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ABSTRACT 

 

The appropriate infill sampling criteria to generate more promising updated points is crucial 

for kriging-based global optimization. For this purpose, a kriging-based sequential 

optimization algorithm with hybrid infill sampling strategy (KSO-HIS) is proposed. In each 

iteration, three efficient sampling criteria (i.e., predicted objective minimization criterion, 

improved expected improvement and new curvature maximization criterion) based on kriging 

are respectively optimized to produce three optimal solutions by TR (Trust Region) method. 

Then, a new screening strategy is adopted to determine final expensive evaluation points from 

the three optimal solutions. The proposed method is compared with three other optimization 

methods. The test results of eight benchmark functions and a simulation case verify that 

KSO-HIS can deliver better sampling and convergence performance. 

Keywords: Global optimization; Infill sampling criterion; Kriging; Surrogate models. 

 

INTRODUCTION 

 

Surrogate models capable of approximation, prediction, stability and sensitivity analysis have 

been widely used in the design and optimization of computationally intensive problems. The 

common surrogate models are PRS (Hosder et al.,2001), RBF (Leonard et al.,1992) and 

kriging (Stein.M.L., et al.,2012). Among them, kriging can also predict an estimated variance 

at any point, which will offer promising optimization search direction (Martin et al.,2005). 

To obtain the global approximate optimal solution satisfying the accuracy requirements with 

few expensive function estimates, an optimization method that uses the minimum mean 

sampling criterion of objective function can simultaneously optimize and propagate the 
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uncertainty of kriging (Janusevskis et al.,2013). At present, a large number of method obtains 

only one update point in each iteration. When the maximum number of expensive valuations 

remains unchanged, it will spend a large time cost due to the expensive valuation. Therefore, 

the optimization method of obtaining multiple update points at one time has attracted more 

attention. 

Combined with the strategies on kriging believer and constant liar, an EI-based multiple infill 

method is proposed to realize multi-point parallel evaluation (Ginsbourger et al.,2010). 

Recently, Lee and Kim use a kriging-based adaptive infill sampling method to calculate 

failure probability to select additional design points (Lee et al.,2017). A kriging-based global 

optimization with multi-point sampling method (KGOMS) can transform EI into probability 

distribution function, and extract appropriate new samples from it (Cai et al.,2017). The EGO 

(Effective Global Optimization) method proposed by Wang et al. can simultaneously use 

different infill criteria per cycle to generate new sample points (Wang et al.,2018). Multi-infill 

strategy for kriging optimization (MSKO) (Song et al.,2018) can employ minimization of 

kriging prediction, EI, probability of improvement function and lower confidence bounding as 

infill sampling criteria to obtain four new expensive evaluation points.  

Although the above methods can produce multiple update points, there is a large correlation 

between these points. Therefore, the generated points will not provide the largest amount of 

information for kriging. If these points are all evaluated with expensive function, it may 

violate the original intention of the kriging-based optimization. How to get more promising 

points is worthy of further study.  

In view of this, a kriging-based sequential optimization method with hybrid infill sampling 

strategy is proposed. In each iteration process, predicted objective minimization criterion, the 

improved EI and new curvature maximization criterion are respectively optimized by TR 

(Trust Region) method to generate three optimal update points. Next, a screening strategy is 

used to further select final expensive-evaluation points from these candidate points. The 

proposed method is compared with the KGOMS, MSKO and EGO. The test results of several 

benchmarks and a gear pump simulation case show that KSO-HIS has better sampling and 

convergence performance. 

KRIGING MODEL 

 

For design points  1,...,
T

mX x x , m dX and objective response T

1[ ,..., ]my yY , ×1mY , 

kriging based on statistical interpolation and composed of trend function E  and random 

process ( )Z x (Stein.M.L., et al.,2012) can be written as 

                              ( ) ( )y Z x E x ,                            (1) 

where the matrix E is composed of regression function ( )( )i

je x (i=1,…,p, j=1,…,m). The 

vector   is formed by the coefficients of all regression functions. When E  is equal to 0, 

 , and the sum of ( )i ie x , they correspond to simple kriging, ordinary kriging, and standard 

kriging, respectively. Z(x) is a realization of a stochastic process with zero mean and 
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covariance of 

2 ( ) ( )[ ( ), ( )] ( , , )i j

i jCov z z x x θ x xR ,                        (2) 

The parameterθ and
2 are respectively correlation coefficient vector and process variance. 

