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ABSTRACT 
 
Time-optimal trajectory planning is used in many areas of industrial robots and has a wide 

range of applications. This paper presents a finite and fast computation method for 

calculating time-optimal robot trajectories along specified geometric paths, namely the 

velocity sinking method. The velocity sinking method differs from those proposed in the 

existing literature which solve uncertain optimization problem. Firstly, the maximum 

velocity in multiple state constraints is calculated using a path parameterization method. 

Then, the pseudo maximum velocity trajectory is calculated using a numerical integration 

method. Finally, the time-optimal trajectory planning under path constraints is determined 

using an iterative velocity sinking algorithm. The experiment demonstrates the effectiveness 

and efficiency of this method in industrial robotic settings. 
 
Keywords: Time-optimal trajectory ;  Industrial robots ; Velocity sinking method ; Numerical 

integration. 

 

 

INTRODUCTION 

 

Time-optimal trajectory planning is of significant importance in many areas of robotics and 

automation, from industrial to mobile and service robotics. The theory of time-optimal 

trajectory planning under geometric constraints is considered to be essentially solved (Pham et 

al., 2018),  however the efficiency and adaptability of algorithm under dynamic constraints 

still need to increase in practice(Barnett et al., 2020). Bobrow proposed the decoupled 

approach which converts multi-dimension time-optimal problems of robots to a two-

dimension dynamic system (Bobrow et al., 1985). Based on this transformation, there are two 

methods to solve time-optimal trajectory planning problems under geometric constraints. 

 

The first methods are indirect methods, which mainly consist of the Pontryagin Maximum 

Principle and Dynamic programming (Shin et al., 1985, Rojas-Quintero et al., 2022, Shin et 

al., 1986 & Singh et al., 1987). The time optimal trajectory solved by using the Pontryagin 

Maximum Principle is considered a “bang-bang” trajectory type in the  plane, and can be 

calculated by successive integration of the maximum and minimum acceleration. 

Theoretically, this approach is the quickest algorithm, as it adopts the bang-bang structure of 
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the optimization algorithm. However, this method is difficult to use due to the involved 

programming difficulties and the robustness issues associated with the dynamic singularities 

(Kunz et al., 2012 & Pham, Q.C 2014).  

The second approach consists of direct methods, which are convex optimization (Verscheure 

et al., 2009, Kingston et al., 2018 & Debrouwere et al., 2013) and types of swarm intelligence 

algorithms(Huang et al., 2018, Ertenlice et al., 2018 & Tharwat et al., 2018). Convex 

optimization methods discretize the s-axis into segments and subsequently convert the 

original problem into a convex optimization problem with )NO(  variables, )NO(  equality and 

inequality constraints. The swarm intelligence algorithm translates the time-optimal trajectory 

planning problem into a multi-variation optimization problem, this is similar to convex 

optimization methods in that both methods are able to take into account more general 

constraints and objective functions, such as energy or torque rate, leading to less aggressive 

use of the actuators. The direct method has the limitations of producing suboptimal results and 

has low computation efficiency. 

 

Here, we introduce a finite, fast and widely applicable technique called Velocity Sinking 

Method that extends the work of Bobrow in several important respects. First, rather than use a 

line-search technique to find the acceleration switching points, this is very significantly since 

the time optimal trajectory planning problem is particularly sensitive to numerical instability 

near the switching points. Second, a customized numerical velocity sinking approach is used 

to adjust velocity. The rest of paper is organized as follows. In Section 2, the time-optimal 

trajectory planning problem is formulated. Then, the velocity sinking algorithm is given in 

Section 3. In Section 4, the experiments with real robot are used to test the performance of the 

velocity sinking method by comparison with other time-optimal trajectory planning methods. 

Conclusions and future research directions are summarized in Section 5. 

 

PROBLEM STATEMENT USING PATH PARAMETERIZATION 

 

The formulation of the problem is described below and the discretized path parameterization 

reformulation of time-optimal trajectory planning problems is described. Consider a -N DOF  

robot with dynamics equation (Zhang et al., 2021):  
 

( ) ( , ) ( ) ( ) ( )sign   U D q q C q q q q F q G q                                   (1) 

where D  is the n n  matrix of the robot system, C is the n n  mass matrix containing 

the centripetal and Coriolis terms, F  is a n n  matrix of Coulomb friction torques, which can 

be joint angle dependent, while G denotes the vector accounting for gravity and other joint 

angle dependent torques.  

