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ABSTRACT 
 
 

Presented in this paper is a revolutionary deep learning-based architecture for reducing 

the noise generated during Magnetic Resonance Imaging (MRI) scans. The proposed 

architecture differs from the usual adaptive algorithms used in Active Noise Control (ANC). 

In the present work, we are exploring the use of Deep Convolutional Artificial Networks to 

recognize advanced sounds. By applying the DL-NN to a 513-time segment, a 180-degree 

phase shift sample of the noise is generated. After computational simulation analyses were 

performed, experimental results show that performance in noise average power can be reduced 

by approximately 10 to 15 dB. 

 
Keywords: Deep Learning, CNN, ANC, MRI Acoustic Noise, Noise Cancellation, Noise 

Reduction. 

 

 

INTRODUCTION 

 

An MRI is an extremely effective medical tool used to diagnose a wide range of medical 

problems, but it is accompanied by noises whenever it is operated. These noises are unpleasant 

and cause hearing loss when they are repeatedly used. 

The MRI machine's acoustic noise has been well known since its invention as a source of 

unbearable noise. This noise caused discomfort for both the patient as well as the nearby staff 

(More et al., 2006, Counter et al., 1997, Wang 2017, Moelker et al., 2003) MRI noise is 

produced by ten different pulsed radiofrequency waves transmitted from the gradient coils in 
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large MRI scanners employed for clinical imaging. As a result, high-intensity acoustic noise 

is generated. Acoustic noise accounts for most of the Sound Pressure Levels (SPLs) caused by 

MRI acoustic contribution. As part of the MRI process, machines proceed through a series of 

stages, including magnetization-prepared rapid gradient echo, fast gradient echo turbo, and 

spin-echo T1/2 mm, among others. The noise generated by those stages can reach up to 117 

decibels. Among the different modulation strategies used, the rapid pulse rate modulation 

strategy, amplitude-modulated pulse envelopes, and multi-peaked spectra have the largest 

contribution to SPL. 

In order to suppress MRI noise levels, passive solutions, such as sound absorbers, are used; 

however, this method has two disadvantages: the first is its low reduction effect, the second is 

that it is relatively effective for low frequencies only. 

There are numerous active methods that can be employed to reduce the noise exposure to the 

patient and to those present in the MRI scanning room (but not to eliminate it completely). 

Research has incorporated active noise control techniques (ANC) commonly used for sound 

noise suppression (Rudd et al., 2013, Liu et al., 2011, Rudd et al., 2012, Li et al., 2008, Takkar 

et al., 2017, Kannan et al., 2010, Jung et al., 2005, Ramachandran et al., 2010) ANC was widely 

used in the MRI to reduce noise, but only targeted the patient and was worn via headsets. 

In 1936, (Lueg, P., 1936) proposed and tested the ANC basic idea. He used a microphone to 

measure a sound wave and added this to a 180-degree phase-shifted anti-signal to the main 

one by using a speaker. Taking their analysis into account, promising results have been 

obtained. To suppress noise, the controller unit outputs an anti-noise signal, which is added to 

the base noise by a second path, which creates a destructive interference effect and reduces 

noise significantly. How the algorithm generates the anti-noise signal is the secret of the 

algorithm. In Figure 1, the concept of using a secondary signal for noise cancellation is shown. 
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Figure 1. Formation of noise, anti-noise, and residual signals in an ANC system 

As part of noise suppression, adaptive digital filters consisting of Finite Impulse Response 

(FIR) and Infinite Impulse Response (IIR) filters are used (Lu et al., 2021). Although they 

achieved good suppression of narrow-band and low-band noises, they did not achieve 

satisfactory suppression of broad-band noises. Furthermore, the FIR and IIR filters need 

continuous adjustment and pre-knowledge of the microphone, speaker, and path transfer 

functions in order to generate the anti-noise signal correctly. 

