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Invited paper
Synchronization of hyperchaotic systems using nonlinear
controllers

MOHAMED ZRIBI* AND NEJIB SMAOUTI**

* Department of Electrical Engineering,
x* Department of Mathematics,
Kuwait University, P.O. Box 5969, Safat, 13060, Kuwait

ABSTRACT

This paper deals with the design of nonlinear controllers for the synchronization of two
hyperchaotic systems. The feedback linearization control (FLC) technique as well as the
sliding mode control (SMC) technique are used to synchronize two identical
hyperchaotic Lii systems. We prove that the errors between the states of the master
system and the states of the slave system converge to zero asymptotically. Simulations
results are presented to validate the developed theory; these results indicate that the
proposed control schemes work very well. In addition, the proposed synchronization
schemes are applied to the secure communication field; the simulation results indicate
that the proposed schemes are effective.

Keywords: Hyperchaotic systems; Synchronization; Feedback linearization
control; Sliding mode control; Secure communication.
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INTRODUCTION

The discovery of the Lorenz attractor (Lorenz, 1963) attracted many scientists
and engineers to work on the theory and applications of chaos. For example,
chaos has been used in optical communications (Argyris & Syvridis, 2010) in
messages encryption (Babtista, 1998; Zribi, et al., 2010; Smaoui, et al., 2011) in
image encryption, (Yau, et al., 2012) in digital watermarking (Zhu & Sun 2012),
in chaotic lasers (Uchida, 2012), in controlling motors (Zribi, et al., 2009), and
to monitor cardiac activity (Brandt & G. Chen, 1997). Pecora and Caroll
(Pecora & Caroll, 1990) were the first to report that two identical chaotic
systems can be synchronized. Synchronizing two chaotic systems means forcing
these systems, through the use of controllers, to work in synchrony even though
they start from two different initial conditions. The use of controllers forces the
dynamics behavior of the slave system to be identical to the behavior of the
master system after some transient time. It should be mentioned that the
synchronization of chaotic systems has been studied extensively in the literature.

Hyperchaotic systems are known to be systems which are chaotic and possess
more than one positive Lyapunov exponent. The most known hyperchaotic
systems are the hyperchaotic Rossler system (Rossler, 1979; Chen, er al., 2004;
Hsieh, et al., 1999; Jang, et al., 2002), the hyperchaotic Chua circuit
(Matsumoto, ef al., 1986; Kapitaniak, et al., 1994; Itoh & Chua, 2002;
Thamilmaran, et al., 2004), the hyperchaotic Chen system (Chen, et al., 2007;
Smaoui, et al., 2011; Yan, 2005) and the hyperchaotic Lii system (Chen, et al.,
2006; Gao & Lu, 2007; Jia, et al.,, 2007; Yassen, 2008). The control and
synchronization of hyperchaotic systems is a very active area of research as
evident from the works of (Elabbasy, et al., 2006; Feng, et al., 2005; Gao, et
al., 2007; Grassi & Mascolo, 1999; Grassi & Miller, 2002; Hu, et al., 2008;
Huang, 2008; Jia, 2007; Jia, et al., 2013; Li, et al., 2005; Park, 2005; Rafikov &
Balthazar, 2008; Sheikhan, et al., 2013; Tao & Liu, 2007; Wang & Liu, 2007;
Wu, et al., 2008; Zhang, et al., 2008; Zheng, et al., 2010; Zhu, 2010) and the
references therein.

In this paper, we investigate the synchronization of two hyperchaotic Lii
systems using feedback linearization controllers and sliding mode controllers.
The proposed techniques are successfully used for secure communication
purposes.

The paper 1s organized as follows. A description of the hyperchaotic Lii
system is presented in section 2. Section 3 and section 4 cover the design of a
feedback linearization controller and a sliding mode controller for the
synchronization of the hyperchaotic systems when the number of inputs to the
slave system is three; simulation results are presented when these controllers are
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used. Section 5 and section 6 present the design of a feedback linearization
controller and a sliding mode controller when the number of inputs to the slave
system is two; the developed theory is validated through simulations. Section 7
details the application of the proposed controllers for secure communication
purposes. Finally some concluding remarks are given in section 8.

THE HYPERCHAOTIC LU SYSTEM

The dynamic model of the hyperchaotic L system is such that:

x(1) = a(y(1) — x(1)) + w(?)

y(t) = =x(0)2(2) + ex(2)

#(1) = x(1)p(t) — ba(1)

w(t) = x(6)z(t) + rw(t)
where x(1), y(1), z(t), w(z) represent the state variables of the system; the
parameters a, b, ¢ and > r are real constants. This system exhibits hyperchaotic
behavior when a =36, h =3, ¢ =20 and —0.35 <r < 1.3. To illustrate this

fact, the hyperchaotic Li system is simulated with r = 1. The simulation results
depicted in Figure 1 show the chaotic behavior of the system.

