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ABSTRACT 
 
With the development of marine business, the diversification of marine business has produced 

more and more delay-sensitive and computing-intensive tasks, and the demand for marine 

communication is becoming more and more obvious. Establish a task offloading model 

between ship users, select offload nodes based on the connectivity probability between ship 

users, in order to alleviate the problem of data congestion during transmission, use orthogonal 

frequency division multiple access technology to divide channels, and propose subtasks and 

Algorithm for subchannel matching. Ship users use solar energy to supply energy, and 

propose a penalty strategy for insufficient energy collection and a penalty strategy for task 

delay, so that the system can minimize the actual energy consumption and establish an 

objective function under the condition of satisfying the delay constraint. The local transmit 

power is optimized, and the gray wolf optimization algorithm is improved to obtain a better 

data offloading ratio. The simulation results of EdgeCloudSim show that, compared with 

other methods, the proposed method can achieve the best performance while guaranteeing the 

delay. 
 
Keywords: Marine communication; MEC; Compute offload; EdgeCloudSim 

 

INTRODUCTION 

 

With the development of the communication network, the mobile communication 

network(Zhao et al.,2019), as a key communication carrier, has realized the development from 

1G to 6G, which has brought about great changes in people's lives. However, due to the harsh 

marine environment, the communication network is easily affected by environmental factors, 

and the deployment of marine infrastructure is dangerous and complicated, the development 

of marine networks is limited by many factors in the ocean. The ocean is rich in resources and 

is a huge treasure house of resources, a transport channel for world trade, and a stage for 

international competition. The ocean has become a system of military, political and economic 

influences. In order to meet the requirements of increasingly frequent maritime activities, a 

large number of intelligent devices have been widely used in the fields of marine environment 

monitoring, marine transportation, marine exploration and marine rescue, resulting in more 

and more computing-intensive and delay-sensitive tasks, which are urgently needed. A 

communication and computing architecture provides storage, communication and computing 

services for user terminals to meet the needs of maritime mission execution. Mobile edge 
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computing emerges in a new way, expanding the computing capabilities of end users to a 

certain extent. Due to the limited energy of end users, it is difficult to provide services brought 

by the mobile edge computing (MEC) (Xie et al., 2018 & Mao et al)system for a long time, 

and in the special environment of the ocean, the transmission of energy is a huge challenge. 

 

1.1 Motivation 

Most of the human development of the ocean is concentrated in the near-coastal area, 

resulting in different requirements for computing nodes in the offshore and far-sea areas. The 

execution of the task is realized based on the terrestrial communication system. In the distant 

sea area, the ship is far away from the coastal base station, the signal coverage is limited, it is 

difficult for ship users to connect to the base station to offload tasks, and the resources are 

limited, which is prone to problems such as service interruption or task loss. At the same 

time, the energy resources of ships in the ocean are limited, and the transmission is difficult, 

therefore, a task offloading model with energy harvesting is established to improve the 

performance of the system. 

 

1.2 Contribution 

The main contributions of this paper are as follows: 

 Aiming at the task offloading optimization problem, this paper selects the task 

offloading node based on the connectivity probability between the ship user to be 

offloaded and the idle ship user. When the connectivity probability meets the 

communication threshold, it is used as the candidate node, and the ship user selects the 

node with the largest connectivity probability among the candidate nodes. as an uninstall 

node. 

 In order to alleviate the problem of data blocking, orthogonal frequency division 

multiple access technology is used to divide the transmission channel, and a matching 

algorithm between subtasks and subchannels is proposed to further shorten the time 

delay of task processing. 

 In order to solve the problem of energy supply for ship users, the solar energy collection 

technology is proposed, and the ship's backup battery is used as energy supplement to 

ensure the continuity of ship users' task processing. 

 Propose a penalty strategy for insufficient energy harvesting and a penalty strategy for 

too long task delay, so that the ship user's task execution can minimize the actual energy 

consumption while ensuring the delay. 

 

1.3 Paper Organization 

The rest of the work of this paper is arranged as follows. The related work of maritime 

communication is reviewed in Chapter 2. The model of the system is described in Chapter 3. 

The problem-solving process is described in Chapter 4, and the experimental results are 

discussed in Chapter 5. The full text is summarized in Chapter 6. 

 
THERMOPLASTIC COMPOSITE PIPES 

 

As data-driven marine services become more and more important, this puts forward higher 

requirements for marine communications, including the construction of transmission networks 

and cloud systems, interface devices and mobile devices, and strategies for task processing. 

