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ABSTRACT 
 

With the massive growth of data of various modal types, people no longer use a single modal 

retrieval method, but a cross-modal retrieval method when performing retrieval tasks. Such 

methods often need to store data efficiently while maintaining the characteristics of fast 

query. Because the hashing learning method can represent the original high-dimensional data 

through a simple and compact binary hash code, which can greatly compress the data size 

and facilitate data storage and mutual retrieval, the cross-modal hashing retrieval has 

gradually become a hot topic in recent years. However, how to bridge the gap between 

modalities to improve the retrieval performance further is still a challenging problem. In 

order to solve this problem, we propose a Hybrid-attention based Feature-reconstructive 

Adversarial Hashing (HFAH) networks for cross-modal retrieval. First, a label semantic 

guidance module is introduced to guide the extraction process of text features and image 

features through the learning of labels, so as to fully maintain the semantic similarity 

between different modal data. Then, the hybrid-attention module is introduced to make the 

extracted data contain richer semantic information. Finally, the feature reconstruction 

network is used to make the relevant degree between similar cross-modal data pairs higher 

than that between dissimilar data pairs. Related experiments on two benchmark datasets 

confirm to us that HFAH performs better than several existing cross- modal retrieval 

methods. 

Keywords: Hybrid attention; Feature reconstruction; Cross-modal retrieval; Deep hashing; 

Adversarial autoencoder. 

 

INTRODUCTION 

 

In recent years, due to the rapid development of computer networks and the rapid 

popularization of portable handheld devices, a large amount of multimedia data of various 

modalities, such as texts, images and audios, have entered people's lives, showing an 

explosive growth trend. The massive data contain rich information, have considerable 

economic value and bring new opportunities for technological progress and social 

development. In the face of more and more large-scale multimodal data, how to carry out 
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cross-modal retrieval is still a challenging topic. On the one side, the data of different 

modalities show the characteristics of heterogeneity, and the similarity measurement of 

heterogeneous data is a issue that needs to be properly addressed in cross-modal retrieval. 

On the other side, because of a large quantity of data on the Internet and the high dimension 

of data representation, how to implement cross-modal retrieval accurately and efficiently has 

become an urgent problem (Peng et al.,2017) (Feng et al.,2021) (Liu et al.,2022). 

The main challenge of cross-modal retrieval is "modality gap". Its content can be understood 

as the data representation of distinct modal types is incongruent and exists in diverse kinds 

of feature spaces. For this reason, measuring the similarity between them is very challenging. 

By analyzing the abundant correlation included in the cross-modal data, many methods have 

been put forward to solve the cross-modal retrieval task. For instance, the current 

mainstream method is to learn a common space in the middle based on the features of data of 

different modal forms, and get the similarity between them in a public space, which is called 

the common space learning method (Hotelling. H., 1935.) (Ngiam et al.,2009) (Liang et 

al.,2016) (Zhai et al.,2013) (Jiang et al.,2015) (Wang et al.,2012). At the same time, the 

cross-modal similarity measurement method (Clinchant et al.,2011) (Yi ta al.,2010) (Tong et 

al.,2005) is also proposed. This kind of method calculates the cross-media similarity directly 

by analyzing the given data relationship, rather than attaining an explicit public space. 

Among many methods for cross-modal retrieval, the cross-modal retrieval based on hashing 

learning (Gionis. A., 1999) (Shen et al., 2015) is a more common method. The core idea of 

this method can be summarized as the binary encoding mapping of similarity preserving, so 

the research of hash retrieval mainly focuses on the design of mapping and similarity 

preserving strategy (Tao. Y., 2017). 

The cross-modal retrieval method usually directly maps the extracted modal features 

multiple times based on the full connected network, thus mapping the modal features to the 

corresponding dimensions of the hash code. In this process, the structural relationship in the 

original semantic space will be gradually destroyed which results in the loss of semantic 

feature information when mapping high-dimensional semantic features extracted from 

different modalities to low-dimensional features. In this case, the common mapping of visual 

features and text features will not be conducive to maintaining semantic integrity, thus 

affecting the subsequent retrieval performance. 

For reason of solving the above-mentioned issues better, a hybrid-attention based 

feature-reconstructive adversarial hashing method is raised to deal with the cross-modal 

retrieval problems. The main contributions of this paper are concluded as below: 

1) For the sake of In order to take full advantage of the multi-label information carried by 

the data, under the guidance of the label semantic information, the semantic relevance 

between different modal data is closer, and the semantic relevance can be better preserved. 

2) In this paper, the hybrid-attention module is drew into the image feature learning stage 

to maintain the high-caliber semantic relevance of images. By this means, we can be 

provided with the more distinguished image features. 