307

20 4

Fig. 1. The 3D phase plot of the the states of the hyperchaotic Lii system when r = 1

In this paper, we will study the synchronization problem of two identical
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hyperchaotic L systems. Therefore, we need to define a master hyperchaotic Li
system and a slave hyperchaotic Lii system.

The model of the master hyperchaotic Lii system is as follows:

Xm(1) = a(ym(t) — xpm (1)) + wm(2)
Im(t) = =Xm(0)zm (1) + cym(?)

_ (2)
Zm(t) = Xm()ym(t) — bzm(2)
Win (1) = X (1) zm(2) + rwm(2)
The model of the slave hyperchaotic Lii system is defined as follows:
J.Car(t) = a(ys(t) - xs(t)) + ws(t)
75(8) = —x5(8)z5(8) + eys(8) + uy (¢)
3)

Z5(8) = x5(8)ys(t) — bzs(2) + us(1)

Ws(t) = x5(2)zs(1) + rws(1) + u2(2)
Note that the last three ordinary differential equations (odes) of the slave
system given by equation (3) contain the u;(¢), uz(¢) and wus(¢) terms. These
terms represent the controllers of the system. These controllers will be designed

such that the master system and the slave system are synchronized after starting
from different initial conditions.

Define the errors between the states of the master system and the states of the
slave system such that: e (f) = x(t) — xm(2), ex(t) = ys(t) — ym(t),
e3(t) = z5(t) — zm(t) and eq(t) = ws(t) — wm(2). Also, let the error vector e(?) be
such that e(r) = [e1(¢) ex(r) ex(t) es()]”.

Using equations (2)-(3), the dynamic model of the errors between the slave
and the master systems can be written as follows:

é(t) = alex(t) — er(t)) + es(t)

éx(1) = —xs(t)es(t) — zm(t)er (1) + cex () + ui ()
é3(1) = xs(t)ex (1) + ym(t)e1 () — bes(1) + us (1)
é4(1) = x5(t)es(t) + zm(2)er(2) + rea(t) + ux(2)

The objective of the paper is to synchronize the master and the slave
hyperchaotic Lii systems. Therefore, we will use nonlinear controllers to force
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the errors e (7), e2(t), e3(r) and e4(r) to converge to 0 as ¢ tends to infinity. We
propose to synchronize these systems using feedback linearization controllers
and sliding mode controllers.

We will consider two cases. The first case is when the slave system has three
control inputs; this case will be studied in sections 3 and 4. Then, we will
consider the case when the slave system has two control inputs; this case will be
analyzed in sections 5 and 6.

A FEEDBACK LINEARIZATION CONTROLLER
WHEN THE SLAVE SYSTEM HAS 3 INPUTS

Design of the Controller
Let ,, v, and 3 be positive scalars.

Theorem 1: The feedback linearization control laws:

u(t) = —ae(t) +znm()e (1) — cea(t) — mea(t)
w(t) = —el(t) — xs(nes(r) — zm(t)er(r) — rea(r) — m2e4(1) (5)
us(t) = —ym()er(t) — y3es(s)

when applied to the error system (4) guarantee the asymptotic convergence of
the errors e;() (i = 1, ...,4) to zero as ¢ tends to infinity.

Proof:

Let the Lyapunov function candidate V(e) be such that:
L L 1, 1
V(e) = 56(0) + 50+ 8() +56) (©

Note that the Lyapunov function candidate is positive definite as V(e) =0
when e(z) = 0 and V(e) > 0 for e(#) # 0.

Using equations (4) and (5), the derivative of ¥(e) with respect to time is
such:

18 4 cealt) + i (1))

e3(t) + zm(t)ei (1) + rea(t) + (1))

1)) (7
(

)
B] I)+."€4()+u1 )

Vo) = enlr)(aealt) - aen{r) +es(t)) +ex(t)(~xi(t)es(t) — zm(1)e
+es(1)(xelealt) + ym(D)er (8) — bes() +us(1)) + sl
= —aey(1)] - bes(1)* + ea(t) (aer (1) — za(t)er (1) + cen(r) +
tes(t)m{tes(8) +1(0)) + ealt)(er (1) + xi{t)es(r) + 2
= —ae}{t) - med(t) - (b+m)ed(t) - (1)
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Since a, b, 1, 72, 3 are positive scalars, it can be concluded that ¥(e) = 0
when e(f) =0 and V(e) < 0 for e(t) # 0. Hence, V(e) is a positive definite
function, V(e) is a negative definite function and V{(e) is radially unbounded.
Therefore, the errors e1(t), e2(¢), e3(¢) and e4(¢) asymptotically converge to zero
ast — oco.