The emergence of MEC provides the possibility to solve problems such as long network delay 

and lack of terminal computing resources.  
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In the context of mobile edge computing, (Zeng et al., 2020) considered the fusion of edge 

computing, network control, and storage into the edge network to achieve efficient resource 

allocation and reduce redundant data transmission, and optimized tasks using an optimal 

response offloading algorithm.  

In order to be able to process marine data cost-effectively, (Yang et al., 2019) firstly 

formulated the offloading strategy in the first stage, and decided the processor for the ship 

user's task processing. In the second stage, the optimization strategy of the combination of 

edge cloud and central cloud was proposed according to the task attributes.  

In the (Yang et al., 2018) cooperative edges were added to the cloud and edge to improve the 

efficiency of cooperative edge task scheduling, and an improved co-evolutionary algorithm 

was used to obtain optimal performance.  

(Wang et al., 2020) proposed a marine broadband MEC model based on OFDM. The server 

on the surface provided computing services for UAVs performing monitoring tasks. With the 

goal of minimizing the energy consumption of UAVs, a task scheduling and offloading 

strategy was established jointly with transmit power.  

Based on the improved Hungarian algorithm, (Yang et al., 2018) taked the ship computing 

task problem at the terminal as the background, considered the situation of different weights, 

and builded a mathematical model with the goal of minimizing the energy consumption and 

delay of ship users.  

(Xu et al., 2020) proposed an air-ground-sea collaboration strategy based on edge cloud 

computing, where satellites and UAVs provided edge computing services and network access 

in the air, and optimized computing resource allocation and communication problems through 

deep reinforcement learning to improve the communication and computational efficiency.  

In the space-based communication model, (Wang et al., 2018) proposed satellite edge 

computing, that is, user terminals in areas without MEC coverage can obtain MEC services 

through satellite links. It designed a dynamic network virtualization technology to integrate 

network resources, and realized the optimization problem of task scheduling through 

cooperative computing offloading.  

In order to improve user service quality, (Zhang et al., 2019) studied the realization of mobile 

edge computing technology in satellite and terrestrial networks, designed collaborative 

computing offload, and optimized the delay and energy consumption of task processing. 

In summary, more and more researchers are paying close attention to the application of edge 

computing in maritime communication networks, and have studied the optimal configuration 

of computing resources from different perspectives to solve the problems of task processing 

delay and energy consumption in the network. optimization problem, but there are still some 

limitations. The maritime mobile edge computing network is in the early stage and still faces 

many challenges. Therefore, a lot of research is needed to enter a new large-scale application 

stage in the future. 

 

SYSTEM MODEL 
 
3.1 System Architecture 

In far away from the coast scenario, a ship interconnected communication system mode 

consisting k ship users. Because of its limited resources, the mechanism of offloading node 

selection based on connectivity probability is proposed, offload the task of the ship user to the 

idle ship for execution, at the same time, ship users can collect solar energy, and the energy 

collected in the current time block will be used for task processing in the next time block. 

Ship communication model is illustrated in Figure 1. The task of each ship user is divided into 
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N independent sub-tasks, which can be expressed as ,
( , ) 

n i n i
D a n N   , 

,i n
D (bit) is the data size 

of the sub-task, 
ia (cycle/bit) is the average density calculated by the task, Subtasks can be 

processed locally or offloaded to nearby ships at same times. The transmission channel of task 

can be divided into N sub-channels by orthogonal frequency division multiple 

access(OFDMA) technology(Xiong et al., 2012). If a ship user chooses to offload a certain 

proportion of tasks to other ship users, each subtask is paired with the subchannel one by one 

to improve the task processing efficiency. 
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Figure 1. Ship communication model. 

 

3.2 Calculation Model 

3.2.1 Node Selection Model 

When the ship users are ready to offload the tasks to another ship users for processing, Ship 

users need to consider the transmission distance between themselves and idle ship users and 

the remaining computing capacity of idle ship users. Therefore, the connectivity probability 

between ship users is the key to task transmission. When the connectivity probability is high, 

the success rate of tasks offloading is high. Assuming that the remaining computing power of 

idle ships obeys the Poisson distribution, the connectivity probability of ships can be 

expressed as: 

1 2
!

mN

t

m

x
P g e g

N r

                                                        (1) 

Where,  is the average remaining computing power of ship users per unit time,
m

N  expressed 

as the number of idle ships, x is the distance between ships, r is the communication coverage 

radius of the ship itself, 
1 2 1 2, [0,1], 1g gg g    is the preference coefficient, when the task is 

delay-sensitive, the bias is The coefficient selection is biased towards the shorter transmission 

distance. When the task is computationally intensive, the remaining computing power of the 

ship to be offloaded is considered to be sufficient. As shown in Figure 2, the ship user object 

to be offloaded is selected within the coverage of the ship itself. 
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Figure 2. Communication model of adjacent ships. 