For d-dimensional problem, the spatial correlation function
( ) ( )( , , )i j

θ x xR that represents the 

correlation between point ( )i
x  and point ( )j

x is shown by 

( ) ( ) ( ) ( )

1

( , )( , , )
d

i j i j

k k k k

k

R x x


 θ x xR .                          (3) 

The regression Y E based on unbiased estimator has a generalized least squares solution 

(see Eq. (4)) and maximum likelihood estimation (see Eq. (5)) of variance. 

T 1 1 T 1ˆ ( ) Y    E E ER R                                    (4) 

2 T 1ˆ ˆˆ ( ) ( ) / mσ Y Y  E R E  .                            (5) 

where m mR is composed of 
( ) ( )( , , )i j

θ x xR ( , 1,..., i j m ). The objective ŷ  and mean square 

error (i.e., 2ŝ )(Stein.M.L., 2012) of kriging at any point *x is expressed by Eq. (6) and Eq. (7). 

* *Tˆ ˆˆ( ) ( )y  E γx r x .                                   (6) 

*

*

T

2 T* *

*

T* 2 ( )0
ˆ ( ) MSE[ ( )] 1 [ ( ) ( ) ]

( )
ˆ

e     
s Y e   

    
σ

    
     

     

xE
x x x r x

E R r x
           (7) 

where * * * **

1

T ( , , ),...,( ( , , )) [ ]mR R θ x x θ xx xr , 
1ˆ ˆ( )Y γ R E . 

 

KSO-HIS METHOD 

 

In this section, the three infill sampling criteria based on kriging model are described in detail. 

In order to optimize the three sampling criteria, an improved TR strategy assisted by kriging 

model is then proposed. Finally, the specific implementation of the KSO-HIS method is 

shown in detail. 

3.1 Three sampling criteria in KSO-HIS 

 

3.1.1 Predicted objective minimization criterion (POMC) 

As the predicted objective, the kriging model ˆ( )y x  is constructed by the existed sample data, 

and the infill sampling criterion generating next pint is shown by “ ˆmin ( )    [ ,  ]y  a bx x ”. The 

sign ˆ( )y x denotes an approximate kriging of real function, the vector a and b are the upper and 

lower bounds of problems respectively.  

Intuitively speaking, taking “ ˆmin ( )y x   [ ,  ]x a b ” as the sampling standard will make the 

sampling points distributed in the valley which has the greatest impact on the kriging 

precision. It is helpful for the distance parameter to enhance global exploration ability.  
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To this end, the minimum distance maximization method is used to make the sampling points 

evenly distributed in the design space. If minimal distance dmin=min (||x-x1||,…, ||x-xm||) and 

maximal distance dmax=max (||x-x1||,…, ||x-xm||) are calculated by untried point x and the 

known sampling points x1,…xm, and the exponent u can be obtained from the values u={u1…, 

0.001, 0.01, 0.1, 1, 10, 100, 100, …uk}, then distance parameter d is defined by  

max min

max min

ˆ, ( ) 0
norm( )

( )

1 ,   other
norm( )

d d
y

d
d d


 

 
 

 

x
b a

x

b a

                           (8) 

Therefore, the POMC find x by 

ˆmin  ( ) ( )y dx x .                         (9) 

The reasons for using POMC as a filling sampling criterion are as follows: (1) the 

approximate kriging is used as the optimization objective. Its minimization may get a local 

optimal solution, which is usually a promising point. The expensive evaluation of this point is 

conducive to improving the kriging accuracy. (2) The parameter d can ensure the distance 

between the iterative points is not too close, or else, it may make matrix R singular, and lead 

to construction failure of kriging. 