It should be noted that since the errors e;(¢), ex(), es(#) and es(?)
asymptotically converge to zero as ¢t — oo, then we are guaranteed that
x(2), ys(t), z5(t), ws(t) asymptotically converge to xm(f), ym(2), zm(t), Wwm(t)
respectively as ¢t — oco. Therefore, it can be concluded that the states of the
master and the states of the slave hyperchaotic Lii systems are synchronized.

Simulation Results

The performance of the system is studied through simulations. The master
system given in (2) and the slave system given in (3) with the feedback
linearization controller (5) are simulated using the Matlab software. The
parameters of the Lii systems are taken such that @ =36, b =3, ¢ =20 and
r = 1. The parameters of the controller are such that vy =1 and v, = 1. The
initial conditions are taken to be x,,(0) = =2, x,(0) = 1, y(0) = 4, y5(0) = -1,
zm(0) = 3, z;(0) = 1, w,(0) =2 and w,(0) = 1. In addition, for the first five
seconds of the simulations, the two Li systems are simulated with
u1(t) = us(t) = u3(t) = 0. Then for the next five seconds the control laws given
by equations (5) are applied.

The simulation results are shown in Figure 2 -Figure 5. Figure 2 depicts x,,(?)
and x,(7) versus time; Figure 3 shows y,,(¢) and y,(¢) versus time. Figure 4 shows
zm(t) and zg(¢) versus time and Figure 5 shows wy(f) and wy(f) versus time.
These figures clearly indicate that the states of the master and the states of the
slave systems are synchronized in less than 3 seconds. Therefore, the simulation
results confirm that the feedback linearization control laws given by Theorem 1
are able to synchronize the master and slave hyperchaotic Lii systems starting
from different initial conditions.
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Fig.3. The plots of y,, and y, versus time using the Feedback Linearization controller (m = 3)
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Fig. 4. The plots of z,, and z, versus time using the Feedback Linearization controller (m = 3)
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Fig. 5. The plots of w,, and w; versus time using the Feedback Linearization controller (m = 3)

A SLIDING MODE CONTROLLER WHEN THE SLAVE
SYSTEM HAS 3 INPUTS

Because of their robustness features, sliding mode controllers have been widely
used to control different types of systems. In this section, we propose to use a
sliding mode controller to synchronize two hyperchaotic Lii systems when the
slave system has three inputs.

Design of the the Sliding Mode Controller

The first step in designing a sliding mode controller is to choose the sliding
surfaces. Since the slave system has three inputs, we need to choose three sliding
surfaces.

Let Ky, K3, K3, T'y, T'; and I'; be positive scalars. The sliding surfaces S;, Sz
and 83 are chosen such that:

8§ = el
S = €4(I) (8)
S3; = E3(I)

Also, we define the sign function such that:
1 i8>0
sgn(S)=<¢ 0 ifS=0
-1 ifS<0
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Theorem 2: The sliding mode control laws:

ul(t) = x_g(f)eg(f) + Zm([)€1(l) - CEQ(I) — K85 - Flsgn(Sl)
() = —xddeld) —zafell) —ret) — Koy —Tosgn(Ss)  (9)
us(t) = —x5()ea(t) — ym(t)er () + bes(r) — K383 — I'3sgn(S;)

when applied to the error system (4) guarantee the convergence of the errors
ei(?) (i=1,...,4) to zero as ¢ tends to infinity.

Proof:

Taking the time derivatives of S|, S; and S3 in (8) and using the dynamic model
of the errors in (4) and the control laws given by (9), we obtain:

S1 = —xs(t)e3(t) - Zm(t)el(t) + CeZ(I) T+ ul(t) (10)
= —-K8) — Plsgn(Sl)

$ = x(0es(d) + zmlDer(0) + rea(t) + () (1)
= —K58; — Tysgn(Sh)

S5 = x(0ean) + ym(ner(r) = bes(r) + (1) (12)

= —K3Sg = P3Sgn(S3)

From (10)-(12), we conclude that S; = —K;S; — isgn(S;) for i = 1,2,3. It can
be easily checked that the equations given by (10)-(12) guarantee that S8, <0
for i = 1,2,3. Therefore, the trajectories associated with these discontinuous
dynamics exhibit a finite time reachability to zero from any given initial
conditions provided that the gains K|, K3, K3, I'), T'; and T'; are chosen to be
sufficiently large, strictly positive scalars.