 

After the ship user to be offloaded obtains the connection probability with other ship users, it 

is determined whether the connection probability is greater than the threshold value P. If the 

connection probability is greater than the threshold value, the ship user can be used as an 

alternative offloading node, and the offloading user selects the candidate offloading node with 

the highest connection probability. as the best uninstall node for uninstallation. 

 

3.2.2 Local Computing Model 

When the task needs to be processed locally, the task is divided into N sub-tasks according to 

the ship user, each sub-task can be calculated locally according to the task ratio of 
i , k is the 

switching coefficient, and the local calculation frequency is set to 
l

if .the working frequency 

of the CPU is affected by The constraint of the maximum execution frequency 
max

if , 

therefore, the delay and energy consumed by the ship user to process each task are expressed 

as 

,

1

N
i n i il

i l
n i

D a
T

f





                                                                (2) 

2

,

1

( )
N

l l

i i i n i i

n

E k f D a 


                                                         (3) 

 

3.2.3 Channel Model 

When the task is offloaded to other ships for processing, due to the instability of the network 

in the marine scene, the transmission of a large amount of data will be affected by the 

environment, resulting in the failure of the task transmission. Therefore, the OFDMA 

technology is used to divide the transmission channel into N  sub-channels, so that the sub-

task It follows a one-to-one pairing mechanism with sub-channels, and uses variable 

, ,( , , , )i n nH h i n n   for its pairing decision to optimize the delay and energy consumption of 

the system. The network architecture in the distant sea scene is different from the network 
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architecture on the land in terms of scattering. The sea channel is highly affected by the line-

of-sight path and the sea surface reflection path. Therefore, the Rayleigh fading channel 

model of land communication is difficult to apply to the sea communication scene. This paper 

adopts the two-path channel model as the transmission model, and the channel gain between 

the ships can be expressed as: 

2 2

,

2
( ) 4sin ( )
4

t r
i n

h h
g

x x



 
                                                  (4) 

Where, is the wavelength, x is the communication distance between ships, 
th  and 

rh  are the 

heights of the transmitting and receiving antennas, respectively. Then the transmission rate of 

the subtask in subchannel n  is: 

, , ,

, , 2 2
log (1 )

i n n i n

i n n

n

P g
r B


                                                  (5) 

Where, B is the system bandwidth, , ,i n nP  and
2

n  are the transmit power of the sub-channel and 

Gaussian white noise. During time block T, the ship user's subtask is paired with at most one 

subchannel in the channel, and the condition of this constraint can be described as: 

, ,

1 1

( , ) 1 
K N

i n n

i n

I h n n
 

                                                     (6) 

A sub-channel receives at most one sub-task's offload selection, and the constraints that must 

be satisfied are expressed as: 

, ,

1 1

I( , ) 1 
K N

i n n

i n

h n n
 

                                                        (7) 

Among them, I represents the exclusive or function, and the specific meaning is that when the 

values of the variable 
, ,i n nh  and the variable n  are the same, the value of the function is 1, 

otherwise it is 0. 

3.2.4 Task Offloading Model 

When the ship user's connectivity is satisfied, it is ensured that there is no interruption 

problem during task offloading, when the ship user i offloads its subtask n to the neighboring 

ship user v in a certain proportion, the task execution in this mode can be divided into three 

stages, offloading upload, calculation processing, and result return. However, due to the 

limited computing power of offloading to adjacent ships, the proportion of offloading data is 

small, so the return result is small, and the model in this paper will ignore the return. 