 

Consider a path ( )s t   in work space coordinates, the joint space coordinates ( )
n

s Rq  as a 

function of a scalar path coordinate ( ) : [0, ] [ , ]s t T s ss e  can be solved by robot inverse 

kinematics. This paper considers time-optimal path tracking problem and it is assumed that 

( ) 0s t   everywhere. For the given path, differentiating ( ( ))s tq with respect to t using the chain 

rule results in: 
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( ) ( )s s sq q                                                                                       (2) 
2( ) ( ) ( )s s s s s  q q q                                                                        (3) 
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Figure 1.  A schematic of time-optimal trajectory planning with path constraint. 

Where dots denote differentiations with respect to the time parameter t, and ( ) ( ) /s d ds q q ,

2 2( ) ( ) /s d ds q q . Substituting (2) and (3) into (1), the industrial robot dynamics equation (3) 

can be transformed into: 
2 (( ) ( ) ( ) , )s s s s s s s  u d wc g                                                                       (4) 

Where:  

( )= ( ( )) ( )s s sd D q q                                                                                                        (5) 
2( ) ( ( )) ( ) ( ) ( ( ) ( )Ts s s s s s s   c D q q q C q q）                                                       (6) 

( ) ( ( ))s sg G q                                                                                                          (7) 

 

Equation (4) constitutes an abstracted expression, which is convenient for computer 

implementation. It evaluates the N dimensional vectors d , c , and g  along the path and feeds 

these vectors as inputs to the optimization algorithm. The complex dissipative force function 

( , )s sw  is commonly replaced by linear models or ignored, similar to previously reported 

work(Zhang et al., 2021), the robot dynamics model was simplified to solve practical 

problems, and therefore the equation (4) is simplified to: 
2( ) ( ) ( )s s s s s  u d c g                                                                     (8) 

Where: ( ) ( )s su d c、 、  and ( )sg  are the vectors, it can be seen from equation (8) that the 

robot dynamics equation is a linear differential equation about the s  and 
2s  on the fixed path

s . Equations (3) and (8) are compared and have the same formulation,  therefore: 
2( )= ( ) + ( )s s s s sh a b                                                                                (9) 

 

VELOCITY SINGING METHOD 

 

The scheme for the velocity sinking method of time-optimal trajectory is shown in Figure 2. 

The new method is based on the shooting method (Kunz et al., 2012), but it differs in that it is 

not necessary to solve arcs and switch points and is a finite way for time-optimal trajectory 
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Figure 2. The scheme of VS method. 

 

The scheme primarily consists of four parts. First, the path parameterization method makes 

the multi-dimensional state space of a robot reduce to a two-dimensional state space. Second, 

the maximum velocity in multiple state constraints (MMV) is calculated using the intersection 

of the AVC and the ATC. Third, the pseudo maximum velocity trajectory (PMV) is calculated 

using the shooting method based on MMV. Finally, an iterative descending approach 

translates PMV to MVC, which gives the optimal velocity curve. By using this hybrid 

strategy, the optimized trajectory can be improved. The scheme is valid for all time-optimal 

trajectory planning along specified paths. 

 

1.1 The maximum velocity curve under multiple state constraints 

The actuator velocity constraints are transformed into path velocity constraints by kinematic 

models in robots. Therefore, the velocity constraints are represented as： 

                                   ( ) cs q q                                                                                                          (10) 

Where: dots denote differentiations with respect to the time parameter t ,  and 
cq  is the 

actuator constraint velocity. The path function ( )s t  increases monotonically, the s is non-

negative, substituting (2) into (10) results in: 

( )cs s q q                                                                                                          (11) 

The maximum velocity curve with actuator velocity constraints (AVC) can be represented as: 

[ , ]AVC( ) min( ( ) )c s ss es s s s  q q ，                                                      (12) 

According to the equation (12), the workspace maximum speed curve determined by actuator 

velocity constraints can be calculated, which is a necessary constraint condition.  

 

To observe joint acceleration equation (3) and dynamics equation (8), torque and joint 

acceleration are the matrix equation about  s  and 
2s , and the equations can be unified as: 



Journal of Engg. Research, ICCSCT Special Issue 

 
 

5 
 

2( ) + ( ) ( )s s s s sa b h                                                                                  (13) 

 

Where: ( )sh  denotes the constraint of joint torque or joint acceleration, ( )sa and ( )sb  are 

the coefficients of equation (3) or equation (8),  the ( )sh  is the joint extreme torque or 

acceleration.  