Since S}, S; and S5 are driven to zero in finite time, then the errors e>(¢), e3(¢)
and e4(t) are driven to zero in finite time. Moreover, since e;(7) and e4(f) are
driven to zero in finite time, then after such a finite time, the first ode equation
of the slave system (4) is such ¢é,(f) = —ae;(¢). Thus, e(f) asymptotically
converges to zero as ¢t — oo since a is a positive scalar. Therefore, the errors
e1(t), ea(t), es(r) and eq4(t) converge to zero as t — oo. §

It should be noted that since the errors converge to zero as ¢ — oo, then we are
guaranteed that x,(7), y;(t), z5(1), ws(t) converge to Xxm(t), ym(t), zm(t), wm(t)
respectively as ¢ — oo. Hence, the states of the master and the states of the slave
hyperchaotic Lii systems are synchronized.
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Remark:

It is well known that sliding mode controllers suffer from the problem of
undesired chattering. This problem can be greatly reduced by replacing the sign
function with a saturation function such that:

1 if S> By
Sa(s) = = 15| < B
L

-1 ifS<—-Br

where B; is the thickness of the boundary layer.

Simulation Results

The master system given by (2) and the slave system given by (3) with the sliding mode
controller given by (9) are simulated using the Matlab software. The parameters of the
Lii systems as well as the initial conditions are the same as the ones given in the previous
section. The parameters of the controller are taken to be K1 = K; = K3 =1, I'y = 10,
[y =20 and T'; = 10. Also, for the first five seconds of the simulations, the two
hyperchaotic Lii systems are simulated with u;(f) = uz(¢f) = u3(t) = 0. Then for the next
five seconds the control law in (9) is applied.

The simulation results are given in Figure 6 -Figure 9. Figure 6 depicts x,,(f)
and x,(¢) versus time; Figure 7 shows y,,(7) and y,(¢) versus time. Figure 8 shows
zm(t) and z,(¢) versus time and Figure 9 shows wy(f) and w,(¢) versus time.
These figures clearly indicate that the states of the master and the states of the
slave hyperchaotic Lii systems are synchronized in in less than 2 seconds.
Therefore, the simulation results confirm that the sliding mode controller given
by Theorem 2 is able to synchronize two hyperchaotic Lii systems starting from
different initial conditions.

30

—30

o 1 2 El Y = & 7 a8 o 10
tme in sec.

Fig. 6. The plots of x,, and x;, versus time using the Sliding Mode controller (m =3)
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Fig. 7. The plots of y,, and y, versus time using the Sliding Mode controller (m = 3)
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Fig. 9. The plots of w,, and w;, versus time using the Sliding Mode controller (m = 3)
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A FEEDBACK LINEARIZATION CONTROLLER WHEN
THE SLAVE SYSTEM HAS 2 INPUTS

It is assumed in the previous two sections that the slave Lii system has three
inputs. From an implementation point view, it is desired to minimize the
number of inputs. Therefore, we will assume in this section and in the next
section that the slave system has two control inputs only (i.e. we will assume
that u3 = 0 in system (3)). Therefore, the dynamic model of the errors between
the master and slave systems can be written as follows:

(13)
x5(t)ea(t) + ym()er (1) — bes(t)

61 (2)

é2(t) = —x5(8)e3(t) — zm(Der(2) + cea(t) + i (1)
83(1) =
24 (1) = x5()es(t) + zm(2)er (1) + rea(t) + ua(1)

To facilitate the design of the control laws, we will define the following state
transformation:

&i() =elr)

&(1) = —aey (1) + aea(t) + ea(r)

&(t) = e3(1)

£a(t) = xs(t)ex(t) + ym(t)er(£) — bes(1)

(14)

We will let the vector £(¢) be such that £(¢) = [&(2) &(1r) &(1) f4(t)]T.

Notice that if x,(¢) # 0, then the above transformation in invertible such that:

(er(f) = 61(1)

ext) = s(t)( &a(1) — ym(D€1 (1) + bE3(1))
| ex(0) = &(0) (s
L€4(f)=§2 )+a€1(f)——([—)(€4(f) Ym()€1(2) + bE3(1))

Using the transformation given in (14), the error dynamics between the
master and slave systems in (13) can be written in the new coordinates as
follows:
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&i(t) = &(1)
&) =fi + ()

. (16)
&(1) = &(1)
(1) = f2 +w(0)
where,
ni(f) = au (1) +ua(2) (17)
na() = x4 (1) (18)
and,
fi = a(=xs()es(t) — zm(Der(t) + cex () — alaea(t) — aey (1) + ea(t)) + x5(1)es (1) (19)

+Zm(l)€1 (l) + ?’84([)

S = (ayslt) - axs(t) + wilr))ealt) + (=xs(t)es(¢) — zm{t)en(t) + cea(t))x5(1)
H(=Xm(1)zm(1) + cym(1) )1 (1) + (aea () - aer (1) + eq(1))ym(1) (20)
~b(xs(t)ea(t) + ym(t)er (1) - bes(1))

Design of the the Controller

Let &y, az, &3, @4, 41 and ¥, be positive scalars. Also, let € be a small positive
scalar.