3) Each modal data reconstructs the features of its own modal data as well as the features 

of other modal data. Through adversarial learning, the correlation within the same modal 



Journal of Engg. Research, ICCSCT Special Issue 

 

3 

 

data is kept to the maximum in the feature extraction space and Hamming space, and the 

heterogeneous problem between different modal data can be solved to a great extent. 

4) A large number of experiments on two datasets we selected indicate that the 

experimental effect of our proposed HFAH is obviously better than that of the more 

advanced cross-modal hash methods, whether it is traditional means or deep learning 

methods. 

The rest of this paper is arranged as below: other related work on the cross-modal hash 

methods will be presented in Section 2; the HFAH raised in this paper and the corresponding 

learning algorithm and optimization process can be found in Section 3; the experimental 

results will be discovered in Section 4; Section 5 sums up this work. 

 

RELATED WORK 

 

With the continuous increase of data modality types in the scene, a lot of multimodal 

technique has practiced to show the correlation between multiple perspectives. The key 

issues of hash learning for cross modal retrieval is how to construct the potential correlation 

within multiple modalities and maintain the correlation between modalities. Generally, these 

techniques are  

divided into two classes: Multi-Source Hashing (MSH) and Cross Modal Hashing (CMH). 

According to whether label information aided training is added, cross modal hash learning 

can also be separated into unsupervised hash learning and supervised hash learning (Jiang et 

al., 2017). 

Unsupervised cross-modal hash method can only use the same event information of data. 

Latent Semantic Sparse Hashing (LSSH) (Zhou et al.,2014) uses sparse encoding and matrix 

decomposition for image data and text data, and then maps these constructed features to 

generate a unified hash code. Unsupervised Deep Imputed Hashing (UDIH) (Chen et 

al.,2020) is a two phases learning tactics with the help of enhanced data, the correlation 

graph is constructed to enhance the capability to maintain the semantic consistency and 

difference between text and image. In paper (Zhang et at.,2020), a multipath generation 

adversary hash method for unsupervised cross modal retrieval is proposed.  

Compared with unsupervised hash learning method, supervised hash learning methods can 

use existing supervised information to reduce semantic differences, enhance the relevance of 

different modal data, and have more advantages than the cross-modal retrieval methods 

based on unsupervised hash learning in improving the accuracy of retrieval. Adaptive Label 

correlation based asymmEtric Cross-modal Hashing (ALECH) (Li et al.,2021) uses both the 

hash code and semantic labels to improve the hash capability and maintain the similarity. 

Asymmetric Correlation Quantization Hashing (ACQH) (Wang et al.,2020) uses pairwise 

semantic similarity preservation and point by point label regression to construct combined 

quantization to generate hash codes. Scalable Discriminative Discrete Hashing (SDDH) (Qin 

et al.,2021) introduces a composite learning framework for compact hash code learning. 

Most of the above cross-modal retrieval means based on hash learning use superficial 



Journal of Engg. Research, ICCSCT Special Issue 

 

4 

 

structures to realize the feature extraction, which cannot explain the complex non-linear 

relationship between text and image. In recent years, due to the deep learning, many cross 

modal retrieval applications use deep learning networks. Deep Cross Modal Hashing 

(DCMH) (Jiang et al., 2017) can be divided into the feature learning and hash learning in the 

unity framework to maintain the similarity between text data and image data through 

negative logarithmic likelihood loss. Hierarchical Semantic Structure Preserving Hashing 

(HSSPH) (Wang et al.,2022) is a deep networks cross modal hash method which directly 

uses label level information to learn and identify hash codes. Multi-task 

Consistency-Preserving Adversarial Hashing (CPAH) (Xie et al.,2020) designs a consistency 

refinement module (CR) and a multitask confrontation learning module (MA), and more 

effectively collect semantic consistency information between text data and image data. 

Pairwise Relationship Guided Deep Hashing (PRDH) (Yang et al.,2017) explores pairwise 

constraints between text data and image data. Self-Supervised Adversarial Hashing 

Networks (SSAH) (Li et al.,2018) integrates adversarial learning into the cross-modal hash 

retrieval task in a self-supervised way. 

 

PROPOSED METHOD 

 

Figure 1 is the overall frame of the hybrid-attention based feature-reconstructive adversarial 

hashing method put forward in this paper. The framework mainly includes four parts: label 

semantic guidance module, text data and image data feature extraction module and hash 

learning module. The label semantic guidance module aims to fully utilize the superiorities 

of multi-label data and retain more semantic information. Text data and image data modules 

are designed to generate features of key points that retain the original data. The hash learning 

module not only takes the data similarity relationship within the modalities into account, but 

also attaches importance to the data similarity between modalities, so that the generated 

target hash code maintains the similarity between the original data. 