 

3.1.2 The improved EI criterion 

As a quality factor, EI with the estimated objective and predicted standard error of kriging 

model in EGO can calculate the best expected level of improvement and balance local and 

global search. The EI is calculated as follows: Before obtaining the unknown sample point x , 

its objective ( )y x  is uncertain, and the uncertainty may be represented by Gaussian normal 

random distribution ( )Y x . It assumed that the Sy  and (1) ( )

min min( ,..., )my y y  are the 

expensive function evaluation of a new the point x  and the current known best function value, 

respectively. The expected improvement function can be expressed by

min S SEI( ) E[max( ( ),0) | ]y Y Y y  x x . Since it is a conditional Gaussian process with mean

ˆ( )y x  and variance
2ˆ ( )s x , the expected function can be expressed as 

min
ˆ( )( )

ˆEI( ) ( ) ( ) ,   
ˆ( )

y yd u
s u u u

du s

 
    

 

x
x x

x
               （10） 

where ()  is a normal cumulative distribution function. New expensive evaluation point 

will be selected by maximizing EI.However, the complexity of EI may cause long 

optimization time. In addition, the deception of initial sampling may cause small standard 

deviation estimation. As a result, only the data points close to the current optimal solution 

have a large EI. Before a more global search, it will lead to a more detailed search in the area 

near the initial optimal solution. Finally, in the case that there is an exact optimal solution in 

initial kriging, this method has no adaptability. Therefore, it is necessary to combine with 

other sampling criteria to improve global optimization ability of the proposed algorithm. 

To this end, The improved EI criterion including cool parameter q was introduced by  
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0

!
ˆ( ) ( 1) ( )

!( )!

q
q q i q i

i

i

q
qEI E I s u A

i q i





    


 .                        (11) 

minmax{0,( ))( }q qI y Y  x , the recursive formula    
1

2( 1)
i

i iA u u i A


    with
0 ( )A u  

and 
1 ( )A u  . The qEI increases with the increase of q. Even if a large qEI produces a 

small probability, which makes the algorithm more inclined to global search. In addition, 

small q may be easy to search in the local basin. Therefore, the parameter q has a good 

guidance for the search direction of the optimization method to some extent. Therefore, M.J. 

sasena selects different q value to change the qEI in the constant set according to the number 

of iterations (Sasena. M., 2002). In order to make the value more general, according to the 

discussion of related parameter θ  of kriging in the reference (Wu et al.,2014), as shown in 

Eq. (12), Euclidean norm is rounded as q value. 

1round[norm )( ]i iq  θ θ .                                     (12) 

The reasons why qEI criterion is used are as follows: (1) qEI is suitable for global 

optimization based on kriging model. Due to taking into account kriging's mean and variance, 

large qEI in the optimal search process is usually far away from the current optimal solution, 

which is helpful to find a smaller objective in an unexplored area. Therefore, it can perform a 

balance between exploration and exploitation. (2) Under the condition of less expensive 

evaluations or constant kriging model, maximized qEI can quickly converge to a better 

approximate optimal solution, and the optimization process keeps a good stability, so it is 

widely used in many engineering designs. 

  

3.1.3 New curvature maximization criterion (NCMC) 

Mathematically the curvature (Capozziello et al.,2002) represents the bending degree of at a 

point of the curve. The big curvature is consistent with the great bending degree of curve. The 

meaning of curvature is shown in Figure. 1. A point A0 on the smooth curve M is selected as 

the basic point. Let the arc length of point A relative to point A0 be s , the inclination angle of 

the tangent at point A is  . Seen from Figure. 1, the arc length of another point 
'A on the 

curve is s s , and the inclination of the relative tangent is   . Then, the length of the 

arc 
'AA  is s . If a point is moved from A to A', the change of angle is  . When s  

approaches zero ( 'A is infinitely close to A), the curvature ( )C x  at point A can be expressed 

by 

0
lim
s

C β s
 

                               (13) 
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Figure 1. Curvature diagram. 

 

To facilitate the calculation of curvature, ordinary kriging 1Tˆ ˆ( )ˆ( ) ( )μ Y μy    R 1x r x  is 

chosen. The ordinary kriging is continuous, first order and second order differentiable because 

the Gaussian kernel function used by kriging is exponential type function. Its first-order and 

second-order partial derivative can be expressed by Eq. (14) and Eq. (15). 

