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ABSTRACT 

A discrete event system (DES) simulation and optimization model is proposed for ambulance allocation 
in emergency medical service (EMS) systems. The accuracy of the proposed model is improved by estimating the 
input parameters using the Poisson mixture model and the expectation-maximization algorithm. The results are 
confirmed using the Mann–Whitney U and Kolmogorov–Smirnov tests. The DES model is executed using the 
OptQuest program in the Arena software. The response times of cases in urban and rural regions improved by 40% 
and 45%, respectively, and the station success rates in those regions increased to 95% and 96%, respectively. Our 
results indicate that the number of ambulances must be revised, and their allocation to stations in the actual system 
must be reorganized to achieve the required EMS system performance standards. 

 
Keywords: Allocation model; emergency medical service systems; expectation maximization; 

optimization; Poisson mixture distribution. 

 
INTRODUCTION 

The emergence of COVID-19 has highlighted the importance of health systems in human life. During the 
pandemic, not only the entire healthcare system, but also emergency medical service (EMS) systems, which are 
vital to the healthcare system, are in high demand. The main purpose of EMS systems is to minimize loss of life 
while increasing service quality and performance. Sánchez-Mangas et al. (2010) suggested that reducing the 
response time by 10 min (from 25 to 15 min) resulted in a one-third reduction in the likelihood of death in both 
highway and conventional roadway crashes. 

Over the recent decades, researchers have integrated simulation and optimization methods to 
simultaneously evaluate results based on performance and optimality (McCormack & Coates, 2015; Pinto et al., 
2015; Bélanger et al., 2020; Boutilier et al., 2020; Amorim et al., 2019; Kamran et al., 2016). Simulation models 
must be constructed appropriately to allow the actual system performance to be determined with high precision. 
Several studies have focused on estimating system parameters. Matteson et al. (2011) proposed integer-valued 
time-series models to estimate emergency call arrival rates. Weinberg et al. (2007) estimated call arrival rates to 
model call centers efficiently. They proposed a multiplicative Gaussian model to measure and estimate the arrival 
rates of inhomogeneous Poisson processes. For parameter estimation, Olava-Rojas and Nickel (2021) suggested 
machine learning methods to simulate EMS systems in North Germany. Yang et al. (2020) developed a simulation 
optimization model for the Shanghai EMS system using a Gaussian mixture model to predict uncertain spatial 
demands. They showed that allocation costs can be reduced by approximately 41% through spatial distribution. 
Zhu et al. (1992) created a simulation model that matched the operating characteristics of an actual system by 
partitioning a day into 24-hour periods.  
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Our literature review indicates that parameter estimation methods have recently gained importance in 
simulation modeling. Classical methods that estimate arrival rates at any call center can be classified into time 
series, machine learning, and statistical methods. Generally, the arrival rates of EMSs are estimated based on 
single-parameter distributions using time-series methods (Channouf et al., 2007, Matteson 2011). However, the 
main contribution of this study is to estimate the arrival parameter using a Poisson mixture distribution on an 
hourly basis. A Poisson mixture distribution enables the use of two or more parameters for the arrival rate, thus 
increasing the accuracy and precision of the estimation.  

 

EMS SYSTEM 

The sequence of events after receiving an emergency call is shown in Fig. 1. When a call arrives at the 
call center, if necessary, the operator dispatches an available ambulance based on its proximity to the scene. Once 
the ambulance is ready, it is dispatched to the scene. After on-scene treatment, the ambulance typically transports 
and drops off the patient at the hospital. In some cases, the patient does not need to be transported to a hospital 
after initial care is administered. Finally, an ambulance is considered available for the next call once it departs 
from the hospital or returns to the base station. 

	
Figure 1. EMS system process. 