In the section that follows, this article will illustrate each module in more detail and explain 

the learning algorithms involved. 
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Figure 1. HFAH Framework. 

 

3.1 Problem definition 

This means is easily expanded to the case of multiple modal data, not just two, but we take 

text and image modalities as example in this experiment. Supposed that there are n groups of 

training data, and each group of training data contains data of two modalities. In this 

experiment, the text-image dataset is used for explanation, that is, each group of data 

contains data of both text and image modalities, and there is also corresponding label data. 

Let 𝑋 = {𝑥𝑖}𝑖=1
𝑛 is denoted as text modal data, 𝑥𝑖 is original text data or extracted features. 

Let 𝑌 = {𝑦𝑖}𝑖=1
𝑛  is denoted as image data, 𝑦𝑖 is original image pixel or manually extracted 

features. Let 𝐿 = {𝑙𝑖}𝑖=1
𝑛  is denoted as label data, 𝑙𝑖 =[𝑙𝑖1 , 𝑙𝑖2，…，𝑙𝑖𝑐 ] is the label 

corresponding to the 𝑖𝑡ℎ text/image, where ic is the quantity of label forms, 𝑙𝑖𝑚=1 indicates 

that the data belongs to category m, 𝑙𝑖𝑚=0 means it does not belong to category m. Such a 

set of data can also be denoted by { }. At the same time, in the cross-modal 

similarity matrix S, 𝑠𝑖𝑗=1 indicates that the text data 𝑥𝑖 is semantically similar to the image 

data 𝑦𝑗, while 𝑠𝑖𝑗=0 indicates that it is not similar. In a multi-label dataset, if one item in the 

label data is considered to be the same, then we can get 𝑠𝑖𝑗=1, otherwise 𝑠𝑖𝑗=0. 

The target of the cross-modal hash method is to get a public Hamming space, so that data of 

distinct modalities are able to learn a unified hash code  (K represents the bit), 

while preserving the similarity between the original data. More specifically, if the two 

samples are homologous, the hamming distance between the hash codes generated by them 

are supposed to be smaller, otherwise, the hamming distance between them should be larger. 

For two given examples 𝑥 and 𝑦, when we compute the similarity between two hash codes 

by using hamming distance to, it can be expressed as D(𝑥，y)=
1

2
(𝑘 − 𝑥𝑇𝑦), that is, we get the 

similarity of hash codes between two samples with inner product. Given the 𝑥𝑖 and the 𝑦𝑗, 

the conditional probability of 𝑠𝑖𝑗 is: 

 𝑝(𝑠𝑖𝑗|𝑥𝑖 , 𝑦𝑗) = {
𝜎(𝜃𝑖𝑗)                     𝑠𝑖𝑗 = 1

1 − 𝜎(𝜃𝑖𝑗)             𝑠𝑖𝑗 = 0
 (1) 

Where =
1

2
𝑥𝑖

𝑇𝑦𝑗, generally = . If the inner product is large, we consider the 

similarity between the data to be high. Therefore, instead of getting the similarity between 

the two, we can calculate the inner product between the Hamming codes in the Hamming 

space. 

Combined with formula (1), the large likelihood estimation of the negative pole of the two 

is: 

 𝐿 = −𝑙𝑜𝑔𝑝(𝑠𝑖𝑗|𝑥𝑖, 𝑦𝑗)  

               = − ∑ ∑(𝑠𝑖𝑗𝜃𝑖𝑗 −

𝑛

𝑗=1

log(1 + 𝑒𝜃𝑖𝑗)

𝑛

𝑖=1

) (2) 

 

 

3.2 Label semantic guidance module 
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Supervision information plays a great role in learning semantic information that has similar 

relationship with the original data. In a multi-label dataset, different categories of data have 

different similarity relationships. If only one category is the same as similarity to make 

judgments, the advantages of multi-label datasets cannot be fully exploited, and the semantic 

information contained in them cannot be fully explored and utilized, thus reducing the 

accuracy of cross-modal retrieval. The aim at label network is to train the features and hash 

codes of labels, and use the generated features to help the network training and learning in 

the next stage. 