Theorem 3: The feedback linearization control laws:

sz{'g)%+mﬂﬂ+ (s (Deat) +m(Der()) =bes ) 1> ey
x(es() + 2m{Der(1) = (e +R)exl (0] <<

-i-;%(fz + @es(t) + ag(xo()ea(r) + ym(t)er(r) — bes(t))) i |xs(8)] > € (22)

=(fi + arer(t) + ax(—ae| () + aex(f) + ea(1)))
uz(t) = {
~x;s(t)es(t) — zm(t)er (1) — (r +Y2)ea(t) if lxs(n)] <e

when applied to the error system in (13) guarantee the asymptotic convergence
of the errors e;(¢) (i = 1,...,4) to zero as ¢ tends to infinity.
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Proof:

Since the control laws in (21)-(22) are defined for |x;(¢)| < e differently from the
case when |x(f)| > ¢, the proof is divided into two cases.

Case 1: |x,(t)]| > €

The closed loop system when the feedback linearization controller (21)-(22) is
applied to the error system given by equation (16) is such:

£(r) = AL(1) (23)

where,

1

0 0 —Q3 —0y4 |

The solution of the equation given in (23) is £(¢) = exp( A £)£(0) for ¢ > 0. It
can be casily checked that the matrix A, is a stable matrix as &;, &z, &3, 0y are
positive scalars. Hence, £(r) asymptotically converges to zero as ¢ — oo.

Because the transformation (14) is invertible when x,(¢) # 0, and since (1)
asymptotically converges to zero as 1 — oo, then the errors e, (), ex(t), es(r), es(?)
will also asymptotically converge to zero as t — oo.

Case 2: |x5(t)| <€

In this case, the application of the controller in (21) to the second ode of the
error system given in (13) leads to the first order ode é; = —7;e5(¢); the solution
of this ode is e,(t) = exp(—1t)e2(0). Since the scalar ; is greater than 0, then
the asymptotic convergence of e;(f) to zero as t — oc is guaranteed. Also, the
application of the controller in (22) to the fourth ode of the error system given
in (13) leads to the first order ode é5 = —72e4(1); the solution of this ode is
e4(t) = exp(—at)es(0). Again, since the scalar +; is greater than 0, then the
asymptotic convergence of e4(t) to zero as ¢t — oo is guaranteed. Moreover,
since e;(#) and es(t) asymptotically converge to zero, then the first ode of the
error system given in (13) leads to the asymptotic convergence of e (¢) to zero as
t — oo as a is a positive scalar. Finally, since e;(f) and ey(#) asymptotically
converge to zero and because x,(¢) and y,(¢) are bounded, then the third ode of
the error system given in (13) leads to the asymptotic convergence of e;(t) to
Zero as t — oo as b is a positive scalar.

Therefore, it can be concluded that for all values of x.(¢), the errors
asymptotically converge to zero as t — co. {
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Hence, it can be concluded that the states of the master and the slave
hyperchaotic Lii systems are synchronized.

Simulation Results

The master system given in (2) and the slave system given in (3) with u3 = 0 and using
the feedback linearization controller (21)-(22) are simulated using the Matlab
software. The parameters of the hyperchaotic Li systems as well as the initial
conditions are the same as the ones given above. The parameters of the controller are
chosen such that &, = 110, a» =21, a3 = 110, a3 = 21,9, = Sand ¥, = 5.

The simulation results are presented in Figure 10 - Figure 13. Figure 10
depicts x,,(t) and x,(¢) versus time; Figure 11 shows y,,(¢) and y,() versus time.
Figure 12 depicts z,,(¢) and z,(r) versus time and Figure 13 shows w,(f) and
wy(1) versus time. These figures clearly indicate that the errors asymptotically
converge to zero as t — oo. Therefore, the simulation results confirm that the
feedback linearization control laws given by Theorem 3 are able to synchronize
the two hyperchaotic Lii systems starting from different initial conditions.

ao
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Fig. 10. The plots of x,, and x, versus time using the Feedback Linearization controller (m =2)
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Fig. 11. The plots of y,, and y, versus time using the Feedback Linearization controller (m=2)
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Fig. 12. The plots of z,, and z, versus time using the Feedback Linearization controller (m=2)
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Fig. 13. The plots of w,, and w; versus time using the Feedback Linearization controller (m =2)

A SLIDING MODE CONTROLLER WHEN THE
SLAVE SYSTEM HAS 2 INPUTS

Design of the the Sliding Mode Controller

Let 81, 5, K1, Ko, K3, K4, Ty, T2, T3 and T'4 be positive scalars. Also, let € be a
small positive scalar.