Therefore, in the offloading uplink transmission stage, the transmission delay and energy 

consumption of subtask n offloaded to the neighboring ship user v are expressed as: 

,

,

, ,

(1 )i n iuv

i n

i n n

D
T

r


                                                               (8) 

, , , ,

uv uv

i n i n n i nE P T                                                                (9) 
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When the task of ship user i is offloaded to ship user v, and v

if is defined as the calculation 

frequency of ship user v, the delay and energy consumption required to process the task at 

ship user v are expressed as: 

,

,

(1 )i n i iv

i n v

i

D a
T

f


                                                          (10) 

2

, ,( ) (1 )v v

i n i i n i iE k f D a                                                     (11) 

To sum up, it can be concluded that the total delay and total energy consumption required to 

offload subtask n can be expressed as: 

, , ,

down uv v

i n i n i nT T T                                                         (12) 

, , ,

down uv v

i n i n i nE E E                                                        (13) 

 

3.2.5 Energy Harvesting Model 

Due to the limited energy of ship users, in order to prolong the battery life of ship users, the 

model in this paper introduces an energy harvesting model to balance the needs of ship users 

for electrical energy. The photovoltaic modules of solar energy are used to collect renewable 

energy and store the energy in the battery serves the transmission of data and the processing 

of tasks in the next time block T, and the collected energy is related to the incident power of 

solar energy, energy collection efficiency and collection time, and the mathematical 

expression is described as: 

, ( )s s

solar i solar solarE t P T                                                      (14) 

Where, s

solarP  is the incident power of the sun, 
solar  is the average collection efficiency of the 

energy collection node, and T  is the time of energy collection. ( )s

remB t  is used to represent the 

remaining energy of the previous time block, so at the beginning of the current time block, the 

energy possessed by the ship user can be expressed as: 

,( ) ( 1) ( )s s s

collect solar i remE t E t B t                                             (15) 

If at the beginning of the time block T , the battery energy level ( )s

collectE t  of the ship user is 

lower than the battery power threshold 
thE , that is, the collected energy cannot guarantee the 

task processing of the ship user i, then the backup battery
tB  of the ship user is activated to 

ensure the continuity of the ship task processing. In order to maximize the utilization rate of 

the collected energy, when the backup power is used, it is denoted 
i as 1, otherwise it is 0, 

and a penalty mechanism ( )ex

i i iG E t    is introduced, where  >0 is the penalty 

coefficient, and ( )ex

iE t  is the ship user i within the specified time block. The energy 

consumption of the processing task, expressed as ,

1

( ) ( ( ) ( ))
N

ex uv l

i i n i

n

E t E t E t


  , and the battery 

power of the next time block is updated as: 
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( 1) ( ) ( )s T ex

rem have iB t E t E t                                                (16) 

 

3.2.6 Execution Cost Model 

Based on the above discussion, because marine ship users are constrained by the environment, 

it is necessary to reduce the energy consumption of ship users as much as possible to prolong 

the battery life and ensure the continuity of task execution during the navigation process of 

ship users. Therefore, this paper aims to ensure the delay of ship users. In the case of 

constraints, the objective function is established around the minimization of the energy cost of 

the ship user. Therefore, the model in this paper sets a penalty mechanism so that the ship 

user's task execution meets the delay constraint, and defines 
delay

iT  as the time required for 

ship user i to process a set of tasks, then there is 
, ,

1

max( ) ,
N

delay uv l v

i i n i i n

n

T T T T n


     , where 

the uplink transmission delay of the model is the ship user's time. The maximum transmission 

delay of subtasks, and the delay constraint penalty mechanism can be expressed as: 

0

  

   

delay

i i

i delay

i

T T
M

T T

 
 



                                                            (17) 

Among them, 0i  is the penalty coefficient, and T  is the time block of the ship task 

execution. Therefore, under the requirement of delay constraint, a fitness function is 

established by minimizing the energy consumption of ship users, which includes the penalty 

function of delay constraint, the penalty function of insufficient energy collection and the 

energy consumption of ship users performing tasks. The mathematical model is described as: 

1

1 ,

1

2 , ,

1 1

3 , ,

1 1

4 max

5

6 max

7 max

P 1: min ( )

. . :

: ( , ) 1

: ( , ) 1

:

: 0 1

: 0

: 0

 

   

      

      

     

     

     

     

K
con

i i i

i

N

i n i

n

K N

i n n

i n

K N

i n n

i n

con s

i

i

l l

i

l l

i

M G E

s t C D D

C I h n n

C I h n n

C E E

C

C P P

C f f







 

 

  



 

 



 

 

 








                                           (18) 

Where, 
con

iE  is the energy consumed by ship user i to process a set of tasks, denoted as 

,

1

N
con l off

i i i n

n

E E E


  , the constraint C1 means that the data volume of a set of subtasks is equal 

to the data volume of one task in ship user i, and the constraint C2 means that a subtask selects 

at most one subtask Channel, C3 means that a sub-channel can receive at most one sub-task 
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offloading option, C4 means that the execution of the task cannot exceed the maximum 

capacity of the battery 
max

sE , C5 is the range of the task offloading ratio, C6 means the ship 

user’s local transmit power range, C7 means the ship The value range of the user's local 

calculation frequency. 
 