In the label network, let 𝐻𝑖
𝑙 = 𝑓(𝑙𝑖; 𝜃𝑙) denotes the hash function generated by the label 

network. Here 𝜃𝑙 is the parameter of label network, 𝑓𝑖
𝑙 is the semantic feature of the ith 

point. At this time, the loss function of the label network is delimited as below: 

        min
𝜃𝑙，𝐵𝑙

𝐿𝑙 = 𝐿1
𝑙 + 𝐿2

𝑙 + 𝛼𝐿3
𝑙 + 𝛽𝐿4

𝑙                                                              

= − ∑ ∑(𝑠𝑖𝑗𝜑𝑖𝑗
𝑙 −

𝑛

𝑗=1

log (1 + 𝑒𝜑𝑖𝑗
𝑙

)

𝑛

𝑖=1

)   

− ∑ ∑(𝑠𝑖𝑗𝜃𝑖𝑗
𝑙 −

𝑛

𝑗=1

log (1 + 𝑒𝜃𝑖𝑗
𝑙

)

𝑛

𝑖=1

)    

                                                    +𝛼||𝐻𝑙 − 𝐵𝑙||𝐹
2 + 𝛽||𝐿 − 𝐿𝑙||𝐹

2                                                       (3) 

 

In the above formula, 𝜑𝑖𝑗
𝑙 =

1

2
𝑓𝑖

𝑙𝑇
𝑓𝑗

𝑙，𝜃𝑖𝑗
𝑙 =

1

2
𝐻𝑖

𝑙𝑇
𝐻𝑗

𝑙，𝐵𝑙 is the binary hash code of the label 

generated by the label network, and 𝐵𝑙= sign (𝐻𝑙).  and  are super-parameters. In the 

above loss function, 𝐿1
𝑙  is the semantic feature loss of similar instances, 𝐿2

𝑙  is the semantic 

hash loss of similar instances. 𝐿3
𝑙  is the quantization loss of the hash code. 𝐿4

𝑙  indicates the 

classification error between the initial label and the prediction label. In this process, a 

random gradient descent back propagation algorithm is used to optimize the objective 

function, then we can attain the label network parameters 𝜃𝑙  and 𝐵𝑙 . When the label 

network is trained, the required semantic features and semantic hash codes can be obtained. 

 

3.3 Text and image modal feature learning 

After the labels in the multi-label dataset are trained and learned through the label network, 

the obtained semantic features and binary hash codes are transferred into the text and image 

feature extraction network as the supervision information for the learning and training of the 

text and image feature extraction network. Because the output of the label network greatly 

retains the similarity between the original data and contains rich semantic information, the 

training of the text and image feature extraction network will be more accurate. 

In the text and image feature extraction network, let 𝐻𝑖
𝑥 = 𝑓(𝑥𝑖; 𝜃𝑥) denotes the hash 

function generated by the text network. Here 𝜃𝑥 is the parameter of text network which 

learns the text features and the hash codes, 𝑓𝑖
𝑥 is the semantic feature of the ith point, let 

𝐻𝑖
𝑦

= 𝑓(𝑦𝑖; 𝜃𝑦) denotes the hash function generated by the image network. Here 𝜃𝑦 is the 

parameter of image network which learns the image features and the hash codes, 𝑓𝑖
𝑦

 is the 



Journal of Engg. Research, ICCSCT Special Issue 

 

7 

 

semantic feature of the ith point. The data of different modalities in the same sample can 

maintain semantic consistency, when the feature learning process of text and image is 

finished. If two image sample pairs are homologous, their correspondent features 𝑓𝑖
𝑦

 and 

𝑓𝑗
𝑦

 also should be homologous. Therefore, with the conduct of the label semantic guidance 

module, the objective function of the feature extraction part of text data and image data is as 

follows: 

 𝑚𝑖𝑛
  𝑓∗,𝜃∗

𝐿𝑓
𝑙,∗ = − ∑ ∑(𝑠𝑖𝑗𝜑𝑖𝑗

𝑙,∗ −

𝑛

𝑗=1

𝑙𝑜𝑔 (1 + 𝑒𝜑𝑖𝑗
𝑙,∗

)

𝑛

𝑖=1

) (4) 

Where 𝜑𝑖𝑗
𝑙,∗ =

1

2
𝑓𝑖

𝑙𝑇
𝑓𝑗

∗, and we replace x or y with *, 𝐵𝑥 is the binary hash code of the text 

network, 𝐵𝑦 is the binary hash code of the image network, and 𝐵𝑥= sign (𝐻𝑥), 𝐵𝑦= sign 

(𝐻𝑦). 

