carefully selected samples in training and simple heuristic fine-tuning to achieve good 

performance on special object detection in real-life scenarios. Our method (SAT) performs 

well across surprisingly the small dataset the medium dataset and the large dataset. SAT 

achieves 95% AP (Average Precision) on the small dataset, 94.8% AP on the medium dataset, 

and 94.5% AP on the large dataset. The performances of AP run-time and training 

convergence are perfect, compared with the original method and well-established famous 

methods on the challenging COCO dataset and our dataset. We hope our work could promote 

and complete the practical application in more real life scenarios. Our code is available at: 

https://github.com/zhangquanyou/SAT. 

Keywords: Object detection; Hyper-parameter; Transfer learning; Mobile terminal; 

Algorithm 

INTRODUCTION 

 

In computer vision, modern mainstream object detection(Piórkowska-Kurpas et al.,2021) 

includes the one-stage or the two-stage, predefine marks on a dense feature map grid and 

detects candidates boxes with the corresponding categories(Qi et al.,2022). In the one-stage 

method, detectors(Kolesnikov et al.,2019) are predefined marks or reference points(Sun et 

https://doi.org/10.36909/jer.ICCSCT.19479
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al.,2020) on a dense feature map grid to predict box categories of objects. The familiarized 

one-stage object detection algorithm includes OverFeat, SSD, RetinaNet, YOLOX(Ge et 

al.,2021), YOLOv1-v7(Junos et al.,2021), and so on. In the two-stage(Zhao et al.,2022) 

method, a small set of candidate objects are pipelined work on the predicted proposal boxes to 

classify and identify the target object by the algorithm. There are the familiarized 

two-stage(Tk et al.,2020) algorithms, such as R-CNN(Wu et al.,2020), SPP-Net, Faster 

R-CNN(Avola et al.,2021) and R-FCN. However, these models are relatively large and not 

suitable for transplantation to mobile terminals or embedded devices. In real life scenarios, 

objects are varied and unpredictable in most application scenarios, on account of different 

structures, colors and intensity. It is not always accurate, for influencing factors can reduce 

predicted accuracy. In these cases, we can use fine-tuning(Wang et al.,2021) arguments or 

innovative approaches to improve the accuracy of object detection, as shown in Figure 1. 

 

 
Figure 1. Salient object detection.  

(The first picture is a demo of side face detection. The second picture is a demo of action 

recognition. The third picture is a demo of different category detection. The last is a demo of 

detecting moving vehicles.) 

 

In this paper, we propose a transfer learning method named Special Application Transfer (SAT) 

for special object detection. We implement the model of NanoDet(Zhou et al.,2021) by adding 

unrecognized samples to detect special samples and fine-tune hyper-parameters of neural 

networks for classification. The novelty of our work mainly includes three aspects. First, we 

improve the method of calculating the loss of IoU, which uses two points coordinate instead 

of the original algorithm’s four points coordinate, as shown in Figure 2. Second, our method 

combines a few carefully selected unrecognized samples and NanoDet model to train our 

dataset and COCO dataset. Third, we fine-tuned the hyper-parameter to achieve good 

performance on special object detection in the real application scenario.  

 

Figure 2. The original and improved calculation of the loss of IoU: A is a predicted box, and 
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B is the verified ground box. 

 (Calculating the loss of IoU by calculating area, as shown in the enhanced algorithm 2.) 

 

SAT demonstrates across surprisingly the small dataset the medium dataset and the large 

dataset. SAT achieves 95% AP (Average Precision)(Tychsen-Smith et al.,2017) on the small 

dataset, 94.8% AP on the medium dataset, and 94.5% AP on the large dataset. The 

performances of AP run-time and training convergence are perfect, compared with original 

method and well-established famous methods on the challenging COCO dataset and our 

dataset. We hope our work could promote and complete the practical application in more real 

life scenarios. 

Paper Organization: In section 1, we introduce the classification of the familiarized object 

detection algorithms. In section 2, we show the related work and theory of object detection of 

SAT. In section 3, we demonstrate the novelty of the paper and the detail of the improved 

algorithm. In section 4, we show the processing of the experiment and fine-tuning of SAT. In 

section 5, we compare SAT with NanoDet and discuss the trends of processing time (Forward, 

Decode and Visualization). In the last section, we show the limitations and future perspectives 

of our method. 