 
The performance of an EMS is typically assessed by its response time. The EMS performance criterion 

is the percentage of cases that respond within the target response time limit. The EMS performance standards of 
Turkey are to respond to 95% of the cases in 10 min and 96% of the cases in 30 min in urban and rural regions, 
respectively. The Adana City zone is segmented into 65 urban and 11 rural sites. The EMS system includes 49 
active ambulances and 40 stations. A total of 23 hospitals in the city are equipped with EMS units. In total, 33 and 
16 ambulances are provided in the urban and rural regions, respectively (Fig. 2). 

	

Figure 2. Location of ambulance stations and hospitals in rural (left) and urban (right) regions. 

Based on our data analysis, ambulances were dispatched for 90% of calls, among which 70% involved 
dispatches to hospitals, and 30% involved on-scene treatment. Although rare in daily practice, an ambulance can 
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be dispatched for a new case before the patient returns to the station. However, because such cases are rare, we 
assume that the ambulance routing policy is static. 

 

EMS SYSTEM SIMULATION OPTIMIZATION MODEL 

The EMS simulation optimization framework is shown in Fig. 3. The simulation and optimization 
modules are indicated separately using dashed lines. The simulation model was created using the Arena software. 
The system performance outputs were obtained via simulation and then evaluated and updated using the OptQuest 
optimization tool embedded in Arena. 

 
Figure 3. Simulation optimization framework. 

 

Decision variable 

xn: number of ambulances assigned to station i, i = 1...n 

Input variables 

c: unit cost of an ambulance 

Auxiliary variables 

𝑿: vector for any candidate solution 

Simulation Outputs 

J (𝑿): expected cost function of candidate solution vectors 

𝑅𝑇$ 𝑿 : average response time achieved for urban regions with input set 𝑿 

𝑅𝑇%(𝑿): average response time achieved for rural regions with input set 𝑿 
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𝑆𝑅$(𝑿	): average success rate for urban regions with input set 𝑿 

𝑆𝑅%(𝑿): average success rate for rural regions with input set 𝑿 

The aim of the objective function is to minimize the cost of ambulances allocated to EMS stations, as expressed 

in Eq. (1). 

𝑀𝑖𝑛	J(X )= c
N

n=1

𝑥0	 (1) 

J(𝑿) is a function that represents the cost of allocating ambulances to n stations and is calculated via 
simulation. 𝑿 is a vector representing a candidate solution. Each 𝑿 includes n one-dimensional solution sets of xn, 
which is randomly assigned at the beginning of the simulation optimization. The constraints expressed in Eqs. (2) 
and (3) provide an average response time shorter than the target response time for urban and rural regions, 
respectively. 

E[RTU(X,)]		≤		RTtarget
U  (2) 

E[RTR(X)]		≤		RTtarget
R  (3) 

The percentage of cases that respond to the target response time is determined using Eqs. (4) and (5) for 
the urban and rural regions, respectively: 

E[SRn
U(X )]		≥		SRtarget

u  (4) 

E[SRn
R(X	)	]		≥		SRtarget

R  (5) 

 

Poisson Mixture Distribution 

The general function of the mixture distribution model is expressed as shown in Eq. (6). 

𝑓 𝑥,Ψ = 𝜋7

8

79:

𝑓 𝑥; 𝜃7 																																																	 
 

(6) 

where Ψ= (θ, π) denotes the vector of all parameters; for a mixed distribution of k components, θ = (θ1, 
θ2…, θk) represents the parameters of k components and  π = (π1,π2,…,πk) represents the proportion of each 
distribution. 

Suppose that the sample data x1, x2…, xm are selected from a population comprising k components. The 
probability mass function of the mixture model with k Poisson distribution components is expressed as shown in 
Eq. (7), and Eq. (8) below should be satisfied: 

𝑃 x;π,λ = πi
λi

xe-λi

x!
k
i=1           x=0,1….m , λi >0      (7) 

πi=1                                0≤ πi ≤ 1
k

i=1

 (8) 