For the whole network of text modality and image modality, the objective functions are: 

 min
𝜃𝑥,𝐵𝑥

𝐿𝑥 = 𝐿𝑓
𝑙,𝑥 + 𝛽𝐿𝑐

𝑥 + 𝛾𝐿𝑟
𝑥     (5) 

 

 min
𝜃𝑦,𝐵𝑦

𝐿𝑦 = 𝐿𝑓
𝑙,𝑦

+ 𝛽𝐿𝑐
𝑦

+ 𝛾𝐿𝑟
𝑦

        (6) 

 

3.4 Hash learning module 

Most of means based on generative adversarial mechanism only include one kind of modal 

discriminator, which is used to judge which modality the generated samples belong to, so it 

limits the accuracy of cross modal retrieval. In the hash learning module, feature 

reconstruction encoding is used to adversarial learning. Different from the general encoder, 

both text data features and image data features are reconstructed for each modality of data. 

The purpose of building the model in this way is: the data of another modality is 

reconstructed through the model to bring about the mining of the correlation of multimodal 

data in the consistent cross encoding model, but the learned features cannot well represent 

the data of the original modality. In order to make the learned features reflect both the 

cross-modal correlation and the characteristics of the original modal data, the encoding 

model and cross encoding model are combined to form a comprehensive modal encoding 

model. 

In the training phase, the previously extracted image features are embedded in the public 

space, and the image embedding features are represented by 𝐵𝑦. The previously extracted 

text features are embedded in the public space, and the text embedding features are 

represented by 𝐵𝑥. Unlike the general auto-encoder, which only reconstructs the features of 

its own modality, this way not only reconstructs the features of its own modality, but also 

reconstructs the features of another corresponding modality. The image embedded features 

are reconstructed into image features 𝑓𝑦
𝑦

 and text features 𝑓𝑥
𝑦

 respectively. Text features 

are similar. Text embedding feature reconstruction generates text features 𝑓𝑥
𝑥 and image 

features 𝑓𝑦
𝑥 .For the reason of reducing the information loss of features during feature 

reconstruction process, the reconstruction loss function is defined: 

 𝐿𝑟
𝑥 = ||𝑓𝑥 − 𝑓𝑥

𝑥||𝐹
2 + ||𝑓𝑥 − 𝑓𝑦

𝑥||𝐹
2       (7) 
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𝐿𝑟

𝑦
= ||𝑓𝑦 − 𝑓𝑦

𝑦
||𝐹

2 + ||𝑓𝑦 − 𝑓𝑥
𝑦

||𝐹
2       (8) 

In order to keep the discriminant relationship within the modality when the text data and 

image data are embedded in the common space, that is, to maintain the similarity 

relationship between the initial data when the text data and image data are embedded in the 

public space, the loss function is defined: 

 
𝐿𝑐

𝑥 = ||𝐻𝑥 − 𝐵𝑥||
𝐹

2
+ ||𝐵𝑥′

− 𝐵𝑥||
𝐹

2

      (9) 

 
𝐿𝑐

𝑦
= ||𝐻𝑦 − 𝐵𝑦||

𝐹

2
+ ||𝐵𝑦′ − 𝐵𝑦||

𝐹

2
 

(10) 

 

3.5 Adversarial learning 

Under the supervision of label semantic guidance module, feature extraction of text and 

image data contains more abundant semantic information. However, the distributions of 

features extracted from different modal data are often different, and excessive differences 

will lead to the final retrieval results. For the sake of getting more uniform hash codes, we 

hope that the hash codes generated from data containing similar semantic information are as 

same as possible. In order to alleviate the difference between different modal data, this 

experiment adopts the way of adversarial learning to learn the public Hamming space, and 

try to solve the difference between modalities. 

For the reconstructed text features and image features, two discriminators are selected to 

distinguish them: text modal discriminator and image modal discriminator. The text feature 

reconstructed from the original text feature and image is input to the text modality 

discriminator. If the discriminant is the original text feature reconstruction, the output is "1". 

If the discriminant is the image feature reconstruction, the output is "0". Regard 𝑓𝑥
𝑥 as real 

text features and 𝑓𝑥
𝑦

 as false text features. Then taking them as the input of D1, train D1 to 

judge whether they are true or false, and define the adversarial loss function on D1. The 

input and output of image modal discriminator are similar to that of text modal discriminator. 

