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ABSTRACT 

Recent deterioration of ambient air quality is related to anthropogenic activities, which play a significant 
role in atmospheric pollution. Ozone (O3) is an air pollutant that is not emitted directly from sources at the ground 
level. Meanwhile, anthropogenic activities, such as industrial and mobile sources, may directly produce O3 
pollutant precursors. Human health, the environment, materials, and crops are negatively affected by O3 pollutants. 
Therefore, the present study investigated the causal relationships between O3 and particulate matter, gaseous 
pollutants, and meteorological conditions. Three monitoring stations, each representing a different geographical 
region, were selected. The three monitoring stations were in Negeri Sembilan, Kelantan, and Perlis, representing 
industrial, urban, and suburban areas, respectively. Sulfur dioxide (SO2), nitrogen dioxide (NO2), and wind speed 
(WS) were causally related to O3 in Nilai; SO2 and carbon monoxide (CO) in Kota Bharu; and NO2 and CO in 
Kangar. However, the causal relationship between the causative parameters and O3 was one-way. Therefore, O3 
is considered to be a secondary contaminant that may require these parameters to be formed in the ambient air. 
However, none of the primary parameters showed a directional relationship with the other parameters, except for 
O3. These findings may be useful in future research to improve our understanding of air quality, particularly the 
status of O3 pollutants. 
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INTRODUCTION 

Rapid economic development resulting from by the acceleration of industrialization and urbanization has 
resulted in an increase in air pollution due to pollutant emissions (Ning et al., 2018). According to the World 
Health Organization (2016), high-income countries are more affected by increasing industrialization and 
urbanization than middle- and low-income countries. Unfortunately, compared with the Americas, Europe, Africa, 
and the Caribbean, the magnitude of urbanization in Asia is unparalleled (Roth et al., 2011). China has been 
identified as the country with the fastest growing urbanization in terms of population (Chen et al., 2016). 

A recent study in China discovered that over the course of a decade, ambient air quality across the country 
has deteriorated owing to an increase in industrial activities (He et al., 2019; Zhu et al., 2019). The vastly 
increasing number of industrial factories provide and accommodate human demands not only in China but also 
around the globe. Pollutant emissions from industrial activities are linked to air pollution levels (Sun et al., 2020; 
Al-Joboori et al., 2020). The ambient air has three major sources of air pollutants: stationary, mobile, and natural 
sources (Hamid et al., 2013). Stationary sources include industrial activities and power plants. Meanwhile, mobile 
sources include emissions from vehicles, aircraft, ships, or any form of transportation that uses combustion fuel. 
Meanwhile, natural sources include forest fires and volcanoes, which are the most common causes of haze.  
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Air pollution is closely related to the decrease in ambient air quality. The term “air pollution” refers to 
the presence of air pollutants in ambient air at levels that impose health hazards (Hassoun et al., 2019). Pollutants 
can include gases, liquids, or particles dispersed in the environment. Studies have focused on air pollution over 
the past decade because of its human health hazards, and the negative effects of air pollution on human health and 
welfare have been documented (Kampa & Castanas, 2008). 

In China, the focus of recent air pollution research has shifted to ground-level ozone (O3), which has 
surpassed particulate matter as the most prevalent air pollutant due to anthropogenic activities, such as industrial 
and urbanization processes (Lu et al., 2019). O3 pollutants are of particular concern because they pose a greater 
risk to human health than the other air pollutants. Based on these features, O3 is classified as a secondary rather 
than primary pollutant. 

The primary feature of O3 pollutants is the formation of volatile organic compounds (VOCs) and nitrogen 
oxides (NOX), which react with solar radiation (sunlight). This oxidation process leads to the formation of 
dangerous gaseous O3. Thus, people living in areas that repeatedly exceed the permissible O3 limits are at a greater 
risk of health adversities. According to Pierre et al. (2017), O3 pollutants were recently declared one of the most 
dangerous air pollutants in Europe, and O3 pollution may worsen in the future. In addition to human health, O3 
pollutants affect the environment and materials. 