1 1 Tˆ( ) )
ˆ

(
i i i

Y μ
x x x

y Y 
  

  
 R 1 R

r
r                     (14) 

2 2 2
1 1 T 1 T 1ˆ( )+ ) + )

ˆ
( (

i j i j i i i j i i

Y
Y μ

x x x x x x x x x x

y Y Y   
         

      
 R 1 R R R

r r r
r      (15) 

where , 1,...,i j n . Hessian matrix H  at any point can be obtained from the formula 
2 2

2

1 1

2 2

2

1

( ) ( )

( ) ( )

ˆ ˆ

ˆ ˆ

n

n n

x x x

x x x

y y

y y

 
 

  
 
 
 
 
    

 

 

x x

H

x x

L

M O M

L

.                    (16) 

According to the differential geometry principle, the curvature ( )C x  can be estimated by the 

eigenvalue of Hessian matrix. If the eigenvalues of matrix H  are 1 2, ,..., nc c c , then the 

curvature at point x  can be calculated by Eq. (17). 

1

( ) ( )
n

i

i

C = c


x x                             (17) 

Therefore, equation (18) can be expressed by 

max  ( )C x .                                 (18) 

Maximizing curvature in each cycle can find a more promising sampling point, which 

objective may be a maximum or a minimum. Moreover, the sampling point corresponding to 

maximum objective value is meaningless for global minimization. Therefore, further 

screening is necessary. 

3.2 The kriging-based trust region (TR) method 

TR method can guarantee the convergence of optimization (Martínez et al.,1995). It can 

generate a trial step
k

l by optimizing problem (20) for the objective function. 

T T

2

1
min     ( ) ,     s.t.       || ||

2n k k k
d

l l l l l r


   G                  (20) 

The equation ( )
k k

y x  and kG are the gradient value at the point
k

x , a n n  Hessian 

matrix, respectively. And sign
k

r is a TR radius, dk is a norm distance. Next, we define the ratio 

[ ( ) ( )] / [ (0) ( )]
k k k k k k ky x y x d q q d                     (21) 

The reduction and extension of TR can be realized by formula (22).  
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1 2 1

2 1 2

2

[ ,  ],        if  

[ ,  ],           if  

[ ,  ),               if  

k k k

k k k k

k k

r

     

     

  



  

 







.                 (22) 

The constant 
1 2
,     and

 1 2
,     satisfy

1 2
0 1    , 

1 2
0 1    . 

The key issue of the TR method is how to calculate the TR and how to decide whether to 

expand or narrow the trial TR. Due to kriging, the ratio
k

 is defined by 

* * * *

1 1[ ˆ( ) ( )] / [ ( ) ( )]
k k k k ky y y y    x x x x               (23) 

For the current optimal solution *

k
x in Eq. (23), *

( )
k

y x  is real objective function value, *ˆ( )
k

y x  

is the estimated objective produced by kriging. The corresponding extension coefficient 
k
  is  

1 1

3 1 2

4

,   

,   

,   otherwise

k

k k

  

    





  







,                            (24) 

where 
1 2

0 1    , 
3 4

1    , their typical values are 
1

0.25  ,
2

0.75  ,
3

1  , 
4

2  . 

Further, the TR is described by  

1

1

*

1 1

*

1 1

( )

( )

k

k

k k k k

k k k k









 

 

   

   





u x u l

l x u l
.                       (25) 

Parameter
k

u and
k

l  in Eq. (25) are respectively upper bound and low bound of TR. When

0k  , 
0

u and 
0

l are initial bounds, 
0

x is midpoint of initial bounds. 

3.3 Screening strategy 

In our approach, three candidate sampling points can be obtained by using trust domain 

method to optimize the above three sampling criterion. The optimization based on kriging 

model needs to use as few expensive-evaluation points as possible to obtain a global 

approximate optimal solution that meets certain approximate accuracy requirements. 

Therefore, the three candidates need be deeply screened to select sampling points with greater 

potential. The specific screening process is divided into the three steps. 