There have been many studies examining the use of neural networks (NN) to cancel noise and 

improve speech quality (Zhang et al., 2021, Lee et al., 2021, Park et al., 2016). There is 

evidence that it improves speech recognition in noisy environments, while raising the signal-

to-noise ratio of sound signals. 

Today's ANC systems use MRI-compatible microphones and headphones that the patient 

wears in conjunction with an error microphone. Patients wear the headphones to reduce noise 

passively as well as to provide some entertainment while the scanner works. As a patient, he 

is protected from noise by a passive system, whereas any listener in the room may perceive 

the environment as noisy. It is important to reduce that noise for both the patient and the guest 

in the room without causing any complications. In almost all research, this scheme has been 

used to target patients lying on their backs, however in this study, we plan to target an 

individual who is seated in a specific place. In this method, we use an ANN model that uses 

deep learning to quantify noise reduction with minimum hardware requirements. In 

comparison with regular ANC, it reduces a lot of hardware components. 
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In his paper (Goldman et al., 1989), Goldman discusses the earliest implementation of ANC in 

MRI noise suppression. His team tried feeding a synthesized MRI sound wave with the 

opposite phase to a recorded MRI sound wave, but they did not achieve good results. The 

author of (Mechefske et al., 2002) tested a pneumatic tube to deliver noise cancelling sounds 

to a headset. Ultimately, the tube-based system was less effective in achieving a satisfactory 

reduction effect due to the large delay caused by the length of the tube. 

In (Pla et al., 1995), piezoelectric speakers near the person's ears were used with an adaptive 

algorithm called FXLMS, in ANC, the most popular adaptive algorithm is the filtered-x least-

mean-square algorithm. According to the report, the noise reduction was acceptable across a 

frequency range of 0 Hz to 1500 Hz. A feedback controller using cascaded NN was tested by 

(Mcjury et al., 1997) and (Chen et al., 1999) utilizing recorded MRI noise and a speaker. They 

performed the experiment in the lab and found some promising results. 

There is another implementation of feedforward MRI ANC that uses piezoelectric speakers 

driven by optical signals (Kahana et al., 2004). The claimed results were a reduction in MRI 

SPL of between 35 - 50 dB. In (Li et al., 2008), a group of researchers used a feedback 

controller to suppress an EPI sequence, reported to be the loudest MRI sound. Other work has 

focused on other MRI sequences, such as the GEMS (Chen et al., 1999) and EPI (Rudd et al., 

2009). Those works reported a considerable reduction in noise power, but the reduction was 

only effective below 2000 Hz. 

Besides deep learning, Artificial neural networks (ANN) have been used recently to solve the 

problem of noise reduction inside MRI scanning rooms (Chen et al., 2010, Salamsi et al., 2011, 

Chang et al., 2009). This study aims to provide a quiet zone within the MRI room for an 

accompanying person and even for the patient himself without using any passive attenuators. 

The headsets can both be taken off, allowing the loud sound to be partially isolated and normal 

life patterns to resume. The solution will be based on both deep learning and FFT for spectrum 

content learning. 
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Specifically, the following sections of the paper will be presented: Section II will illustrate the 

basics of ANC using FIR filtering, Section III will cover the proposal for deep learning in more 

detail. The experimental setups and the results in section IV are explained, section V will 

present the discussion and future works, while, the conclusion in section V is presented. 

 

ACTIVE NOISE CANCELLATION 

An example of a simple ANC model can be seen in Figure 1. It is ANC's principle that, when 

we add an audio wave with its inverse, the resulting waveform will be cancelled. In addition 

to noise and anti-noise waveforms, the system uses two measurement microphones. First, we 

have a reference microphone that records the noise at the source. Next, we have an error 

microphone that records the noise created. The location is close to where we need it to be 

quiet (away from noise).   

Input to the ANC adaptive unit is residual noise e(t) recorded by the error microphone. By 

processing this signal, y(t), the canceling signal, is generated. As illustrated in Figure 2, the 

ANC system uses d(n) to denote the source of noise at the microphone's neighboring position. 