PROBLEM SOLVING 
 
4.1 Transmit Power Optimization 

In the far-sea scenario, it is of great significance for ship users to effectively reduce energy 

consumption. When the task is selected to be offloaded to other ships for calculation, 

optimizing the transmit power can further reduce the energy consumption. Therefore, the 

derivation of the objective function with respect to the local power of the ship user is 

expressed as： 

, , , , , , ,

2 2 2

, , , ,

2
, , 2 2 , ,

(1 )1
(1 )

log (1 ) log (1 ) (1 ) ln 2i n n i n i n n i n i n

n n n

i n i i n n i n

p g p g g

i n n i n n n

D P gP

P B p
  






 

    
              (19) 

Since the result of equation (19) is always greater than 0, it can be concluded that the 

objective function increases monotonically, and increases with the increase of the transmit 

power. Then, the second derivative is solved as follows: 

2

2 2 ln 22
, , , ,

2 2 2

, ,

( 1) ln 21

( )

n
i n i n n i n

i n n

A B g P g A BP

P A B


   


 

                              (20) 

Where, , , ,

22log (1 )i n n i n

n

P g
A


  and ,

2

2ln 2 (1 )i n

n

g

nB


    The numerator of the second derivative 

can be expressed as , ,

2 2

2 2 2

, , , , ,( ) ln 2[ (1 )( ln 2 ) ]i n i n

n n

g g

i n n i n n i n n n

C

p A g P
 

        , And in this 

model,  C<-1, Then there is formula (20) is negative, it can be concluded that the fitness 

function is a convex function with respect to the local transmit power, indicating that the 

extremum exists and is unique, denoted as 1P , There is a delay requirement in the process of 

ship user processing tasks. Therefore, according to the delay constraint T, we can get: 

( )2

, , 2

,

(2 1)
DN

l uvB T T Ti i

n
i n n

i n

p p
g

   
                                                    (21) 

Based on the above discussion, under the condition that the local transmit power satisfies the 

delay constraint, the optimal local transmit power with less energy consumption is expressed 

as: 

1 1 2*

, ,

2 1 2

   

  
i n n

P P P
P

P P P


 


                                                      (22) 

 

4.2 Local Computing Frequency Optimization 

The use of dynamic voltage and frequency adjustment technology can make the local 

computing frequency dynamically adjusted, thereby reducing local energy consumption. 

According to the constraints on the local computing frequency, first optimize the feasible 

region of the local computing frequency. From the delay constraint and the constraint 
4C , we 

can get: 
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, max

,

s
i i n i l

i

i i n

a D N E
f

T ka D N


                                                 (23) 

In order to minimize the local delay and energy consumption, so as to further optimize the 

objective function and improve the energy efficiency of the system, the mathematical 

expression about the local computing delay and energy consumption can be established: 

1

2 max

7

: min( )

. . :

:

 

  

    

    

l l

i i

l

i

l s

i

F E T

s t S T T

S E E

C






                                                    (24) 

This model rewrites the above problem based on the Lagrangian dual method(Chuong et al., 

2018)as: 

max max( , , , ) ( ) ( ) ( )l l l l s l l l

i i i i i iL f T E T T E E f f                         (25) 

Among them,  ,  and  are the Lagrangian factor, and the optimal local calculation 

frequency according to formula (25) and the KKT condition is: 

*
3

1

( 1)

l

if
k







 
  

 
                                                        (26) 

According to the above discussion, the Lagrangian factor is updated by the gradient descent 

method, then in formula (26) there are 1( 1) [ ( ) ( )( )]l

it t t T T        and 

2 max( 1) [ ( ) ( )( )]s l

it t t E E       . The  update is expressed as 

3 max( 1) [ ( ) ( )( )]l l

it t t f f       , where t is the number of iterations and ( )n t  is the update 

step size. 

 

4.3 Offloading Ratio Solution Based on Improved Grey Wolf Optimization Algorithm 

The model in this paper takes into account the different computing capabilities of different 

ship users, and reduces the energy consumption of the entire system as much as possible by 

sequentially optimizing the local transmit power and local transmit frequency. Based on the 

above discussion, substituting 
*

, ,i n nP ,
*l

if  into Equation (18) can simplify the problem for: 

* *

1

1 7

P 2 : min ( )

. .