Regard 𝑓𝑦
𝑦

 as real image features and 𝑓𝑦
𝑥 as false image features. Then taking them as the 

input of D2, train D2 to judge whether they are true or false, and define the adversarial loss 

function on D2. Therefore, the objective function can be describe as below: 

 

𝑚𝑖𝑛
𝜃𝐷1

𝐿𝑎𝑑𝑣
1 = −

1

𝑛
∑ (𝑙𝑜𝑔𝐷1(𝑓𝑥

𝑥, 𝜃𝐷1
) + log (1 − 𝐷1(𝑓𝑥

𝑦
, 𝜃𝐷1)))

𝑛

𝑚=1

 (11) 

 

𝑚𝑖𝑛
𝜃𝐷2

𝐿𝑎𝑑𝑣
2 = −

1

𝑛
∑ (𝑙𝑜𝑔𝐷2(𝑓𝑦

𝑦
, 𝜃𝐷2

) + log (1 − 𝐷2(𝑓𝑦
𝑥, 𝜃𝐷2)))

𝑛

𝑚=1

 (12) 

3.6 Optimization 

The overall objective function can be written as: 

 𝐿𝑔𝑒𝑛 = 𝐿𝑥 + 𝐿𝑦 + 𝐿𝑙 (13) 

 𝐿𝑎𝑑𝑣 = 𝐿𝑎𝑑𝑣
1 + 𝐿𝑎𝑑𝑣

2  (14) 

 

The training of text feature selection network and image feature selection network is 

conducted in the way of adversarial learning. The optimization objectives of the generating 
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model and the discriminant model are opposite: the goal of generating the model is to 

generate samples that make the discriminant model unable to identify the modal category, 

while the goal of the discriminant model is to learn how to determine the modal category 

accurately to which the sample belongs. They conduct iterative training in a adversarial way, 

so it can be seen as a minimum maximum game problem: 

 (𝐵, 𝜃𝑥,𝑦,𝑙) = 𝑎𝑟𝑔𝑚𝑖𝑛
𝐵,𝜃𝑥,𝑦,𝑙

𝐿𝑔𝑒𝑛(𝐵, 𝜃𝑥,𝑦,𝑙) − 𝐿𝑎𝑑𝑣(𝜃𝑎𝑑𝑣) (15) 
 
 𝜃𝑎𝑑𝑣 = 𝑎𝑟𝑔𝑚𝑎𝑥

𝜃𝑎𝑑𝑣

𝐿𝑔𝑒𝑛(𝐵̂,  𝜃𝑥,𝑦,𝑙) − 𝐿𝑎𝑑𝑣(𝜃𝑎𝑑𝑣)  (16) 

 

The algorithm flow of the hashing learning is shown in Table 1: 

 

Table 1. The algorithm flow of the hashing learning. 

 

Algorithm 1 The detailed learning algorithm of HFAH 

Input: Text set X; Image set Y; Label set L; Length of hash code k; 

Output: Optimal Binary codes B; 

       Parameters 𝜃𝑥, 𝜃𝑦, 𝜃𝑙, 𝜃𝐷1
 and 𝜃𝐷2

; 

Procedure: 

Initialization: Initialize the parameters:𝜃𝑥 , 𝜃𝑦, 𝜃𝑙  , 𝜃𝐷1
, 𝜃𝐷2

;  

                    the hyperparameters: 𝛼 , 𝛽 , 𝛾;  

repeat 

for t iteration do  

Update the parameters 𝜃𝑙 by using Back Propagation algorithm: 

 𝜃𝑙 ← 𝜃𝑙 − µ · ∇𝜃𝑙

1

𝑛
(𝐿𝑔𝑒𝑛 − 𝐿𝑎𝑑𝑣) 

Update the parameters 𝜃𝑥 and 𝜃𝑦  by using Back Propagation algorithm: 

𝜃∗ ← 𝜃∗ − µ · ∇𝜃∗

1

𝑛
(𝐿𝑔𝑒𝑛 − 𝐿𝑎𝑑𝑣) , where x and y are replaced by * 

Update the parameters  𝜃𝐷1
 and 𝜃𝐷2

 by using Back Propagation algorithm: 

  𝜃𝐷∗
← 𝜃𝐷∗

− µ · ∇𝜃𝐷∗

1

𝑛
(𝐿𝑔𝑒𝑛 − 𝐿𝑎𝑑𝑣) , where x and y are replaced by * 

end for 

Update the binary codes B by B = sign ( 𝐻𝑙+𝐻𝑥+𝐻𝑦 ) 

until convergence 

 

 

 

EXPERIENT 

 

4.1 Datasets 

The MIR-Flickr 25K dataset (Huiskes et al.,2008) contains a total of 25000 instances, 
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which are captured according to social photography website Flickr. Every example contains 

an image and a matching text, and is labeled with one of the 24 Categories of labels. 

The NUS-WIDE dataset (Chua et al.,2009) includes 269648 images and their related labels, 

which are divided into 81 category concepts that have been marked for search evaluation. 

Each image has an average of 2 to 5 label statements, including 5018 independent labels. 

After deleting the data without any labels or label related information, a subset of 195834 

image-text pairs of 21 of the most common category concepts was selected as the dataset of 

this experiment. 