W(z) accepts e(n) the error signal and generates y(n), which controls the loudspeaker S(z). The 

loudspeaker and its secondary path transfer function are included in S(z). 

 

Figure 2. A block diagram of a feedback ANC system 

 

ANC can be classified into two types: feed-forward controls and feedback controls. In the 

first type, the cancellation signal is taken from an original noise source, and the anti-noise 
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signals are placed in the noise propagation path, which produces the quiet zone. In Figure 

3.A, an example of feedforward active noise cancellation in action is shown. A single 

microphone is used in the feedback control to determine the residual or error noise that should 

be reduced and used in generating the cancelling signal, as shown in Figure 3B. 

 

 

Figure 3. (Upper Figure) ANC systems utilize feedforward technology to cancel noise. 

(Bottom Figure) This system is known as the feedback ANC system. 

 

Adaptive weight is an effective method of determining the primary path. Following the 

adaptation, the filter will learn the filter weights and provide a digital representation of the 

filter. Least-Mean-Square algorithm (LMS) or one of its variants is the most widely known 

algorithm for updating filter weights. Figure 2 shows the secondary path between speaker 

and microphone that must be considered. There is a secondary path (feedback path) that 

connects the anti-noise speaker to the noise reference microphone, which needs to be 

subtracted. The residual noise signal or error signal e(n) is shown in Figure 4. The adaptive 

unit processes e(n) to generate the cancelling signal y(n). The adaptive weights are 

represented by W(z), and the secondary path transfer function is S(z). We only consider time-

invariant linear transfer functions. In addition, we will assume both the microphones and the 

speaker are ideal for this study. 
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Figure 4. Adaptive ANC system using the LMS algorithm. 

 

We propose to replace the filter weights W(z) with Deep CNNs based on deep learning 

adaptive learning. The replacement is illustrated in Figure 5. Additionally, there will be a 

microphone located near the source of noise d(n), as well as a speaker located near the quiet 

area. While the input training sound file should be recorded in the source zone, the target 

noise sound should be recorded near the quiet zone. 

 

 

Figure 5. Block diagram of predictor using NN 

 

DATASET PREPARATION & FEATURES TRANSFORMATION 

Using the model presented previously, we propose a Deep Learning solution for MRI sound 

suppression. The data set was downloaded from (Kaska, et al., 2021), which helped in 

preparing the training set. It contains several recordings of three types of MR sequences, 

namely EPI, EPI, MDEFT and GEMS. 

 At 44.1 kHz, the audio signal was recorded for 33 minutes, 34 seconds. To compute the 
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spectral vector block, we use a Hamming Window of 512 samples and a 1024-point Short 

Time Fourier Transform (STFT) with a 50% overlap. For each frequency bin, the frequency 

resolution was 43.06 Hz (44.1kHz/1024). By dropping the frequency symmetric half 

corresponding to negative frequencies, the spectral vector was reduced to 513 units. Input 

features of the predictor are constructed from the MRI STFT magnitude vector (size 513 X 

1, duration 23.2 ms). The predictor input feature format for the DL model consists of 20 

consecutive MRI STFT magnitude vectors (size 513 X 20, duration 232 ms). Based on the 

current STFT vector and the 19 previous noisy STFT vectors, the STFT output estimate is 

computed. 

To achieve unit variance and zero mean, the predictor and target vectors were both 

normalized and standardized. This model is shown in Figure 6. In order to convert the target 

signal to the time domain, we use the magnitude spectrum and the phase of the predictor 

signal. 

 

DEEP LEARNING MODEL STRUCTURE 

We will use the same known model for speech denoising that proved proficiency, with the 

2D CNN deep architecture (Shah, A., 2019). There is no special model that suits Deep 

Learning Active Noise Control (DL-ANC), but the speech denoising model fits MRI sound 

suppression goal perfectly. Based on the results of the tests, in addition to other studies, we 

have come to this conclusion. 