 

   

K
con

i i i

i

M G E

s t C C



  




                                         (27) 

For the optimal offloading strategy problem, the gray wolf optimization algorithm is 

introduced. The model in this paper analyzes the gray wolf optimization algorithm to solve 

the constrained problem, and improves it based on the basic gray wolf optimization algorithm 

to obtain the best offloading strategy. gray wolves hunt according to their hierarchy, the 

position of each wolf represents an optimal position, and the average of the three wolves with 

the best iteration results is used as the optimization result, and the model parameters in this 

paper are mapped to the algorithm, when M wolves are set in the algorithm, each offloading 

decision represents the position of a wolf. If the ship user is in the time block, a task is divided 

into N subtasks, and the position vector dimension of each wolf is the same as the number of 

subtasks. The number N is the same. When there are V offloadable ship users meeting the 

connectivity threshold, so each sub-task can have (V+1) choices, then the solution space of 
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the algorithm can be expressed as ( 1)NV  . In the basic Grey Wolf Optimization Algorithm 

(GWO) (Mirjalili et al., 2011. & Long et al.), in the late stage of iteration, each individual gray 

wolf iterates toward the position of the head wolf. If the three head wolves fall into a local 

optimum, the iteration range of the entire algorithm is reduced, and the population evolution 

mechanism is lacking. Since the model in this paper is limited by delay constraints, the 

offloading decision of subtasks has high requirements. In order to solve the optimal solution 

of the offloading decision algorithm, this paper is inspired by tumbling foraging, and the 

probability of tumbling foraging increases in the later stage of the iteration. It can enable the 

iterative individuals to update adaptively and avoid premature maturity of the iterative 

algorithm. The mathematical expression of tumbling foraging is described as: 

1 2( 1) ( ) ( ( ))d d d d

bestk k k
x t x t q r x r x t                                            (28) 

Among them, ( )d

k
x t  represents the position of the k -th individual in the M-dimensional space 

at time t, 
1r  and r2 are random numbers [0,1], and q is the learning coefficient. In order to 

better judge whether the iterative algorithm has entered the local optimum prematurely, the 

local optimum discriminant parameter is introduced, and the Euclidean distance between the 

M-th dimensional gray wolf individuals at time t is used. When the distance is short, the 

iterative algorithm is described. May be stuck in a local optimum, define the Euclidean 

distance: 

1 1 2 2 2 2 2 2

1

( , ) ( ) ( ) ( ) ( )
D

d d d d

m m m m mk k k k k
d

x x x x x x x x x x


                    (29) 

Among them, 
d

k
x  and 

d

mx  respectively represent the position of the k -th gray wolf individual 

and the m-th gray wolf individual in the M-th dimension, and the discriminant parameter can 

be defined as: 

11

1
( ) ( , )

K M

mk
mk

t x x
KM

 


                                              (30) 

Set the threshold  . If the discriminant parameter is less than the threshold  , it means that 

the iterative similarity of the gray wolf individuals in the population is very high, and there is 

a high probability of falling into the local optimum. If the discriminant parameter is greater 

than the threshold  , it means that the iterative algorithm can avoid getting stuck in a local 

optimum. Thus, a learning factor   is introduced: 

2

0 ( )

( ) ( )

     

  

t

t t

 


  


 


                                                    (31) 

A learning factor is introduced to regulate the position update of the individual gray wolf, so 

as to avoid the premature maturity of the algorithm and fall into the local optimum. The 

improved formula is updated as follows: 

3( ) ( ( ) ( ))
3

i rand i

x x x
x t r x t x t

  


 
                                    (32) 

Among them, ( )randx t  represents the position of any individual gray wolf, and 3r r3 is a 

random number [0,1]. 
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SIMULATION RESULTS AND DISCUSSIONS 

 
5.1 Simulation experiment environment 

This paper conducts experimental simulation based on the EdgeCloudSim simulation 

platform(Sonmez et al., 2018 & Jammal et al., 2018) simulating a 2000m × 2000m ocean scene 

within 20 minutes. For the parameter setting of the simulation scenario, refer to (Jaddoa et al., 

2020), the processing speed of each ship user is set to 50MIPS, and each ship user in this area 

is randomly distributed and has similar computing power. The idle ships are used as the data 

center for task offloading. The task data volume of ship users is created in the form of Poisson 

distribution in the size of 500-1000KB. In addition, this paper defines different parameters of 

the simulation platform according to (Su et al., 2020), (Su et al., 2021),such as shown in Table 

1. 