Step 1: A candidate point with the largest kriging objective estimation need to be removed 

among the three candidates. There are two other reasons why we need to do this. (i) New 

curvature maximization criterion may get a global maximum value, which must be removed; 

(ii) When the three sampling points lack independence or the distance between them is very 

close, we need to filter out the sampling points with less potential information.  

Step 2: Next, the remaining two candidate points is further screened. The minimum distance 

mind is firstly calculated between any two points. The 2

min || ||i

i kd  x x , Xk x  need also be 

calculated between any one ix  ( {1,2}i ) in remaining two candidate points and all known 

points. Due to the value
min

id and the value mind , we can obtain the improvement index 
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min| | /m ny y d   and
min

ˆ| | / i

i i ky y d    (Here ˆ
iy  is the kriging objective estimate at point 

ix ). when i  , ix is removed, or else, accept ix .  

Finally, one or two candidate points will be selected to perform expensive function evaluation 

and added to the data sample set X. It is worth noting that if both candidate points are 

removed, the candidate point with the minimum kriging objective estimation will be reserved 

as the newly added expensive-evaluation points. 

3.4 KSO-HIS implementation 

The three sampling criteria and optimization sampling strategy used in the KSO-HIS method 

are introduced in the front. But the smooth operation of the complete algorithm also requires 

many auxiliary components, such as stopping criteria, initial sampling method, and so on. 

Therefore, this section mainly gives the specific implementation process. These steps of the 

KSO-HIS method are shown in Figure. 2.  

Latin Hypercube Design

Re/build Kriging model

Use Kriging-based trust region method to 

optimize the three criterions

E
x
p

en
si

v
e 

fu
n
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io

n
  
ev

a
lu

a
ti

o
n

 a
t 

n
ew
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a
m

p
li

n
g
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o
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t 
(s

)

Construct three sampling criterions combined 

with Kriging model and relative parameters 

Update sample data set

Check the evaluation number 

of expensive function
Y

Screen the above three candidates and obtain 

final expensive-evaluation point(s)

N
Stop

Expensive function evaluation

Initial experiment design

O
p

tim
iza

tio
n

 sa
m

p
lin

g

 

Figure 2. Main steps of the proposed KSO-HIS algorithm. 

 

Table 1 provides the input and output parameters. The main steps of the proposed KSO-HIS 

algorithm are shown as follows. 

 

Table 1. Input and output parameters of KSO-HIS method. 
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Step 1. Initial sampling. LHD (Latin Hypercube Design) is used to generate m  

( =m 2*(n+4)) initial sample points. For each point ( 1,..., )i i = mx , calculate real objective ( )iy x . 

Then, place ( )iy x   and ( 1,..., )i i = mx  in sample set [ ]Y and [ ]X , respectively. Finally, the 

current optimal objective best min:=y y , the current optimal solution best min:x x and the current 

expensive evaluation number :M m are set. 

Step 2. Update sample data and build kriging model. The sample data set Y and X  will 

further be updated by new expensive-function-valuation point(s), which can be produced 

optimization sampling and screening strategy. After that, kriging model will be updated by the 

new sample data set Y and X . 

Step 3. Optimization sampling. The acquisition of new expensive-valuation point(s) will be 

completed in the following three steps. 

Step 3.1. Construct three sampling criteria. Combining the parameter ˆ( )y x , min ( )d x , 
2ˆ ( )s x , 

and max ( )d x of kriging model and the distance factor D , the three sampling criteria are 

constructed. The specific process can be found in Section 3.1.  

Step 3.2. Use kriging-based TR method to generate three candidates. The three sampling 

criteria are respectively optimized by kriging-based TR method to produce three candidate 

sampling points in each cycle.  The details on TR method using kriging model can be found 

in Section 3.2.  

Step 3.3. Further screening of the above three candidates. The Screening strategy is used to 

select final expensive-evaluation point(s). Specific process can be found in Section 3.3. 

Step 4. Check the expensive-evaluation number. Extract the expensive-evaluation- point 

number M (i.e., the number of elements in sample set X ) from current data sample set X . 

When parameter M  is greater than maximum expensive-evaluation number
max

N , the 

KSO-HIS method will be terminated. Otherwise, expensive function evaluations will be 

performed for the new sampling point(s) obtained from the optimized sampling of Step 3, and 

they will join in the sample data set X  and Y respectively. 