Jerrett et al. (2009) reported a link between O3 concentration and long-term health effects of O3 exposure 
in humans, and this link has been increasingly discovered in most studies on O3 and human health. In 2014, the 
total number of premature deaths from chronic obstructive pulmonary disease (OCPD) caused by O3 exposure 
recorded in China was 89,391 (Lin et al., 2018). Studies on O3 pollutants have become increasingly relevant in 
recent years because of concerns regarding their harmful effects on human health. As O3 does not exist alone in 
ambient air, numerous air quality studies have focused on the association between this pollutant and other factors, 
such as PM10, sulfur dioxide (SO2), nitrogen dioxide (NO2), carbon monoxide (CO), wind speed (WS), relative 
humidity (RH), and temperature (T) (Zhang et al., 2017; Raffee et al., 2018; Awang et al., 2018). 

Correlation analysis is the most frequently used method for examining the association between O3 
pollutants and other variables. However, few studies have been published on this topic. For instance, Awang et al. 
(2018) noted a strong positive association between temperature and O3 pollutant concentrations at three separate 
locations in an urban region. In another study, Hu et al. (2019) discovered that O3 pollution is positively associated 
with particulate matter and CO in a suburban area. 

Furthermore, a correlation analysis revealed strong associations between air pollutants, such as O3, PM10, 
CO, and NO2, and meteorological parameters, such as wind speed, temperature, and relative humidity, in an urban 
setting (Rahman et al., 2015). According to previous studies, O3 may be correlated with other parameters, albeit 
at different degrees of association. These findings demonstrate the need to examine the association between other 
parameters and O3 dispersion in air quality studies. 

Correlation analysis is commonly used in air quality applications to describe the association between O3 
pollutants and other factors, such as NO2, CO, NOX, and meteorological data. Therefore, we can examine the 
correlation between each factor and O3 concentration. However, this statistical technique merely reveals the level 
of correlation between dependent and independent parameters. Furthermore, correlation analysis of only two 
variables is insufficient to determine the link between more than two variables. However, some factors that cannot 
account for the third and subsequent factors may exist (Granger, 1969). 

Meanwhile, causal relationship analysis is a statistical technique that can help resolve this problem. This 
method implies a dependency relationship between the cause and effect of each parameter. While the statistical 
correlation technique reveals only the relationship between parameters, the causal relationship analysis examines 
the directional cause and effect of each parameter and provides a significant value for the direction. Therefore, the 
present study used causal relationships to investigate the significant directionality as well as the cause and effect 
of O3 concentration on particulate matter pollutants, gaseous pollutants, and meteorological parameters at three 
different locations in Malaysia, including industrial, urban, and suburban areas. Our findings may provide a useful 
reference for other researchers and the government to formulate early mitigation measures given the possibility of 
intensification of anthropogenic activities, which may worsen O3 pollution. 
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AIR QUALITY DATA 

Secondary air-quality data were obtained from the Malaysian Department of Environment (DoE). These 
data were continuously recorded and controlled by an automated air quality control remote station while following 
the established standards required by the Malaysian DoE. From January 2006 to December 2017, the hourly 
averages of ground-level ozone (O3), meteorological parameters (wind speed, temperature, and relative humidity), 
particulate matter (PM10), and other gaseous pollutants (CO, NO2, and SO2) were obtained and converted to 
monthly average data. 

Numerous studies have attempted to explain the fluctuations in O3 concentrations as a function of gaseous 
pollutants and volatile organic compound (VOC) precursors; therefore, historical data obtained from the DoE are 
useful (Ismail et al., 2016; De Souza et al., 2017; Apondo et al., 2018). CO, SO2, and NO2 are major gaseous 
pollutants in the atmosphere that are chemically oxidized to O3 in the presence of solar light. O3 and its precursors 
are transported and accumulated by the wind (Teinilä et al., 2019). High wind speeds may reduce O3 concentration, 
allowing pollutants to travel to new locations. 