 

Table 1. System parameter values. 

System parameters Illustrate Numerical value 

 Number of ship users 5-10 

 Subchannel maximum transmit power 250mW 

 Ship communication radius 500m 

max

sE  VUi
 100J 

B max

lP  2MHz 

solarP  R 100w 

a Solar size 1m2 

N Number of subtasks 10 

N  Number of sub-channels 50-100 

5.2 Analysis of Simulation Results 

This paper simulates the ship user offloading strategy in the far sea scenario, mainly analyzes 

the energy consumption optimization performance under the delay constraint, and takes the 

total execution cost as the evaluation index. First, the feasibility of the task segmentation and 

channel segmentation proposed in this paper is verified. And the influence of the improved 

algorithm to solve the task offloading ratio on this model, then this paper uses ablation 

experiments to test the necessity of each module proposed in this paper to improve the overall 

optimization performance of the model. Finally, in order to verify the superiority of this 

model strategy, this paper and literature The far-sea scenarios proposed in (Su et al., 2020) 

and (Su et al., 2021) are compared in terms of energy saving rate and mission failure rate. 

 

5.2.1 Split Strategy Verification 

In order to verify the effect of the tasks of this paper and the channel division method on the 

performance of the model, the relationship between the number of sub-channels and the total 

execution cost is simulated when the transmit power of the sub-channels is different. The 

experimental results are shown in Figure 3. 
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Figure 3. Total cost of execution for different numbers of subchannels. 

 

With the increase of the number of sub-channels, the total execution cost shows a downward 

trend and the greater the transmit power of the sub-channel, the smaller the total execution 

cost, but when the sub-channel power exceeds a certain range, the execution total cost 

increases instead. This is because when the sub-channel increases the transmit power within a 

certain range and the local task is offloaded to other ships for calculation, the task 

transmission speed is fast, and the number of tasks transmitted in the same time is large, 

which reduces the transmission delay and speeds up the task at the same time. The processing 

time makes the energy consumption relatively small, and it can also save the energy and time 

consumed by the local task queuing. When the transmission power exceeds a certain range, 

the sub-channel transmission process consumes more energy, and the ship's task processing 

capability Similarly, to a certain extent, resources are wasted during transmission, resulting in 

excessive energy consumption for execution. It shows that within a certain range, the 

segmentation strategy has a certain role in improving the performance of the model. 

 

5.2.2 Comparison of Improved Algorithms 

In order to solve the optimal data offloading ratio, the bionic intelligent algorithm is used in 

the model of this paper for optimization, as shown in Figure 4. The changes of the total 

execution cost under different algorithms are evaluated. Among the basic gray wolf 

optimization algorithm and the basic whale optimization algorithm, the basic gray wolf 

optimization algorithm has a lower total execution cost than the basic whale optimization 

algorithm in the iterative process, but the basic gray wolf optimization algorithm The 

algorithm starts to converge when the number of iterations is close to 90, and its convergence 

speed is slow. Therefore, this paper improves the basic gray wolf optimization algorithm. It 

can be seen from Figure 4 that the improved gray wolf optimization algorithm iterates to 

around 45 times. Convergence begins. While the convergence speed is improved, the total 

cost of task execution is reduced by nearly 23.6% compared with the basic gray wolf 

optimization algorithm, and the effect is well improved, indicating that the improved gray 

wolf optimization algorithm optimizes the proportion of data offloading. The effectiveness of 

the performance improvement of the model in this paper. 
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Figure 4. The total execution cost of different algorithms. 

 

5.2.3 Ablation Experiment 

Ablation research is very important to the verification of the model. In order to verify the 

influence of each part of the model in this paper on the model, an ablation experiment is 

carried out on the model in this paper under the condition that the parameters remain 

unchanged. Experiment 1 builds the framework of the ocean model, and the calculation 

method of the task adopts all Local computing, while Experiment 2 increases the probability 

of ship connectivity, offloads the tasks to be processed to ships that satisfy the connectivity 

probability in a binary offload manner, and optimizes the local computing power and the local 

sub-channel transmit power in turn, the total execution cost is obtained as 76.469, which is 

33.13% less than the total execution cost of experiment 1. Experiment 3 introduces the 

method of energy harvesting, which reduces energy consumption by obtaining renewable 

energy, so that the total execution cost can be effectively reduced by 13.9%. Based on the 

previous experimental framework, experiment 4 proposes a gray wolf optimization algorithm 

to optimize the task data offloading ratio, and the total execution cost is 58.325. In experiment 

5, the gray wolf optimization algorithm is improved to obtain a more optimized task 

offloading ratio. Compared with the basic gray wolf optimization algorithm, the total task 

execution cost is reduced by 23.6%. The results of the ablation experiments are compared in 

Table 2. 