Here, λi is the parameter of the ith Poisson distribution for i = 1...k. Each component k is determined using 
model selection criteria such as the Akaike information criterion (AIC), Bayesian information criterion (BIC), and 
log-likelihood (LL).  
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Let L(Ω) for the parameter set Ω comprising k components be the maximum value of the likelihood 
function. Hence, the likelihood and log-likelihood functions can be expressed as shown in Eqs. (9) and (10), 
respectively: 

𝐿 Ψ = 𝑓 𝑥A, 𝛹 = 𝜋7𝑓 𝑥A, 𝜃7

8

79:

C

A9:

C

D9:

   (9) 

lnL Ψ = ln	 𝑓 𝑥A, 𝛹
C

A9:

= ln	 π7

H

79:

C

A9:

𝑓 𝑥A, 𝜃7  (10) 

The AIC and BIC values are calculated to be 2k −2LL and -ln(n)k-2LL, respectively. Finally, a k value 
corresponding to the smallest AIC and BIC values and the largest LL value is selected. 

 

Expectation-Maximization (EM) Algorithm 

In a Poisson mixture distribution, parameters π1, π2 … πk and λ1, λ2 …, λk must be estimated. Dempster et 
al. (1977) developed the EM algorithm to estimate parameters in mixture distribution models. The EM algorithm 
is implemented based on the complete data likelihood function shown in Eq. (11), where the mixture likelihood 
lnL(Ψ) is augmented with zi,k binary variables (0,1). 

𝑙𝑛𝐿 𝛹, 𝑍 = 𝑧7,8L
89:

M
79: 𝑙𝑛	(𝜋8𝑓 𝑥, 𝜃8 ) (11) 

Beginning from 𝛹(N), the EM algorithm iterates between the expectation step (E) and maximization step 
(M). In step (E), the expected missing probabilities are calculated. An estimate of 𝑧7,8

(O) can be obtained using Eq. 
(12). 

Step E 

𝑧7,8
(O) =

𝜋7,8
OP: 𝑓(𝑥7, 𝜃8

OP: )
𝜋8OP:𝑓(𝑥7, 𝜃8)8

89:
						 (12) 

Subsequently, based on the estimated 𝑧7,8
(O), all unknown parameters Ψ(O) = 𝜃, 𝜋  are updated using Eq. 

(13) until they converge to the maximum. 

Step M 

𝑧7,8
O

L

89:

M

79:

𝑙𝑛	(𝑧8𝑓 𝑥7, 𝜃8 ) 
(13) 

 

Modeling Call Arrival Process 

We used an hourly dataset of call arrivals recorded in one year. Using the Poisson mixture model, data 
from components 1 to 10 were tested to determine whether they fit the Poisson mixture distribution. The AIC, 
BIC, and LL values indicate that two components existed for incoming calls in 17 of the 24-hour periods, and the 
remaining fitted the pure Poisson distribution shown in Table 1. We applied the EM algorithm and used Flexmix 
embedded in the R software to obtain the parameters (π, λ) of the Poisson mixture distribution.  
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Table 1. Hourly calls and Poisson mixture distribution parameters. 

Time Interval k 
Proportions Poisson Distribution Parameters Selection Criteria 
𝛑𝟏 𝛑𝟐 𝛌𝟏 𝛌𝟐 AIC BIC LL 