Define the sliding surfaces o and o3 such that,

a1 = &(1) + Bi&i(1) (24)

o3 = &4(1) + Ba&a(1) (25)

where (1) (i=1,...,4) are given by equations (14).
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Theorem 4: The sliding mode control laws:

+ Boba + Kz +fzsg”(02)) if |xs(2)] > ¢
w(=¢ U (26)

xs(t)es(1) + zm(t)er (1) — cea(t) — Kses(1) — Tasgnlea(t))  if [x(r)] < e

~fi - Bi&a - Kioy - Tisgn(on) + axy(0)(fs + Bl + Kaon + Tasgn(cn))  if [x,(1)] > €
) = (27)

=~X;(t)es(t) — zm(t)er (1) ~ reg(t) ~ Kaea(t) — Tusgn(es(r)) if s (f) < €
with,
£2(1) = —aey (1) + aex(1) + eq(t) (28)
&a(1) = xs(n)ea(1) + ym(t)er (1) — bes(r) (29)
when applied to the error system system (13) guarantee the convergence of the

errors ¢;(t) (i = 1,...,4) to zero as ¢ tends to infinity.

Proof:

Since the control laws in (26)-(29) are defined for |x;(¢)| > € differently from the
case when |x,(f)| < ¢, the proof is divided into two cases.

Case 1: |x5(t)] > €

Taking the time derivative of oy and o, and using the error dynamics (16) and
the control laws given by (26)-(29), we obtain:

61 =) + &)
=B&(0)+h+ aul(r) +uy(1)
= Bi&(1) + (f:z + Baalt) + KzUz + Tsgn(a)) (30)
i = Bi&alt) - Km Tisgn(o) [fz + Bo&alt) + Kooz + Fasgn(oy))

= _Klal = f‘ngn(Ul)
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Also,

Babs(0) + &()

a2

= fo+ Baba(t) + xs(O)ui () -
31
fr 4 Baba(t) — (f2 + Baba(t) + Kyoa + Tasgn(o))

= —Kzo’g &= fzsgn(og)

We can conclude from (30)-(31) that ¢; = —Kjo; — Tusgn(oy) for i=1,2. It
can be easily checked that the conditions given by (30)-(31) guarantee that
0i0; <0 for i=1,2. Therefore, the trajectories associated with these
discontinuous dynamics exhibit a finite time reachability to zero from any given
initial conditions provided that the gains K;, Kz, I'; and I'; are chosen to be
sufficiently large, strictly positive scalars.

Since g is driven to zero in finite time, then after such a finite time we have
gy =0,or

& =-p/é& (32)

After such a finite time, the first ode equation of the error dynamics (16) is
such that & (¢) = —B:£1(¢); the solution of this ode is & (¢) = exp(—B11)&1(0).
Thus, & (f) asymptotically converges to zero as ¢ — oo since B, is a positive
scalar. Moreover, Since o, is driven to zero in finite time and since &;(¢)
asymptotically converges to zero, then it can be concluded that &(¢)
asymptotically converges to zero as t — oo.

Also, since g3 is driven to zero in finite time, then after such a finite time we
have oy = 0, or

&(1) = —Bt3(2) (33)

After such a finite time, the third ode equation of the error dynamics (16) is
such that &(7) = —3£3(¢); the solution of this ode is &(2) = exp(—521)€3(0).
Thus, &(f) asymptotically converges to zero as ¢ — oo since 3, is a positive
scalar. Moreover, Since o, is driven to zero in finite time and since &3(f)
asymptotically converges to zero, then it can be concluded that &(r)
asymptotically converges to zero as t — .

Thus, it can be concluded that the sliding mode controller (26)-(29) when
applied to the hyperchaotic Lii system guarantees the asymptotic convergence of
&(1), &(1), &(f) and &(f) to zero as t — oo. Furthermore, because the
transformation (14) is invertible when x,(z) # 0, and since £(¢) converges to zero
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as t — oo, then the errors e(1), ex(t), es(t), es(r) will also asymptotically
converge to zero as t — oo.

Case 2: |x,(1)] < €

The application of the controller in (26) to the second ode of the error system
given by (13) leads to:

ég([) = —K'3L’2(l) = fg,Sgn(E‘z(l)) (34)

Also, the application of the controller in (27) to the fourth ode of the error
system given by (13) leads to:

é4(t) = —Kyeq(t) — Tasgn(es(t)) (35)

It can be easily checked that the equations given by (34)-(35) guarantee that
ex(1)éx(t) <0 and eq(r)és(r) < 0. The trajectories associated with these
discontinuous dynamics (34)-(35) exhibit a finite time reachability to zero from
any given initial conditions provided that the constant gains K3, Ky, '3, T4 are
chosen to be sufficiently large, strictly positive scalars. Therefore e;(#) and e4(1)
are driven to zero in finite time. Moreover, since e>(#) and e4(¢) converge to zero,
then the first ode of the error system given in (13) leads to the asymptotic
convergence of e|(f) to zero as ¢t — oo since the scalar a is greater than 0.
Finally, since e,(¢) and e;(f) converge to zero and because x,(¢) and y,(t) are
bounded, then the third ode of the error system given in (13) leads to the
asymptotic convergence of e3() to zero as t — oo since b is a positive scalar.