 

Table 2. Comparison of the results of ablation experiments. 

 

Experiment 
Basic 

model 

probability of 

connectivity 

Energy 

harvesting 

method 

Basic 

GWOA 

Improved 

GWOA 

Execution 

cost 

1 √     114.356 

2 √ √    76.469 

3 √ √ √   65.764 

4 √ √ √ √  58.325 

5 √ √ √  √ 44.543 
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5.2.4 Comparative Experiments of Different Methods 

After verifying the effectiveness of the various parts mentioned in this paper to improve the 

performance of the model in this paper, in order to verify the superiority of the strategy of this 

model, the strategy proposed in this paper is compared with the multi-user single-hop unicast 

strategy proposed in the (Su et al., 2020). The scheme is compared with the fault-tolerant 

scheme proposed by the (Su et al., 2021). Since the objective function of the model in this 

paper needs to minimize the energy consumption of task processing under the condition of 

delay constraints, under the condition of certain parameters, the definition of (Su et al., 2020), 

The ratio of the difference between the solution proposed in the (Su et al., 2021) and the 

results in Experiment 1 and the results of Experiment 1 is the energy saving rate. It can be 

seen from Figure 5 that when the number of ship tasks is increased, the energy saving rate is 

all show an increasing trend, because when all tasks are processed locally, the load of local 

processing is increased, and the local energy consumption is relatively large, and the three 

strategies can reduce the energy consumption to a certain extent when the number of tasks 

increases. Effectiveness of task offloading methods for energy reduction. When the algorithm 

proposed in this paper is compared with other methods, the energy saving rate of the proposed 

scheme is higher than that of the methods in (Su et al., 2020) and (Su et al., 2021), which 

shows that the model in this paper has good performance in energy consumption in energy 

collection and policy optimization. better performance. 

 
Figure 5. Energy saving rate of different methods. 

 

Due to the complex environment of the distant sea scene, it is easy to cause packet loss in the 

process of task transmission. The task failure rate can be used as an evaluation index to 

measure the superiority of the strategy. This paper defines the ratio of successfully processed 

tasks to the total tasks as the task failure rate. As shown in Figure 6, with the increase in the 

number of ship users, the method proposed in this paper increases the task failure rate 

relatively slowly when the number of ships is small. Resource reduction leads to a faster 

growth rate of mission failure rate. The rate of mission failure rate growth of other methods is 

significantly faster than that of the method proposed in this paper. (Su et al., 2020) offloads 

small base stations (large ships, floating objects) to the sea, when the user When the number 

increases, the base station fails to calculate the task due to its own limitation. (Su et al., 2021) 

proposes a fault-tolerant retransmission mechanism to reduce the failure of task transmission 
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to a certain extent. However, when the number of tasks increases, the computing resources of 

the remote base station itself are insufficient or the task is lost due to the long distance in the 

process of multi-hop transmission. 

 
Figure 6. Task failure rates for different methods. 

 

CONCLUSION 

 

Nowadays, the marine industry has attracted much attention, and various new technology 

projects are carried out at sea. However, the traditional maritime communication network 

cannot meet the increasingly frequent maritime activities due to inflexible configuration and 

uneven node coverage. Sensitive maritime tasks have become a bottleneck in the development 

of maritime communication networks, and the urgent maritime communication problems that 

need to be solved are becoming more and more acute. Mobile edge computing makes it 

possible to realize low-latency, high-reliability marine communication networks. Therefore, 

aiming at the problem of uneven distribution of marine nodes, this paper establishes a task 

offloading model in the distant sea based on mobile edge computing, and combines the energy 

harvesting technology to establish a fitness function aiming at the energy consumption-delay 

trade-off to optimize the strategy of task offloading in the distant sea. 

Aiming at the characteristics of unstable communication network in the distant sea area, this 

paper established an offloading model between ship users in the distant sea based on OFDMA 

technology, and selected the offloading node of ship users by judging the connection 

probability between ships. The local computing frequency and transmit power were optimally 

controlled, and a task delay penalty mechanism was established with the goal of minimizing 

energy consumption under delay constraints. After simulation analysis, the strategy proposed 

in this paper can achieve lower energy consumption while ensuring the delay constraint. 
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