 

STUDY AREA 

Three Malaysian air-monitoring stations were selected for the present study. Peninsular Malaysia 
comprises various locations and regions. The first air quality monitoring station is located in Nilai (02°15.924′N, 
E102°10.554′), Negeri Sembilan. The Malaysian DoE classifies this air quality monitoring station as industrial. 
Nilai air quality monitoring stations are located in rapidly expanding industrial areas with significant air pollution 
(Ahmat et al., 2015). The second air quality monitoring station classified as the urban type was located in Kota 
Bharu (06°09.520′N 102°15.059′E), Kelantan. The Kota Bharu air quality monitoring station is located in the 
northeastern part of Peninsular Malaysia, close to the border with Thailand. Kota Bharu’s major activities include 
trading and tourism (Masseran et al., 2016). The last air quality monitoring station was in Kangar (06°19.545′N 
99°51.311′E), the capital of Perlis. It is located in the southern part of Peninsular Malaysia. Suburban areas with 
extensive human activities are undergoing rapid urban development (Abdullah et al., 2017). The selected air 
quality monitoring stations in Nilai, Kota Bharu, and Kangar were named S1, S2, and S3, respectively. The 
geographical map of all three monitoring stations is shown in Figure 1. 

 

Figure 1. Geographical map of the three selected sampling stations 
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ANALYSIS 

The causal relationship statistical technique maximized the cause-and-effect relationship between the 
dependent and independent parameters considered in the present study. This provided important results regarding 
the cause and effect of each independent parameter on the dependent parameter, which is reported in terms of 
significance and direction. The stationarity of each piece of data was confirmed to comply with the causal analysis. 
Monthly record data for 144 months were utilized. Data on O3, PM10, gaseous pollutants, and meteorological 
parameters were subjected to a stationary test. Numerous statistical tests can be used to determine whether the 
variables in a multivariate time series are stationary. 

The most commonly used time series test is the augmented Dicky–Fuller (ADF) test (Abdel-aziz & Frey, 
2003). The ADF test is represented by the following equation: 

ADF =    (1) 

where, 

: Drift Component 

: Independent and homogeneous error terms 

To determine the stationarity of the series, Sansudden et al. (2011) have proposed the following hypothesis: 

     H0     : The time series data are non-stationary 

H1  : The time series data are stationary 

where H0 is rejected if the significance value (p) is smaller or equal to 0.05. 

Thereafter, the causality statistical test was applied using the following equation (Rahmah & Kashem, 
2017): 

  (2) 

   (3) 

Subsequently, we tested H0: b1 = b2= ….. = bp = 0 against HA: x Granger causes y. Similarly, testing H0: 

d1 = d2= ….. = dp = 0 against HA:  Granger causes . H0:b1 represents the dependent series and Ho:d1 
represents the independent series. Here, a is the coefficient of the series. In each case, rejection of the null 
hypothesis implies the existence of Granger causality. In other words, Granger causality can be determined using 
F-statistics and the hypothesis of the Granger causality test is as follows (Jordaan & Eita, 2009):  

H0  : The series is not Granger caused 

H1  : The series is Granger caused 

If the significant F-statistics value is equal to or less than 0.05, the null hypothesis is rejected, indicating 
that the dependent series was Granger caused by the independent series. 

Meanwhile, the results of the causal statistical test can be represented graphically. This necessitates a 
thorough examination of the causes and effects of each parameter. The graphical representation of causal statistics 
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between parameters can be unidirectional or bidirectional. Since a significance test (0.05) was used in the present 
study, unidirectional indicates that the independent parameter was not a cause and effect of the dependent 
parameter, or vice versa. 

Furthermore, if a parameter does not have a Granger cause for O3 at the significance level of 0.05, it may 
be significant at a level greater than 0.05. The bidirectionally significant dependent and independent parameters 
exhibit a relationship of both cause and effect with each other at the significance level of 0.05. Consequently, the 
direction is significantly affected. Figure 2 shows the details of unidirectional and bidirectional interactions. In 
the diagram, the dotted lines indicate that parameter B has a cause-and-effect relationship in the direction of the 
line with parameter A. Simultaneously, the straight line indicates that parameter A does not have a cause-and-
effect relationship in the direction of the line with parameter B. 

 

Causality direction Indication 

 Unidirectional result at the 

significant level of <0.05 

 Bidirectional result at the 

significant level of <0.05 

Note:         Causality present at the significant level of >0.05 

:         Causality present at the significant level of <0.05 

Figure 2. Direction of illustration of causal relationship statistical test 

 

RESULTS AND DISCUSSION 

Descriptive statistics of the O3 concentration data from January 2006 to December 2017 are presented in 
Table 1. The standard deviation for all three sampling monitoring stations was recorded in the range of 0.0155–
0.0192 ppm, indicating that the concentration variability of O3 concentration was almost identical. Meanwhile, 
the mean values for all three sampling monitoring stations were greater than the median, and the data were skewed 
to the right, indicating that moderate O3 concentrations were recorded. 