 

In order to guarantee joint acceleration and torque constraints, the scalars s s s、、  should 

satisfy the inequality (13). Therefore, given the path coordinate s and path velocity s , the 

path accelerations s satisfies the following two inequalities： 

(1) If ( ) 0ia s  , the inequality (13) can be written as： 

 2( ) ( ) ( )i i is h s - b s s a s                                                                       (14)                                                      

(2) If ( ) 0ia s  , the inequality (13) can be written as： 

 2( ) ( ) ( )i i is h s - b s s a s                                                                            (15) 

Where: [1, ]i N , with N  being the degree of the robot. Solving (14) or (15) results in:  

11{[ , ] [ , ], 1, 2 , 1}i ii is s s s s i N                                       (16) 

 

Where: the allowable acceleration s is the union of minimum acceleration is  and maximum 

acceleration 
i

s . Note that the equation (16) does not have a meaningful acceleration due to the 

velocity in the boundary conditions,  resulting in a limited velocity determined by acceleration 

and torque constraints. The scanning method shown in Table 1 was used to calculate the 

maximum velocity curve ATC constrained by acceleration and torque constrants.  The central 

idea of the scanning method is to divide up the estimated velocities at s, and filter out the 

maximum speed according to the necessary constraint conditions as equation (16). 

 

Table 1. The pseudo code of scanning algorithm. 

 

max

(ATC)

1. initialize  ( , ) linspace(0,s (n),m)

2. i=1:n

 j=1:m

  ( ( ), ( , ) ( ( ), ( , )

3. ( ) ( , )

4.

5.

6.

7. ATC

8. ATC

   

Scan

s n m

s s i s i j s s i s i j

y i s i j

y





 





if  

for

for

end

end

end
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The necessary maximum speed curve ATC constrained by acceleration and torque in the 

phase plane can be calculated using the scanning method. Solving the union of maximum 

velocity curve of joint acceleration and torque constraints (ATC) and maximum velocity 

curve with actuator velocity constraints (AVC), the maximum velocity curve in multiple state 

constraints (MMV) was developed. Since the maximum velocity curve in working space is 

non-negative, the maximum velocity curve in the plane , )s s(  can be represented by: 

MMV min{MVC( ),ATC( ), [ , ]}s es s s s s                                         (17) 

 

 

Figure 3. The schematic of three kinds of constraints speed curve. 

 

For example, the blue diamond dash curve in Figure 3 is the MMV, the green dash curve is 

the ATC and the red dash line is the AVC. If the robot state is MMV, there exists at least one 

saturated actuator torque or actuator velocity. The MMV curve is also a trajectory of non-zero 

starting velocity,  therefore  the shooting algorithm was used to solve this. 

 

1.2 The pseudo maximum velocity trajectory (PMV) 

The maximum velocity in MMV is defined by the limited velocity curve. Therefore, using the 

numerical integration method, the velocity values must be maintained under MMV. The 

algorithm to determine the time-optimal parameterization curve of PMV, starting and ending 

with the zero velocities, proposes a velocity curve using forwards and backwards integrations, 

to get point to point trajectory as curve V1 and V2 in Figure 4. 

 

The maximum velocity in a point to point trajectory (PMV) is the concatenation of the 

intersected forward profile V1, the backward profile V2 and MMV, as shown Figure 4. 
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Figure 4. The constituent parts of PMV curve. 

 

Using the successive scanning method described above and numerical integration method, the 

maximum velocity curve PMV can be calculated using multiple state constraints. The curve is  

 

Figure 5. The velocity distribution diagram. 

 

only necessary for real maximum velocity curve of time-optimal trajectory because the  

coupled robot dynamics determines that the MMV does not satisfy acceleration and torque 

constraints. For example, it can be found that the curve in an ellipse does not satisfy the 

conditions that the velocity curve is in acceleration scissors as showed in Figure 5. 

 

1.3The iterative descending approach for velocity vector  

Based on the Pontryagin Maximum Principle, numerical integrating possesses a bang-bang 

structure of torque inputs, thus the core of numerical integrating is the computation of switch 
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points. Dubowsky proposed that finding multiple switching points is the most difficult part of 

the minimum-time problems. However, this paper proposes a method in which the time-

optimal trajectory can be calculated without considering switch points, by decreasing the 

pseudo maximum velocity trajectory (PMV) gradually and determining the maximum velocity 

curve MVC in which acceleration tangent is in the acceleration scissors (see Figure 6). 