 

MATERIALS AND METHODS 

2.1 Backbone 

Most object detection model architecture is composed of three parts: backbone(Chen et 

al.,2019), task head and connector. We implement SAT model to predict the target object 

based on NanoDet, which adopted Feature Pyramid Network (FPN)(Roh et al.,2021) of 

ShuffleNetV2 architecture as the backbone network, as shown in Figure 3. SAT constructs the 

pyramid with levels to produce multi-scale feature maps from the input image. All pyramid 

levels have the same in-channels, out-channels, kernel-size, stride, padding, dilation, bias and 

normalization same as the torch.nn.Conv2d. We align the fine-tuning with NanoDet to show 

the speed and effectiveness of SAT. 

 

Figure 3 . Architecture of SAT.  

(It contains three parts of backbone, pan and light head.) 

 

2.2 Pyramid Attention Network 

Pyramid Attention Network (PAN)(Zhao et al.,2021) is an improvement of FPN, which 
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up-down sampling high-level semantic information. The main function of PAN is to 

complement FPN and enhance the positioning information of the object. PAN adopts bilinear 

interpolation(Zilberstein et al.,2021) instead of pooling for up-down sampling, which can 

effectively reduce the computation. SAT samples backbone layers to output FPN2, FPN3 and 

FPN4 to construct Pyramid Attention Network (PAN). The model size and activation function 

of backbones can be modified to form different special application networks. In PAN of SAT, 

the list of feature map channels extracted from the backbone is [116, 232, 464], and the output 

is 96 feature map channels. 

 

2.3 Light head 

Fully Convolutional One-Stage (FCOS)(Wang et al.,2021) Object Detection series uses 

detection headers with shared weights to generate prediction boxes for the multi-scale Feature 

Map. Shared weights are used as the coefficient for each layer to scale the predicted boxes, so 

as to reduce the number of parameters. Headers utilize the RoIAlign(Xiying et al.,2022) 

operation to extract features for each box to generate a feature head with its box location and 

classification. FCOS/ATSS (Adaptive Training Sample Selection)(Huang et al.,2021) is 

currently used to estimate the quality of detection boxes The GIoU (Generalized Intersection 

over Union)(Zhang et al.,2022) is also used in some other similar works, which makes up 

GFL loss scores with the following equation. 

ℒ𝐺𝐹𝐿 =
1

𝑁𝑃𝑂𝑆
+ ∑ ℒ𝑄𝐹𝐿𝑧 +

1

𝑁𝑃𝑂𝑆
∑ 1{𝑐𝑧

∗>0}(ℒ𝐵𝜆0 + ℒ𝐷𝜆1)𝑧               (1) 

ℒ𝐺𝐹𝐿 is GFL loss scores. NPOS represents the number of positive samples. ℒ𝑄𝐹𝐿 indicates 

Quality Focal Loss. ℒ𝐵 represents GIoU and ℒ𝐷 represents Distribution Focal Loss. 

 

NOVELTY AND ALGORITHM 

 

The Novelty of our work includes three parts. First, we carefully selected indiscernible 

samples to train and adopted a simple heuristic fine-tuning to achieve transfer learning on our 

dataset. Second, we optimize the hyper-parameter on a target task by fine-tuning, and deploy 

the program in a real-life scenario to identify the special object. Third, we improve the 

evaluation of Loss and propose an enhanced algorithm of Generalized Intersection over Union 

(GIoU) loss(Xu et al.,2021), which can reduce the complexity of time and space. 

 

Table 1 . The algorithm of GIoU loss. 

 

Algorithm 1: Generalized Intersection over Union (GIoU) loss 

input: Two arbitrary convex shapes: A, B ⊆S∈ℛn 

output: GIoU 

1:  For A and B, find the smallest enclosing convex object C, where C ⊆S∈ℛ n 

2:  IoU = 
|A∩B|

|A∪B|
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3:  GIoU = IoU- 
|C\(A∪B)|

|C|
 

 

The smallest Closure is a mathematical operation in a set. These elements of the set use all of 

their relationships to find other elements, with which they have that relationship. The found 

elements are incorporated into the set until no new element can add into the set. The algorithm 

of Generalized Intersection over Union (GIoU) loss, as shown in Table 1 , use this operation 

of exhaustion to absorb now boxes. However, this method could generate some useless 

computing because of the process of snowballing(Steno et al.,2020). In order to avoid wasting 

computer resources, we propose an enhanced algorithm, as shown in Table 2.  