Step 5. Stop. Terminate KSO-HIS method, output global optimal solution ( , )best bestyx . 

 

EXPERIMENTAL STUDIES 

 

To verify the optimization performance of the proposed method, firstly, the different sampling 

Input 

(Ⅰ) A black-box function ( )y x , ,     n
a bx x . 

(Ⅱ) Initial sample set [ ]X  and [ ]Y . 

(Ⅲ) Maximum expensive-evaluation number
max

N .  

(Ⅳ) The ordinary kriging model with Gauss kernel function. 

(Ⅴ) Constant vector t={0.0001, 0.001, 0.01, 0.1, 1, 10, 100, 100}. 

(Ⅵ) Initial TR bounds 0 :u b and 0 :l a . 

Output The explored global optimal solution of KSO-HIS. 
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characteristics of the two-dimensional benchmark functions are graphically illustrated. Then, 

the iterative optimization processes of all problems are graphed to show its optimization effect. 

In addition, compared with the other three optimization algorithms (MSKO, KGOMS and 

EGO), It may show that the KSO-HIS method has better convergence performance. Finally, 

the structural optimization of a cycloid rotor gear pump problem is transformed into a 

four-dimensional black box function, which is also optimized by maximizing the volume 

efficiency to show that the proposed method has good application value. 

4.1 Benchmark problems 

4.1.1 Test results of KSO-HIS method 

Figure 3 provides the graph of two 2-dimensional test functions. The test functions have 

different characteristics. The Goldstein-price (GP) function with gentle trend has several local 

basins. The Cross-in-Tray and Holder Table have many local minima, four of which are global 

minimum global solutions.  

 
Figure 3. Graphs of eight 2-dimensional benchmark functions. 

 
Figure 4. Sampling point distribution of GP function and Cross-in-Tray function. 

 

In Figure. 4, the sampling-points distribution diagrams of the four two-dimensional problems 

is provided respectively (this also includes the sampling points obtained from the initial 

experimental design). Within a given number of expensive evaluations, the KSO-HIS method 

can make sure that each of test function can converge to the region near the global optimal 

solution quickly. For the GP and Cross-in-Tray, KSO-HIS almost finds the actual global 

optimal solutions.  What's exciting is that Cross-in-Tray function has found the actual global 

minimum. Therefore, the proposed method can find the satisfactory optimal solutions for all 

types of two-dimensional test problems. 

To explore the optimization ability of KSO-HIS, the characteristics including dimension (D), 

search space (SP), initial sample number (ISN), maximum number of expensive evaluations 
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(MNEE) and real global optimal solution (RGOS) of the multi-dimensional test functions are 

shown in Table 2. There is a big hole at the center of the Ackley5 function, and the area 

around it is almost flat. Hartman6 functions has 6 local minima. Trid9 with bowl shape has 

only a global solution. The F16 is differentiable and multimodal. 

 

Table 2. The multi-dimensional benchmarks and their feature. 

 

Test function D SP ISN MNEE RGOS 

Ackley5 5 [-32.768 32.768]5 18 120 0 

Hartman6 6 [0 1]6 20 140 -3.32237 

Trid9 9 [-81,81]9 26 200 -156 

F16 16 [-1 1]16 40 340 25.875 

 

These iteration processes (also including initial design) of objective function values for 

two/multi-dimensional problems are shown from Figure 5 to Figure 6.  

 

 
Figure 5. Iterative results of GP function, Cross-in-Tray function and Ackley5 function. 

 

 
Figure 6. Iterative results of Hartman6 function, Trid9 function and F16 function. 

 

For two-dimensional problems, the relative errors of two functions are all less than 0.001. 

Especially for cross in tray functions, when their expensive function evaluations are 37 times, 

20 times and 19 times respectively, the relative errors are less than 0.001. The above analysis 

shows KSO-HIS can meet the accuracy requirements of two-dimensional problems. 