Hence for all values of x,(¢), the errors e (1), ex(r), e3(t), es(r) converge to
zeroas ! — 00. {

Therefore, we are guaranteed that the states of the master and the slave
hyperchaotic Lii systems are synchronized.

Simulation Results

The master system given in (2) and the slave system given in (3) with 3 = 0 and
using the sliding mode controller (26)-(29) are simulated using the Matlab
software. The parameters of the Lii systems as well as the initial conditions are
the same as the ones given above. The parameters of the controller are chosen
suchthat K, =K =Ks3=K4=1,8=56=5,T1=100,T> =100, T; = 10
and 'y = 10.

The simulation results are given in Figure 14 - Figure 17. Figure 14 depicts
xm(t) and x,() versus time; Figure 15 shows y,,(f) and ys(¢) versus time. Figure
16 depicts z,(f) and z(¢) versus time and Figure 17 shows w,,(f) and w;(7)
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versus time. These figures clearly indicate that the errors asymptotically
converge to zero as { — oo.

Therefore, the simulation results confirm that the sliding mode control law
given by Theorem 4 is able to synchronize two hyperchaotic Lii systems starting
from different initial conditions.

—30

s
time in asc.

Fig. 14. The plots of x,, and x; versus time using the Sliding Mode controller (m=2)

Fig. 15. The plots of y,, and y, versus time using the Sliding Mode controller (m=2)

as

ao 'y =

35 - i

30 -

7 andz

20 |-

time in mec.

Fig. 16. The plots of z,, and z, versus time using the Sliding Mode controller (m=2)
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Fig. 17. The plots of w,, and w;, versus time using the Sliding Mode controller (m = 2)

APPLICATION OF THE PROPOSED CONTROL SCHEMES FOR
SECURE COMMUNICATION

This section deals with the application of the proposed synchronization schemes
for secure communications purposes. At first the secure communication
procedure is described; then simulation results are presented when the four
proposed control schemes are used.

Secure Communication Procedure

A secure communication procedure using the proposed control schemes is
depicted in Figure 18.

The procedure is as follows:

1 - We have a hyperchaotic Lii system which is denoted as the master system
at the transmitter side; this system is described using the the following
differential equations:

Xm(1) = a(ym(t) — Xm(1)) + wi(2)
Im(8) = —=Xm{8)zm (1) + cym(l)
Zm(t) = Xm(8)ym(t) — bzm(1)

W) = Xp() 2 (1) + rwp (1)

(36)
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Fig. 18. Block diagram for the secure communication procedure

- We will assume that the message to be sent i;(¢) is a binary signal which

consists of a sequence of zeros and ones.

- We will add the information message i;(¢) to the first state of the master

system Xx,,(¢); the combined signal is denoted by s(¢).

- "We will transmit the signals s(¢), ym(f), zm(f) and wn(?) using a public

channel.

- Due to the presence of noise, the transmitted signals 5(¢), ym(t) zm(?) and

wn(t) will be corrupted with noise of the public channel. Therefore, the
corrupted signals will be denoted by 3(¢), ym(f), Zm(f) and wy(r)
respectively.

- We will use a hyperchaotic Lii system (the salve system) at the receiver side.

The equations of this system are as follows:
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Xs(1) = a(ys(t) — x5(1)) + wy(1)

Ys(t) = =x5(0)z5() + cys(8) + (1)
z5(1) = x;(0)ys(1) — bzs(1) +us(2)
Ws(t) = x5(£)z5(8) + rws(1) + ua(2)

(37)

7 - The developed control schemes will be used to synchronize the master and
the slave systems. The errors between the states of the master and the slave
systems are as follows: & (¢) = x,(¢) — 5(¢), e2(t) = ys(2) — Pml(2),
€3(1) = z,(t) — Zm (1) and e4(2) = wy(1) — ww(2).

8 - To recover the transmitted message, we subtract the first state of the slave
system x,(¢) from the received signal 5(¢). The recovered signal is corrupted
with some additive noise from the public channel.

9 - We can filter the recovered noisy signal to obtain exact transmitted
information signal. We will use a filter’s F(.) such that:

i (1) = F(ir(£)) = F(5(t) — x,(1)) (38)

where is(¢) is the sent information signal, i,(¢) is the received signal corrupted
with noise. The signal i,(¢) is the actual information signal after filtering.