Deep learning is a very complex regressive learning model consisting of multiple layers of 

NN. The breakthrough in DL was the development of a revolutionary learning algorithm 

(error backpropagation algorithm) that can learn multi-layered NN with many layers. The 

most commonly used deep learning model is CNN (Convolutional Neural Network), and we 

propose a model that uses deep learning to reduce MRI noise instead of a conventional 

adaptive filter. 
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Figure 6. The arrangement of features for training and inference in a deep learning network 

 

It starts with a convolution layer with 15 convolutional filters each of size 15 by 15, the 

second layer is a drop-off by one, followed by a pooling layer with a pool size of 3 by 3, then 

a second convolutional layer of size 5 by 5, followed by a drop-off, pooling layer of 3 by 3, 

and a stride of 2. Layer 4 has a convolutional layer of number 10 with 3 2 by 2 filter sizes. 

This is followed by a dropout layer, followed by a max pooling layer of number 3 with a 

pooling size of 2 by 2 and a stride of 1. After a flattened layer, we have a dense layer of 800 

units with Relu activation function, preceded by another dense layer of 513 units. The total 

training blocks reached 188,815 blocks. 

 

TRAINING & TESTING SETUP 

A sample of one of the MRI noise sounds is shown in Figure 7 showing three different MRI 

sequences. The differences are obvious, but all share the loudness property by displaying the 

waveform of a 100,000-point MR noise signal, figure 8 illustrates how effectively the ANC 

system works. By adding the corresponding anti-noise signal generated by the proposed ANC 

system to the source sound, the residual signal waveform is produced as depicted in Figure 

8. 

As seen in Figure 9, the spectrum is plotted for the MRI noise. Blue plots depict source MRI 
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noise spectrum, and red plots depict operated-on MRI noise spectrum (residual waveforms 

after noise reduction) or can be called control-on and control-off MRI spectrums, 

respectively. We can see in this spectrum figure that the MR noise energy is primarily present 

at low frequencies (from 0 to 3 KHz), while the ANC system has been very effective at 

reducing noise. A 10-15 dB drop in SPL power can be observed in this area. The two 

waveforms possess similar power levels after the 3 KHz bandwidth, which shows that this 

would be effective for a specific low-frequency bandwidth. 

To have even more deeper performance evaluation for the controller, the method 

performance is evaluated in terms Normalized Mean Square Error (NMSE). We can define 

NMSE as shown in equation 1. 

𝑁𝑀𝑆𝐸 = 10𝑙𝑜𝑔10
∑ 𝑒(𝑛)2𝐿
𝑛=1

∑ 𝑑(𝑛)2𝐿
𝑛=1

                            (1) 

The residual error signal is measured as e(n), while the baseline MRI noise is measured as 

d(n). Furthermore, The NMSE value is usually below zero, and always lower values reflect 

better noise attenuation. Table 1 shows the performance of the DNN-ANC control. The 

computed values were extracted from a random 100,000 samples. It demonstrates that the 

control reduces the MRI noise signal. The Table contains rows for the overall SPL power, 

the overall reduction power, the average reduction power for each consecutive 1000 samples 

in the sequence, the maximum reduction power, besides the maximum reduction frequency. 

Table 1. Simulation results typical measurements. 

Features Uncontrolled DNN-ANC 

Controlled 

Overall SPL power 34.06 dB 27.36 dB 

Overall reduction power (NMSE) N.A. -6.71 dB 

Average NMSE reduction power N.A. -6.70 dB 

Maximum reduction power N.A. 12 dB  

Maximum reduction frequency N.A. 1200 Hz 
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Figure 7. Comparisons between source MRI noise responses for three different scan types. 