 

Table 2 . The algorithm of enhanced GIoU loss. 

 

Algorithm 2: An enhanced GIoU loss algorithm 

input: Two arbitrary convex shapes: A, B ⊆S∈ℛ n 

output: GIoU 

1:  For A and B, find the smallest enclosing convex object C, where C ⊆S∈ℛ n 

2:  ∃ p(x1, y1) ∈ A , ∃ q(x2, y2) ∈ B, and p(x1, y1)=max(A), q(x2, y2)=min(A) 

3:  I= A ∩ B, U = A ∪ B 

4:  Calculating the area of I: 

    I={
 𝑆 = 𝐿2|𝑐𝑜𝑠𝛼 ∗ 𝑠𝑖𝑛𝛼|, 𝑖𝑓 A ∩ B ≠ ∅ .

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.
    

    L is a distance from p to q. 

5:  Calculating the area of U: 

U=A+B-I 

6:  IoU = 
I

U
 

7:  GIoU = IoU - 
|I−U|

I
 

 

EXPERIMENTS AND ANALYSIS 

 

We conduct our experiments, respectively, on our dataset and the challenging MS COCO 

using our enhanced Loss and GFL for object detection. NanoDet YOLO SSD Fast R-CNN 

and our SAT models are trained on COCO train2017 and our dataset. 

Experimental environment: operation system (OS) ： Win 10; Development platform: 

Python3.8+OpenCV+PyCharm+torch1.12.0+cuda116; CPU: Intel(R) Core (TM) i7; GPU: 

GeForce RTX 3080 SUPER; Memory: 16 G; Disk: 1T. 

 

4.1 Dataset preparation 

The dataset of COCO train2017 contains 10000 train images and 5000 validating images with 

80 classes, and our dataset contains 1000 train images and 600 validating images, as shown in 
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Figure 4, which download from the network. More importantly, we annotate a few carefully 

selected indiscernible samples to strengthen the robustness(Giveki, D.,2021) of models in the 

training stage. 

 

Figure 4 . The images of a part dataset.  

(Images show different samples on different occasions) 

 

4.2 Fine-tuning Hyperparameters 

All models use uniform batch, normalization and epoch weight normalization(Yan et al.,2020) 

in the training processes. Hyperparameters(Hou et al.,2021) are configured according to  

 

Table 3, for example, the initial learning rate is 0.14 and the momentum is 0.9. The images are 

pretreated for 320 × 320 image size by using image cropping and random horizontal mirror 

scaling. We train NanoDet, YOLO and SAT models for 300 total steps and 190 total epochs to 

focus on observing epochs and learning rate decay changes at 40, 55, 60, and 65. 

 

Table 3 . The Hyperparameters are configured for SAT in training according to the following 

table. 

 

Hyperparameter lr Momentum Batch HSB 
Total 

steps 

Total 

epochs 
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Value 
[0.14, 0.1, 

0.07,0.01] 

[0.9,0.09, 

0.0089] 
16 

[130,160, 

175,185] 
300 190 

 

For all tasks of identifying bicycle and electric bicycle, we use SGD optimizer(He et al.,2021) 

with an initial learning rate (lr)(Guo et al.,2022) 0.14, momentum 0.9, and batch size 16. We 

change input images with small size 98 × 98, medium size 196 × 196 and large size 320 × 320. 

We adopt a simple heuristic fine-tuning strategy. The configuration of hyperparameter 

schedule boundaries (HSB) is [130,160,175,185]. Milestones of fine-tuning boost program 

performance, which make SAT model achieve perfect loss curves on our dataset, as shown in 

Figure 5-6. 

 

 

Figure 5 . The courses of loss in 3000 iterations. 

 

 

Figure 6 . The courses of loss in 190 epochs. 

 

4.3 Object Detection 

At last, we evaluate SAT on object detection and identify images of bicycle and electric 

bicycle. According to our training protocol, SAT model appears perfect performance, such as 

mAP(Albuquerque et al.,2021) and maxDets(Shermin et al.,2021). The Average Precision (AP) 

reaches 95%, the small area metric reaches 90%, the medium area metric reaches 94.8% and 

the large area metric reaches 94.5%, as shown in Table 4. 