For multi-dimensional problems, Ackley5 and Hartman6 functions can explore some 
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unknown regions continuously in the iterative process, and they have achieved better 

convergence accuracy by using only a few iterations. Although the dimensions of Trid9 are 

high, it can find a global approximate optimal solution with an error accuracy of about 0.01. 

The 16- dimensional F16 is optimized to find the approximate optimal solution which is close 

to the real minimum value under the given expensive estimation. This shows that KSO-HIS 

can also be applied to some high-dimensional problems. 

To sum up, KSO-HIS shows good convergence and stability in most of the function testing 

process. 

 

4.1.2 Comparison with other optimization methods 

To reflect the difference of the optimal results caused by the algorithm uncertainty in the 

comparison process, each optimization problem is run for 15 times, and the average value of 

the optimal solution obtained is taken as the evaluation standard of the final optimal solution. 

These comparison results of MSKO, KGOMS and EGO are shown in Table 3. The 

comparison parameters include D (Dimension), UBAOS (the Upper Bound of Approximate 

Optimal Solutions), LBAOS (the Lower Bound of the Approximate Optimal Solution), RE 

(Relative Error) between the average optimal solution and the real minimal values, and the 

average times of expensive valuation (ATEV) when the RE is less than 0.1. When the true 

optimal value of some optimization problem is 0, RE cannot be calculated. In this case, the 

maximum UBAOS generated by the four algorithms is chosen as the denominator of relative 

error, while the numerator is still represented by the actual absolute error. 

For the two-dimensional test problem, the proposed algorithm can find the real global optimal 

solutions for the optimization Cross-in-Tray function. The global approximate optimal 

solution with relative error accuracy less than 0.1 is found for another functions. With the 

increase of dimension, the KSO-HIS algorithm also produces better optimization results for 

Ackley5, Hartman6 problems. Except Trid9, the REs of other high-dimensional problems are 

also very close to 0.1. Especially for F16 functions, the convergence accuracy is satisfactory 

under a certain amount of expensive evaluation conditions. The complexity of the test 

function, the specification and some limitations in the modeling process of kriging are the key 

factors affecting the convergence precision. In general, KSO-HIS has smaller LBAOS, RE 

and ATEV than other three optimization algorithms in most cases. The optimization results of 

MSKO and KGOMD are close, and the test results of EGO are relatively poor. In addition, the 

relatively small UBAOS also shows that KSO-HIS has good stability. Therefore, the proposed 

method is appropriate for the optimization of these problems. 

 

Table 3. Comparison results of MSKO, KGOMS and EGO. 

 

BF D RGOS Method UBAOS LBAOS  RE ATEV 

GP 2 3 
KSO-HIS 3.0458 3.0001 7.6000e-03 42.8 

MSKO 3.0982 3.0198 1.9700e-02 46.3 
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KGOMS 3.2036 3.0150 3.6400e-02 44.6 

EGO 4.6983 3.0437 0.2903 >60 

Cross-in-

Tray 
2 

-2.0626

1 

KSO-HIS -2.0625 -2.06261 4.8482e-06 39.2 

MSKO -2.0602 -2.0626 5.8664e-04 41.5 

KGOMS -2.0602 -2.06261 5.8421e-04 40.6 

EGO -2.0622 -2.0626 1.0181e-04 38.8 

Ackley5 5 0 

KSO-HIS 3.9258 0.0131 0.0033 119.8 

MSKO 3.0681 0.0163 0.0042 >120 

KGOMS 2.6093 0.0152 0.0039 >120 

EGO 2.5279 0.7662 0.1952 >120 

Hartman

6 
6 

-3.3223

7 

KSO-HIS -3.3223 -3.32236 1.2040e-05 98.2 

MSKO -3.3062 -3.32235 0.0024 96.8 

KGOMS -3.3130 -3.32236 0.0014 100.5 

EGO -3.1866 -3.3220 0.0205 107.8 

Trid9 9 -156 

KSO-HIS -49.9737 -104.4772 0.5050 >200 

MSKO -39.4866 -106.2894 0.5328 >200 

KGOMS -50.2874 -108.0996 0.4923 >200 

EGO -34.5571 -76.5528 0.6439 >200 

F16 16 25.875 

KSO-HIS 30.1967 26.5756 0.0970 302.6 

MSKO 32.4008 29.3981 0.1924 326.8 

KGOMS 33.7554 28.4277 0.2016 331.5 

EGO 42.9713 37.5962 0.5569 >340 

 