 

 

Figure 8. Sample waveform of the acoustic source noise generated by a MR imager (100K 

samples) in blue and the residual (error) signal waveform in red. 
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Figure 9. Spectrum of the MRI noise. Spectrum of untreated MRI noise (red line) treated 

MRI acoustic signal after applying feedback control (blue line). The upper graph is for 

bandwidth up to SR/2 = 22 KHz, and the lower plot is an expanded bandwidth of [0, 5 

KHz]. 

 

DISCUSSION AND FUTURE WORK 

An offline simulation of 3-T MR Scanner acoustic reduction has been implemented while 

working on EPI, MDEFT and GEMS sequences. A CNN-dependent Deep Learning strategy 

was used to form the recognition sequence to produce the correct anti-noise sequence to 

reduce the noise coming from the primary path. As far as the author's knowledge is 

concerned, this study is the first to employ DL to reduce MR acoustic noise. Therefore, many 

references do not support comparisons. However, some are listed below, although having 

different similarities. 

For example, the next table, Table 2, shows some of the works related to MRI acoustic noise 

suppression, but mostly using one of the ANC methods, it was taken for comparison 
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purposes. The five related studies mentioned will use ANC with a variant of the LMS method 

to achieve reasonable simulated noise suppression. Noise reduction ranged from 10 dB to 30 

dB, but these results were obtained for specific frequency ranges and principal components. 

EPI and Pulsed EPI was the main MRI sequence test chosen because of its high disturbance 

effect, but we have taken even two other sequences, namely MDEFT and GEMS sequences, 

which showed similar noise reduction effects as seen in the EPI sequence. 

Table 2. Average MRI acoustic power reduction for other works. 

Reference Methods MRI Sequence Noise Reduction (dB) 

[Mcjury, M. et 

al., 2021] 
General ANC 

Feed-Forward XLMS 
Gradients and 

Pulse sequences 
30 dB (0 - 700 Hz) 

[Kannan, G. et 

al., 2011] 
 feedback ANC EPI 17-20 dB 

[Rudd, B. et al., 

2012] 
 FXLMS ANC EPI 10.6 dBA across audible 

spectrum 

[Li, M. et al., 

2008] 
ANC [feedback, 

feedforward, hybrid] 
EPI and EPI Pulse 

sequences 
20 dB over principal 

frequency component 

[Li, M. et al, 

2009] 
Tailored FXLMS EPI and EPI Pulse 

sequences 
principal harmonic up to 

12 dB 

Current study Deep NN (CNN) 3 MRI sequences 6.7 dB in average 

 

The results should guide future work towards the actual implementation of the proposed 

technology beyond simulation. In addition, another future expectation will be to use in-room 

responses (transfer function) alongside speakers' non-linearities to further adapt to better 

responses.  

Other work has mentioned that [Zhang, H., et al., 2021], typical ANC methods have shown 

minimal results when handling nonlinearities of speakers and high-frequency components in 

suppressed noise. However, when DL used general noise suppression, it produced stronger 

reduction effects. This was the basis for the use of DL in active sound suppression. Thus, on 

the basis of this fact, we assume that future work will surely be expected to take into 

consideration the speaker that generates the anti-noise non-linearity in addition to the scanner 

room transfer function. 
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Though our study gave a respectful reduction of noise in dB, it was perceptible. It can be 

seen as an encouragement to continue work which needs to be modified in order to achieve 

comparable reduction effects in future studies. 

 

CONCLUSION 

 

An approach that utilizes deep learning is described in this paper to address the problem of 

MRI Noise reduction. When deep ANC is used, the loudest noises are selectively cancelled 

in the 3 KHz bandwidth where they are more likely to occur. Systematic evaluations 

demonstrate the effectiveness and robustness of using a deep NN ANC to attenuate MRI 

noise in noisy scanning rooms. As a result of this successful demonstration, we look forward 

to further work on DNN-based autoencoder as well as other types of NN, such as the LSTM, 

and besides Recurrent Neural Networks (RNNs), to provide better noise reduction. 
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