 

Table 4 . The performance of SAT on a special dataset. 

 

Area mAP IoU 
maxDets 

1 10 100 

all 0.95 0.75 0.796 0.913 0.927 

small 0.9 0.5 0.072 0.091 0.095 
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medium 0.948 0.5 0.169 0.178 0.189 

large 0.945 0.5 0.788 0.908 0.946 

 

The maxDets means to retain the first, top 10, and top 100 prediction boxes respectively on 

each image. Compare these prediction boxes with the real box to calculate the AP and AR. If 

retain more prediction boxes, it is clear from Table 4 that the mAP of the model would be 

enhanced. This perfect performance of the model also demonstrates on increasing epochs, as 

shown in Figure 7. 

 

 

Figure 7 . The performance of SAT with increasing epochs. 

 

We select 9 images with different sizes from real life to verify the accuracy of SAT. The 

results of the test indicate that our SAT model is perfect to distinguish between bicycle and 

electric bicycle, which reach 95% AP. Visualization of predicted boxes of the image are drawn 

using SAT model, as shown in Figures 8-9. Predicted boxes of classification score are also 

drawn on the picture. 
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Figure 8 . Group 1: The visualization of predicted boxes of images are drawn by means of 

SAT. 

 

Figure 9 . Group 2: The visualization of predicted boxes of images are drawn by means of 

SAT. 

 

COMPARE AND DISCUSSING 

 

Due to memory constraints, we use light model architecture and dataset for all of our models. 

NanoDet is a light object detection model, which size is less than 4.36M and the amount of 

parameters is 0.95M, and is super fast on the mobile terminal (10.23ms on ARM CPU). GPU 

memory cost is much lower than other models: the batch-size 80 on the GTX1060 6G. We 
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fine-tune NanoDet models based on the strategy of transfer learning to detect special objects. 

Compare NanoDet, YoloV3 and YoloV4 with our SAT on the latency of processing data, 

FLOPS (floating-point operations per second)(Gu et al.,2021), Params (the amount of 

parameters) and model size. The difference of models are shown in Table 5. 

 

Table 5 . Performance comparison of NanoDet, YoloV3, YoloV4 and SAT. 

 

Model Image size Latency FLOPS Params 
Model 

Size 

NanoDet 320 × 320 10.23ms 0.72B 0.95M 4.36 mb 

YoloV3 416 × 416 37.6ms 5.62B 8.86M 33.7mb 

YoloV4 416 × 416 32.81ms 6.96B 6.06M 23.0mb 

Our SAT 320 × 320 8.52ms 0.65B 0.84M 4.21mb 

 

In order to indicate the performance of SAT, we compare the speed of different image sizes in 

the processing of forwarding time, decode time and visualization time, as shown in Table 6. 

 

Table 6. Cost time of three processing stages (Forward, Decode and Visualization). 

 

Image Size Forward time(s) Decode time(s) Viz time(s) 

2.1M 2.562 0.016 0.062 

1.5M 2.484 0.016 0.063 

586K 0.078 0.016 0.016 

384K 0.047 0.016 0.031 

234K 0.045 0.016 0.016 

207K 0.045 0.016 0.016 

180K 0.031 0.016 0.016 

177K 0.031 0.016 0.016 

65K 0.016 0.016 0.016 

 

The trends of the respective time in Forward, Decode and Visualization(Huang et al.,2021) 

were displayed clearly, as shown in Figure 10. It indicates that processing time decrease as 

image size reduces. Especially, at the 586K critical point the decode time change largely. 
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Figure 10 . The trends of cost time (Forward, Decode and Visualization). 

 

CONCLUSION 

 

In computer vision, our SAT modern is a one-stage object detection method. We combine a 

few carefully selected samples in training and simple heuristic fine-tuning to achieve good 

performance on special object detection in real life scenarios. SAT performs well across 

surprisingly small, medium, and large critical areas and achieves 95% AP (Average Precision). 

Actually, our SAT has the potential to get benefit from NanoDet to further enhance its 

performance, such as optimizing loss, and deformable network architecture. Due to memory 

constraints, we only use light model architecture and a partial COCO dataset for training. We 

hope our work could promote and complete the practical application in more real life 

scenarios. 
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