4.2 Simulation case 

The KSO-HIS algorithm is applied to the structural optimization of a cycloid rotor gear pump, 

and compared with MSKO, KGOMS and EGO algorithm. The pump is widely used in 

engineering field because of its compact structure, stable operation, low cavitation and 

high-volume efficiency. Figure. 7 is its three-dimensional structure diagram established by 

Pro/E. The main structure includes front end cover, rear end cover and inner and outer rotors. 

During the working process, the inner and outer rotors are meshed and rotated around their 

respective axes according to different speeds, which will make the cavity size between the 

inner and outer rotors have a constant change. Further, it will lead to the internal pressure 

change. In this case, the oil in/outlet cavities and the changing cavities are effectively 

connected to achieve the oil suction and discharge.  

The volume efficiency corresponds to the large actual flow, which will make the cycloid pump 

have a good oil suction and drainage. Due to the parameter setting of cycloid pump (for 

example, the theoretical angle of setting the oil inlet and outlet cavity is 26 degrees and 13.2 

degrees respectively) and the practical experience (Li et al.,2014), the volume efficiency is set 

as the optimization target, then the problem can be described as 
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0 1,2 1,2max  ,   [22,26],  [13.2,16.2]V V                (26) 

Parameter V0 and V in the formula (26) respectively represent the theoretical flow and actual 

flow of the oil outlet for the cycloid pump. The sign
1,2 and 

1,2 are the corresponding closed 

line angles when the inner and outer rotors are in the actual containment area. 

                 

Figure 7. The structure of the cycloid rotor pump.  Figure 8. Mesh on internal flow field. 

 

The STL format of the cycloid pump model established by Pro/E is imported into Pumplinx 

and meshed as shown in Figure 8. Under the standard atmospheric pressure, the oil density is 

800kg/m3, the dynamic viscosity is 5×10-6 N·s/m2, and the saturation pressure is 400 Pascal. 

The speed of cycloid pump is 3000 rpm, the theoretical value V0 the flow is equal to 3.22 

L/min according to the calculation formula (Li et al.,2014). For this optimization problem, the 

mathematical expression of function can’t be given, so designers can only improve the 

volumetric efficiency through expensive simulation optimization. Therefore, it is appropriate 

to assume the optimization problem as a black-box function.  

 

 

Figure 9. Iterative results on volumetric efficiency. 

 

In view of this, 10 identical initial experimental design points (The maximum volumetric 

efficiency of the initial sampling is 0.7359) are used for KSO-HIS, MSKO, KGOMS and 

EGO algorithms, and the maximum expensive simulation number is set as 60. Then the whole 

optimization process of each algorithm will take about 43 hours. Figure 9 shows the 

relationship between expensive-valuations number and volumetric efficiency. It can be seen 

from the figure that the volume efficiency of KSO-HIS is 0.2%, 0.3% and 1.92% higher than 

that of MSKO, KGOMS and EGO respectively. It shows that the proposed method has better 

optimization performance in the actual simulation. 
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CONCLUSION 

 

Many engineering fields have used kriging-based global optimization algorithms to solve 

expensive black box problems. What kind of strategy is used to explore new sample points 

with greater potential information is very important. In order to improve this situation, a 

KSO-HIS is proposed. In this method, the prediction target minimization criterion, the 

improved EI and the new curvature maximization criterion, which are generated by the 

constructed kriging model, are optimized using the TR method to sample the three candidate 

points. Finally, the final expensive evaluation point(s) will be selected from these candidate 

points by using a new screening strategy. Compared with other methods, this method shows 

better convergence performance. The future research direction can start from the following 

two aspects: (1) When the obtained candidate points do not have much information, some 

correction or adjustment methods may be selected to make the new sampling point deviate 

from the original position and face more prospective areas; (2) Improve the approximate 

accuracy by adaptively selecting the kernel functions or trend functions of the kriging model, 

so as to find more valuable points in sequential optimization.  
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