00:00-01:00 2 0.62 0.38 13.43 17.78 2136.88 2140.78 -1067.44 
01:00-02:00 2 0.89 0.11 11.71 17.91 2085.25 2089.15 -1041.62 
02:00-03:00 1 1 - 9.82 - 1940.76 1944.66 -969.38 
03:00-04:00 1 1 - 8.28 - 1900.38 1904.28 -949.19 
04:00-05:00 1 1 - 6.95 - 1780.82 1784.72 -889.40 
05:00-06:00 1 1 - 6.53 - 1738.01 1741.91 -868.00 
06:00-07:00 1 1 - 7.23 - 1790.76 1794.66 -894.38 
07:00-08:00 1 1 - 10.10 - 1937.01 1940.41 -967.50 
08:00-09:00 2 0.18 0.82 13.91 9.37 2294.35 2298.25 -1146.17 
09:00-10:00 2 0.31 0.69 24.09 16.94 2369.84 2373.74 -1183.92 
10:00-11:00 2 0.91 0.09 20.67 35.03 2456.09 2459.99 -1227.04 
11:00-12:00 2 0.21 0.79 30.55 21.02 2472.03 2475.93 -1235.01 
12:00-13:00 2 0.16 0.84 31.72 21.68 2433.48 2437.38 -1215.74 
13:00-14:00 2 0.18 0.82 32.86 22.47 2438.33 2442.23 -1218.16 
14:00-15:00 2 0.70 0.30 21.92 29.12 2416.66 2420.56 -1207.33 
15:00-16:00 2 0.20 0.80 30.18 22.11 2394.20 2398.10 -1196.10 
16:00-17:00 2 0.93 0.07 22.38 37.80 2450.17 2454.07 -1224.08 
17:00-18:00 2 0.85 0.15 21.94 32.82 2483.40 2487.30 -1240.70 
18:00-19:00 2 0.10 0.90 35.45 22.73 2511.43 2513.33 -1254.71 
19:00-20:00 2 0.22 0.88 32.49 22.50 2570.32 2574.22 -1284.16 
20:00-21:00 2 0.54 0.46 21.72 29.23 2489.03 2492.98 -1243.54 
21:00-22:00 2 0.66 0.34 26.47 19.81 2379.39 2383.29 -1188.69 
22:00-23:00 1 1 - 21.42 - 1738.01 1741.91 -868.00 
23:00-00:00 2 0.48 0.52 15.61 21.80 2335.92 2339.82 -1166.96 

 

Ambulance Dispatching and Travel Features 

The dispatching time was assumed to be log-normally distributed, with an average of 1.81 min. Moreover, 
the preparation time was disregarded since it was short. The total travel time was segmented into five intervals. 
The related time statistics were determined using distance matrices and data analysis. Only the onsite delay time 
was assumed to be exponentially distributed with an average of 9.68 min. 

 

MODEL VERIFICATION AND VALIDATION 

For each replication, the simulation model was performed for one year with a 50-day warm-up period 
and eight replications. First, using the parameters listed in Table 1, we generated the number of arrivals per hour 
in the simulation model. Second, we applied the Mann–Whitney U and Kolmogorov–Smirnov tests to determine 
whether the simulated arrival calls represented arrival calls in the actual system. The test hypotheses are as follows: 

H0: The actual and simulated data have the same distribution for the ith time interval.  

H1: The actual and simulated data do not have the same distribution for the ith time interval.  

The MWU and K-S test p-values are listed in Table 2. To accept H0, the MWU p-value should be between 0.15 

and 1 or the K-S p-value should exceed 0.10. Based on the results, most of the MWU p-values were 
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approximately 1, and the K-S p-values were greater than 0.10. Thus, we confirmed that the Poisson mixture 

distributions accurately represented the actual system. 

 

Table 2. Comparison of results of Mann–Whitney U and Kolmogorov–Smirnov tests. 