 

4.2 Assessment and Baseline 

Evaluation: Among the retrieval protocols used to evaluate the performance of cross-modal 

retrieval tasks, Hamming Ranking and hash lookup are two classic ones. The Hamming 

Ranking method sorts the Hamming distance between the queried data and the retrieved 

results from the smallest to the largest, and then returns the highest ranked results of the 

specified items. The hash lookup method refers to returning the search results within the 

specified hamming radius, where the hamming radius value range is 0 to the hash code 

length. In this experiment, two more commonly used performance evaluation indicators were 

selected: the mean accuracy rate (MAP) was used to measure the accuracy of Hamming 

sorting based on Hamming distance, and the precision recall (PR) curve was used to measure 

the performance of hash learning.  

 

Baseline: This experiment compares the proposed HFAH method with the experimental 

results of six other cross modal retrieval methods, including CVH (Kumar et al.,2011), SePH 

(Lin et al.,2015), DCMH (Jiang et al., 2017), PRDH (Yang et al.,2017), SSAH (Li et 

al.,2018), and SAAH (Li et al.,2022). Most of the comparison results are from SAAH. 

 

4.3 Implementation Details 

In the label semantic guidance module, because all label data are binary data, only 

feedforward neural network is needed to collect the semantic information in the label. The 

label network contains four connection layers. The first three full connection parts are used 

to extract feature. The number of neurons in the three full connection layers are c (number of 

labels) ,4096 and 512, respectively. The last layer generated the semantic hash code of the 

label. The number of neurons in this layer is k (the number of hash codes), and take tanh as 

the activation function. The label semantic features output from the label network will be 

used as supervision information to collect the features extraction of cross-modal data. 

Text feature extracts text features based on multi-scale fusion module. Because the original 

text features (the feature vectors processed by the BoW method) inputted to the network are 

bag of words, in order to capture more information about the text itself, the data are 

processed from different scales of receptive fields, and the processed data are spliced to 

obtain new text data features. After the full connection layer, more semantic text features can 

be extracted. 

The image network extracts image features based on the hybrid-attention network, connects 
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the attention network with the CNN network, and can extract image features with more 

important information. These high-quality feature vectors can achieve good results in the 

hash learning task. Extracting effective image modal sample features is conducive to 

generating high-quality hash codes. CNN-F network model is used as the prototype to design 

our image modal network framework. For the purpose of extracting high-quality image 

features, we have made some adjustments based on the CNN model to better adapt to the 

hash learning task. That is, all layers and full connection layers in the original CNN model 

are retained and attention networks are added between the convolution layer and full 

connection layer. 

In the feature reconstruction network, for different modal data, this paper constructs two 

groups of adversarial encoders. Each group includes two encoders and a discriminator. The 

data features of each modality obtained from the feature extraction network are reconstructed 

separately to further reduce the gap between the data of each modality. 

 

4.4 Experimental result 

Table 2 shows the average accuracy results of HFAH and other selected cross modal retrieval 

methods based on hash learning in the two datasets MIR-Flickr25K and NUS-WIDE. The 

tasks involved include: image retrieval text and text retrieval image. Among the selected 

methods, CVH and SePH are shallow hash learning methods, while DCMH, PRDH, SSAH 

and SAAH are deep cross-modal hash learning methods. For the methods to be compared, 

the results provided in paper (Li et al.,2018), and paper (Li et al.,2022) are selected.  

 

MPA assessment: This may be because in the learning process, the network proposed in this 

paper can promote the learning of semantic relevance within the same modality and between 

different modalities more effectively, which means that HFAH method can learn more 

discriminatory representations. Therefore, HFAH can more accurately highlight the use of 

the correlation between data, in order to obtain better retrieval performance. 

 

It can be seen from Table 2 that the HFAH method proposed in this paper has good 

performance results both on MIRFlickr25K dataset and NUS-WIDE dataset. With the 

development of the binary hash length, the effect of all methods is basically on the rise, 

which shows that increasing the hash code length can contain more data information. It can 

improve the cross modal retrieval accuracy, but the occupied encoding space will also 

increase. It can be seen from the comparison with other selected baseline methods that 

compared with shallow hash methods CVH and SePH, HFAH has a large improvement in 

MAP, achieving an improvement of more than 10%. Compared with other deep hash 

methods, HFAH has also improved to varying degrees. This improvement is attributed to our 

new hash learning method, especially the use of semantic label information and the 

maintenance of similar relationships within the same modal data and between different 

modal data, which shows that the network can more fully mine the potential semantic 

information associations. 
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P-R curve evaluation: Figure 2 and Figure 3 show the comparison of P-R curves on MIR 

Flickr25K and NUS-WIDE datasets between HFAH method proposed in this paper and other 

selected baseline methods. It can be seen from the figure that the P-R curves of HFAH on 

different data sets are basically above the curves of the selected comparison method, which 

shows that HFAH has more accurate retrieval performance than other comparison methods. 