The pseudo maximum velocity trajectory (PMV) is derived by calculating the maximum 

velocity curve (MVC) with the iterative descending method: 

Step 1: According to equation (17), calculate the discrete maximum acceleration 
maxA

and minimum acceleration 
minA of the path velocity curve PMV; 

Step 2: Using the directional differentiation to calculate the acceleration of PMV, which 

is denoted by 
pA ; 

Step 3: Corresponding to every path coordinate s, find the element of acceleration vector 

which meet 
pA  > 

maxA , and formulate the child vector 
pm pA A  as shown by the small 

ellipse in Figure 5, find the element of vector 
pA < 

minA , and formulate the child vector 

pl pA A  as shown by the large ellipse in Figure 5. 

 

Amax

Apl

 iterative decreasing

(a) (b)

Amin
Apl

Amax

Amin

*

*

*

 iterative decreasing

Apm Amax

Amin

*

Amin
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Figure 6. The velocity distribution diagram after velocity sinking approach The velocity 

profile in the Velocity Sinking approach ((a) represents the actual acceleration is less than the 

minimum constraint acceleration, (b) represents the actual acceleration is greater than the 

maximum constraint acceleration). 

Step 4: For the acceleration vector 
plA , as shown in Figure 6(a), the starting point of 

velocity vector curve is slightly down, resulting in a new acceleration vector *

plA . 

Step 5: For the acceleration vector 
pmA , as shown in Figure 6(b), the ending point of 

velocity vector curve is slightly down, resulting in a new acceleration vector *

pmA . 

Step 6: The *

plA  and *

pmA  constitute the new 
pA . Then, repeat steps (3) to (5). If the 

plA  

and 
pmA  are all empty, it indicates that the all velocity vectors are in the acceleration scissor 

mouth, the velocity curve denoted by MVC must be the optimal time trajectory under multiple 

constraints as shown in Figure 7. 
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Figure 7. The velocity distribution diagram after velocity sinking approach. 

 

After the above six steps were completed, the time-optimal trajectory curve denoted by MVC

was obtained, and the proposed method to transform the N-dimensional space optimization to 

a deterministic problem, which is an easy and intuitive way to solve time-optimal problems 

and has great practical value. The following experiments test the efficiency and quality of the 

proposed VS method. 
 

EXPERIMENT 
 
The effectiveness and feasibility of the proposed VS algorithm was tested, and the presented 

algorithm was applied to a six-axis robot controlled by a standard industrial PC with a 2.59 

GHz processor, as shown in Fig.8. For limited motor torques, a full dynamic model with 

identified parameters was used. The velocity and acceleration limits were taken from the 

manufacturer’s data sheet. Linear and circular paths were studied experimentally by 

comparing with conventional algorithms used for the time-optimal trajectory planning 

problems.  

1.1 Effectiveness analysis of proposed algorithm 

1.1.1 Linear path simulation and experimental verification 

 

Linear path tracking (see Figure 8), starting position coordinates (1.4507, 0.2558, 0.4899) 

meter, and end position coordinates (-0.3334, -0.9160, -0.1551) meter were used to calculate 

inverse kinematic transformation of straight line in Cartesian space with position of the tool 

center. A MATLAB-implementation of the presented algorithm was used to compare the 

results with the genetic  and SQP algorithms  (Abd Elrehim et al., 2019 & Liu et al., 2013). 

The resulting path velocity profiles are shown in Figure  9. 

0 0.5 1 1.5 2 2.5
-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

path coordinate s

p
a

th
 v

e
lo

ci
ty

 d
s
/d

t

 

 
minmum accelarity

maximum accelarity



Journal of Engg. Research, ICCSCT Special Issue 

 
 

10 
 

 

Figure 8.  The straight path schematic of industrial robot.  

 

 

Figure 9.  The path velocity of different planning method.  

 

As shown in Figure 9,   the comparison of three methods indicates that the three velocity 

profiles were all under the MMV denoted by the blank circle curve. The curves of the GA and 

SQP algorithms were smoothly, the two curves had more oscillations than the curve of the VS 

method. This suggests that the trajectory based on the VS algorithm takes less time compared 

to the other two trajectories. 

 

Figure 10 shows the joint acceleration results of the three algorithms, the limit acceleration of 

three axis was (36.7544,27.4534,32.3333) rad/s2, the accelerations of joint 1 and joint 2 were 

less than its limit acceleration with all three algorithms. However, the acceleration of joint 3 

with VS algorithm equals its limit acceleration in some parts of the curve, indicating that the 

acceleration using the VS algorithm was greater than that of the other two algorithms.  
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Figure 10.  Joint acceleration diagram. 