 
Time interval 

Means Standard deviations p values 

Real data 
Simulated 

data Real data 
Simulated 

data MWU K-S 
00:00-01:00 15.09 14.99 4.43 4.13 0.98 p>0.10 
01:00-02:00 12.42 12.37 4.14 3.88 0.88 p>0.10 
08:00-09:00 18.65 11.93 5.09 5.06 0.73 p>0.10 
09:00-10:00 19.21 18.99 5.67 5.24 0.68 p>0.10 
10:00-11:00 22.00 22.07 6.41 6.22 0.77 p>0.10 
11:00-12:00 23.05 22.82 6.37 6.13 0.71 p>0.10 
12:00-13:00 23.38 23.15 6.30 6.10 0.49 p>0.10 
13:00-14:00 24.35 24.18 6.35 6.39 0.59 p>0.10 
14:00-15:00 24.04 24.16 6.06 5.52 0.80 p>0.10 
15:00-16:00 23.73 23.55 6.05 5.78 0.58 p>0.10 
16:00-17:00 23.44 23.43 6.46 5.99 0.81 p>0.10 
17:00-18:00 23.50 23.71 6.37 6.12 0.67 p>0.10 
18:00-19:00 24.15 23.71 6.63 6.31 0.15 p>0.10 
19:00-20:00 24.68 24.28 6.84 6.44 0.23 p>0.10 
20:00-21:00 25.15 25.14 6.52 5.99 0.97 p>0.10 
21:00-22:00 24.20 23.80 5.93 5.96 0.47 p>0.10 
22:00-23:00 21.41 21.03 5.31 5.17 0.48 p>0.10 
23:00-00:00 18.77 18.78 5.43 5.13 0.89 p>0.10 

 

RESULTS AND DISCUSSION 

The model was tested by reallocating 49 ambulances to stations without increasing their number. 
However, no significant improvement was observed. Subsequently, we increased the number of ambulances and 
reallocated them to each station. The changes in success rates after varying numbers of ambulances and 
reallocation combinations are shown in Fig. 4. The optimal system that satisfied the expected performance criteria 
was achieved using one of the combinations of 89 ambulances reallocated to existing stations. 

 
Figure 4. Success rates for different simulation optimization trials. 

The time-dependent performance outputs for both the actual and optimized systems are listed in Table 3. 
The average response times for the urban and rural areas improved by 40% and 45%, respectively. Therefore, 
emergency cases can be responded within the desired response time, which is a performance target of the Ministry 
of Health. 
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Table 3. Time-dependent system performances. 

Time Intervals Average  Minimum Average Maximum Average 
Actual Optimal Actual Optimal Actual Optimal 

Response Time in Rural 
Region 15.42 8.44 14.50 8.23 16.45 8.77 

Response Time in Urban 
Region 13.01 7.79 12.73 7.72 13.39 7.85 

 

In Fig. 5, a comparison of the time standard performances of the actual system and optimized model is 
presented. The red and blue markers represent the stations responsible for cases in the rural and urban regions, 
respectively. As shown on the left side of Fig. 5(a), most urban cases did not respond within the time limits of the 
actual system. However, the time standards for both regions were satisfied when the proposed model was used, as 
shown on the right side of the figure. The success rates of the actual and optimized models are shown in Fig. 5(b) 
on the left and right sides, respectively. The success rates of the actual system were 84% and 78% in the rural and 
urban areas, respectively. Using the proposed model, the success rates  improved by 96% and 95% for most stations 
in the rural and urban areas, respectively. Because of their geographical locations, a few stations did not indicate 
improvements in their success rates. However, station 17 indicated a slight improvement of approximately 14% 
in terms of its success rate. 

(a) 

(b) 

Figure 5. Comparison of number of ambulances for actual and optimal systems. (a) 
Average response times to scenes. (b) Success rates of stations. 

	

A graph illustrating the actual and optimal allocations of ambulances to stations is shown in Fig. 6. The 
number of ambulances in only 3 among 40 stations remained the same, whereas it decrease in the third station and 
increased in the other stations. 
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Figure 6. Comparison of number of ambulances for actual and optimal systems. 

 
 

CONCLUSION 

In this study, the performance of an EMS system was analyzed based on time standards and the percentage 
of cases responded. This study was limited by insufficient recorded data in some cases and mistakenly recorded 
events. Thus, some approximate values were substituted for the missing data. However, we focused on modeling 
the system as accurately as possible to represent the actual situation using the Poisson mixture model and EM 
algorithms. An optimal EMS system was proposed after performing simulation optimization. Using the proposed 
allocation model, the percentage of cases responded by the EMS system within a specified time period was high.  

In future studies, additional mixture distributions can be considered for random data at different time intervals 

on weekdays or weekends. In addition, the relocation of stations and dynamic reallocation policies should be 

considered for further improvement.	
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