 

Table 2. MAP Assessment Results. 

 

Task Method 
MIR-Flickr 25K NUS-WIDE 

16bit 32bit 64bit 16bit 32bit 64bit 

Image 

retrieval 

text 

CVH 0.557 0.554 0.664 0.400 0.392 0.386 

SePH 0.657 0.660 0.661 0.478 0.487 0.489 

DCMH 0.735 0.737 0.750 0.478 0.486 0.488 

PRDH 0.722 0.740 0.755 0.593 0.633 0.624 

SSAH 0.782 0.790 0.800 0.602 0.622 0.639 

SAAH 0.792 0.796 0.815 0.628 0.646 0.656 

HFAH 0.798 0.814 0.823 0.643 0.648 0.659 

Text 

retrieval 

image 

CVH 0.557 0.554 0.554 0.372 0.366 0.363 

SePH 0.648 0.652 0.654 0.449 0.454 0.458 

DCMH 0.763 0.764 0.775 0.638 0.651 0.657 

PRDH 0.755 0.764 0.777 0.594 0.610 0.602 

SSAH 0.791 0.795 0.803 0.612 0.637 0.640 

SAAH 0.795 0.803 0.806 0.651 0.663 0.659 

HFAH 0.798 0.810 0.819 0.648 0.655 0.661 

 

Ablation experiment results: In order to verify the impact of different modules in the 

network on the performance of the experiment results, three variants are designed as the 

verification baseline for HFAH: HFAH-3 means that the feature reconstruction network is 

deleted from the original network architecture of HFAH, and the new network model is 

learned by iteration; HFAH-2 means that the hybrid attention model in the image feature 

extraction module is deleted on the basis of HFAH3 network; HFAH-1 means that on the 

basis of HFAH-2 network, the multi-scale feature fusion model of text feature extraction 

module is deleted, and the full connected network is directly used to build the text feature 

extraction network. From Table 2, we can draw the following conclusions: each key point we 

proposed, including the introduction of semantic guidance module, mixed attention module 

and feature reconstruction confrontation learning network, has a positive effect on improving 

retrieval performance. The contribution of the feature reconstruction adversarial learning 

network to improving the retrieval performance is more obvious, which verifies the 

effectiveness of the proposed hybrid- attention based feature reconstruction adversarial 

hashing for cross-modal hashing method. 
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Figure 2. PR Curves of Various Methods on MIR Flickr 25K. 

 

 

 

Figure 3. PR Curves of Various Methods on MIR Flickr 25K. 

 

Table 2. 64bit MPA on MIR Flickr 25K Data Set of Ablation Experiment. 

 

Task Method 16bit 32bit 64bit 

Image 

retrieval 

text 

HFAH 0.7981 0.8143 0.8228 

HFAH-1 0.7704 0.7778 0.7935 

HFAH-2 0.7719 0.7915 0.7967 

HFAH-3 0.7776 0.7915 0.8041 

Text 

retrieval 

image 

HFAH 0.7976 0.8103 0.8189 

HFAH-1 0.7654 0.7767 0.7827 

HFAH-2 0.7679 0.7801 0.7847 

HFAH-3 0.7760 0.7854 0.7869 

 

CONCLUSION 

 

In this paper, we propose a new cross-modal retrieval method based on hash learning, that is, 

hybrid-attention based feature reconstruction adversarial hash (HFAH) method. This method 
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can solve the cross-modal retrieval task more effectively. The proposed method framework 

mainly includes four parts: label semantic guidance module, text data and image data feature 

extraction module and hashing learning module. The label semantic guidance module 

maximizes the semantic guidance of category labels by making full use of multiple labels 

carried by data. The feature extraction module of text data and image data is mainly used to 

learn powerful feature representation of data. Through the introduction of hybrid-attention 

and multi-scale fusion module, more semantic information is given to the extracted features. 

The features reconstructed in the hashing learning module are trained through adversarial 

learning to maximize the semantic relevance between and within data modalities, so that the 

original similar sample data still maintains the similar relationship when mapped to the 

Hamming space. In order to improve the accuracy of our proposed method, we conducted 

experiments on two benchmark datasets, and compared with several representative advanced 

cross media retrieval methods, HFAH has achieved relatively leading retrieval performance. 
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