  

As shown in Figure 11, the torque curve of the VS algorithm changed significantly, but the 

torque variation with genetic algorithms (GA) and sequential quadratic programming 

algorithm (SQP) was relatively stable, suggesting that the VS method had the“bang-bang” 

features for multiple constraints. The acceleration curves of the three algorithms were all 

below the limit acceleration curve, which was 400 N.m. Therefore, the torque of the VS 

method satisfied the constraint condition and was compliant with planning requirements. 

 

Figure 11.  Joint pseudo torque comparison chart.  

 

The optimal time of the three algorithms is shown in Figure 12. The optimal values of the VS 

algorithm at different positions were less than that of the other two algorithms. This was due  

 

 

Figure 12.  The optimal time comparison.  

to the finite optimization used for the VS algorithm which was derived from the multiple 
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trajectory constraints, while the other two algorithms were susceptible to local minima. It was 

difficult to obtain a global optimum. Therefore, the proposed method had a minimum time, 

and therefore better compared to the other two algorithms for the optimization results. 

1.1.2 Circular path simulation and experimental verification 

This example is a time-optimal trajectory planning problem for a circular path located on a 

horizontal surface, whose center coordinates were (0.80, 0.10, 0.36) meters and the radius was 

0.08 meters. The trajectory of the VS methods is shown in Figure 13. The green curves are the 

iterative sequences of the velocity profile using the VS method, the red curve represents the 

time-optimal trajectory profile, and the black circle curve represents the pseudo maximum 

velocity trajectory (PMV). The results indicate that the PMV turns into MVC after 7 iterations 

and the minimum time velocity curve MVC was determined. A detailed comparison is shown 

in Figure 14.   

 

Figure 13.  The schematic of VS method.  

 

The results in Figure 14 show the performance of different planning methods. The results 

suggest that VS had the more efficient velocity curve compared to GA and SQP, possibly due  
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Figure 14.  Performance of different methods in time-optimal trajectory planning.  

 

to the VS method having a finite optimization algorithm, but the SQP and GA were stochastic 

optimistic algorithms which may fall into local minimum. The proposed method can get better 

optimum results compared to the other two algorithms. 
 

  

Figure 15.  Comparison of joint torque.  

 

Figure 15 shows a comparison chart of joint torques. The torques calculated using the three 

algorithms were all in scope of the joint limit torque, which was 400 Nm. The torque variation 

of VS was flatter than that of SQP and GA for joint 2 and joint 3. However, the joint 1 torque 

using the VS method had a small jitter, which was due to the sudden change in acceleration. 

Figure 14 indicates that VS algorithm satisfies torque constraints for computing time-optimal 

trajectory planning. 

 

1.2 Efficiency analysis of proposed algorithm 

Trajectory planning time is an important indicator in time-optimal planning, improving 

computational efficiency. With the development of computing and storage technology, the VS 

algorithm can be applied to industrial robots. Table 3 shows the computational efficiency of 

the VS algorithm, sequential quadratic programming algorithm (SQP) and genetic algorithm 

(GA). 
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Table 2. The Comparison of optimization algorithms. 

 

Item VS SQP GA 

CPU time for line path (s) 0.24 0.75 1.71 

CPU time for circle path (s) 0.87 1.32 1.85 

Num. points 50 50 50 

 

The VS is the presented algorithm, SQP is a gradient optimization method and GA is an 

evolutionary algorithm. Num. points are the number of discrete points. CPU time is the 

planning time for the whole path using MATLAB. Although computation times have to be 

interpreted carefully, the comparison suggests that the proposed method could be efficient 

compared to the other two algorithms for line path and circle path. Furthermore, the circular 

path consumes more CPU time when compared to the line path. Therefore, the VS algorithm 

has the advantages of being time efficient and calculating the optimum time for a time-

optimal trajectory plan problem. 
 

CONCLUSION 

 

This paper presents a velocity sinking (VS) method, a finite approach for time-optimal 

trajectory planning along specified paths with dynamics constraint. The pseudo maximum 

velocity trajectory was established on the path coordinate, which was calculated using the 

constraint equation and shooting method. To determine the time-optimal trajectory, VS used a 

phase plane method to outline the distribution features of acceleration. Moreover, discrete 

velocity vector violating the acceleration principle were ajusted to conform to the acceleration 

laws, which could result in the velocity distribution being closer to the real maximum velocity 

goal. Comparisons with other time-optimal trajectory planning methods showed statistically 

significant improvements in optimum and computation efficiency. 

 

Future work should include the investigation of the issue of dynamic singularities using the 

VS method to expend algorithm adaptability. The VS method would also benefit from 

dynamic singularities. The application of the VS method in industrial robots involving 

handling tasks, as well as mobile robots involving time-optimal goal could be all 

advantageous. 
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