It takes a small amount of time for the controller to synchronize the master
and the slave systems when the sent signal has amplitude zero. Therefore, the
filter is designed such that it will check the values of s5(r) — x,(#) every
approximately 85% to 95% of each time period T in order to ensure that the
synchronization is obtained whenever a signal i(f) of amplitude zero is sent.
Otherwise, the master and the slave systems are not synchronized and the
output of the filter is a signal whose amplitude is one.

Secure Communications Using the Feedback Linearization
Controller withm=3

The feedback linearization controller (5) is used for secure communications. The
performances of the controlled systems are simulated using the Matlab software.
The initial conditions are the same as the ones given in section 3. The
transmitted information i () is a sequence of zeros and ones; note that the
amplitude of the signal is scaled by a factor of 0.5.

Moreover, considering the fact that the information will be transmitted
through a public channel, a Gaussian random signal is added to the transmitted
signal. The added signal has a mean value of 0 and a variance of 0.01.
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The simulation results are presented in Figures 19-20. Figure 19 depicts the
plots of x,(t), x,(t) and e(t) versus time using the feedback linearization
controller when m=3. Figure 20 shows the plots of i(¢) and i;(f) versus time
using the feedback linearization controller. Clearly, the simulation results
indicate that the feedback linearization controller with m=3 enables us to
recover the sent message.
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Fig. 19. The plots of x,,, x; and e versus time using the Feedback Linearization controller (m = 3)
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Fig. 20. The plots of i,(¢) and i; versus time using the Feedback Linearization controller (m = 3)

Secure Communications Using the Sliding Mode Controller with m =3

The sliding mode controller (9) is used for secure communications. The
simulation results are presented in Figures 21-22. Figure 21 depicts the plots of
Xm(t), xs(t) and e(t) versus time using the sliding mode controller when m=3.
Figure 22 shows the plots of i (¢) and i;(¢) versus time using the sliding mode
controller. Clearly, the simulation results indicate that the sliding mode
controller with m =3 enables us to recover the sent message.
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Fig. 21. The plots of x,,, x; and e versus time using the Sliding Mode controller (m = 3)
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Fig. 22. The plots of i;(¢) and i, versus time using the Sliding Mode controller (m = 3)

Secure Communications Using the Feedback Linearization
Controller with m=2

The feedback linearization controller (21)-(22) is used for secure
communications. The simulation results are presented in Figures 23-24. Figure
23 depicts the plots of x,(r), x;(r) and e(f) versus time using the feedback
linearization controller when m = 2. Figure 24 shows the plots of i;(¢) and #(¢)
versus time using the feedback linearization controller. Clearly, the simulation
results indicate that the FL controller with m =2 enables us to recover the sent
message.
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Fig. 23. The plots of xp,, x; and e versus time using the Feedback Linearization controller (m = 2)
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Fig. 24, The plots of i;(¢) and i, versus time using the Feedback Linearization controller (m=2)

Secure Communications Using the Sliding Mode Controller with m =2

The sliding mode controller (26)-(29) is used for secure communications. The
simulation results are presented in Figures 25-26. Figure 25 depicts the plots of
xm(t), x;(¢) and e(¢) versus time using the sliding mode controller when m=2.
Figure 26 shows the plots of i,(¢) and i;(¢) versus time using the sliding mode
controller. Clearly, the simulation results indicate that the sliding mode
controller with m= 2 enables us to recover the sent message.
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Fig. 25. The plots of x,,, x; and e versus time using the Sliding Mode controller (m =2)
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Fig. 26. The plots of i,{r) and i, versus time using the Sliding Mode controller (m =2)

CONCLUSION

The synchronization of two hyperchaotic Lii systems is investigated in this
paper. Two different cases are studied. The first case is when the number of
inputs to the slave system is three. The second case is the more realistic case
when the number of inputs to the slave system is two. For each of the cases, two
nonlinear control schemes are developed. The first control scheme is a feedback
linearization controller. The second control scheme is a sliding mode controller.
Both controllers ensure the convergence of the errors between the states of the
master and the slave hyperchaotic Lii systems to zero as time tends to infinity.

The simulation results clearly show that the four proposed control schemes
are able to synchronize the master and the slave hyperchaotic Lii systems when
the two systems start from different initial conditions. It should be noted that
sliding mode controllers are generally robust to changes in the parameters of the
controlled system. Therefore, sliding mode controllers are usually preferred over
feedback linearization controllers.
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Furthermore, the proposed control schemes are used for secure
communication purposes. The transmitted message is a binary signal consisting
of a sequence of zeros and ones. The simulation results indicate that the
proposed synchronization controllers are able to recover the transmitted signal
even in the presence of zero mean Gaussian noise.

Future research will address the problem of synchronizing other types of
hyperchaotic systems as well as synchronizing two different types of
hyperchaotic systems.
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