The maximum O3 concentrations recorded at Nilai, Kota Bharu, and Kangar were 0.1140, 0.0830, and 
0.0810 ppm, respectively. Thus, O3 concentration at the industrial sampling station was higher than that that at the 
urban and suburban sampling stations according to the Malaysian Ambient Air Quality Guideline (MAAQG). The 
high recorded concentrations of O3 at the industrial sampling stations were not surprising because of the industrial 
emissions of NOX and VOCs as precursors of O3, which are primarily emitted from industrial processing and 
heavy transportation activities (Hidy et al., 2015). Furthermore, the disparity in concentrations observed across 
the three sampling stations may be attributed to differences in local emissions from anthropogenic activities of 
mobile and stationary sources in terms of atmospheric composition (Banan et al., 2013). 

 

A B 

A B 
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Table 1. Descriptive statistics of O3 concentrations at the three monitoring stations 

Station Standard deviation Mean Median Skewness Maximum 

Nilai (S1) 0.0155 0.0157 0.0100 1.6070 0.1140 

Kota Bharu (S2) 0.0145 0.0170 0.0100 0.8010 0.0830 

Kangar (S3) 0.0127 0.0210 0.0190 0.6620 0.0810 

 

Hourly averaged data were used to analyze O3 concentration behavior patterns in depth. The diurnal 
dispersion of O3 concentration at the three sampling stations is depicted in Figure 3. At the Kota Bharu and Kangar 
stations, the O3 concentration began to rise at 9.00 a.m., peaked at 2.00 p.m., and began to fall at 4.00 p.m. 
Meanwhile, at the Nilai station, peak concentration was recorded 1 hour later (at 3.00 p.m.) than that at the other 
two stations, but started to fall at 4.00 pm. 

According to the diurnal graph, the industrial area recorded a higher O3 concentration than the urban and 
suburban areas. The concentration of precursor at the industrial sampling station was thought to be the primary 
cause of disparities in data. Due to the high intensity of solar radiation (sunlight) in Malaysia, peak O3 
concentrations occur between 1.00 pm and 3.00 pm (Abdullah et al., 2019; Awang et al., 2018). These findings 
were also confirmed by Geng et al. (2008), who determined that high-intensity solar radiation was the primary 
contributor to the high recorded O3 concentrations. 

As a result of the different diurnal dispersions of O3 observed at the three sampling stations, further 
analysis using the causal relationship statistical technique was performed to determine the parameters that may 
affect the O3 concentration. Typically, causal relationship analysis is based on the stationarity of data from records. 
According to Mills (2015), stationary data are the mean and variance of a dataset that do not change over time. 

 

Figure 3. Diurnal dispersion of O3 concentration at the three monitoring stations 
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Physical observations using a series plot graph may not always provide clear information regarding the 
stationarity of each set of recorded data. Therefore, the ADF test was run on all datasets for the three monitoring 
stations to examine stationery. The ADF test was suitable for use to check the stationarity of our data, and the null 
hypothesis was rejected at the given level of confidence (Omar et al., 2013). 

Table 2 summarizes the t-statistics and p-values of the ADF test on nonstationary results for the recorded 
air pollutant and meteorological data. According to the ADF test, all parameters at the Nilai station had non-
stationary data records. Furthermore, the sampling stations in Kota Bharu and Kangar had six and five stationary 
parameters, respectively. Temperature and relative humidity were nonstationary parameters in Kota Bharu. At 
Kangar, ground-level ozone, nitrogen dioxide, and relative humidity were recorded as nonstationary data. Given 
the non-stationarity of several parameters, differencing was required to convert the data to a stationary dataset to 
comply with the rules of causality methodologies. 

Table 3 presents the results of causality relationships. Three parameters, namely SO2, NO2, and WS, 
showed a causal relationship with O3 concentration in Nilai at the significance level of <0.05, with p-values of 
0.0132, 0.0086, and 0.0475, respectively. Meanwhile, SO2 and CO in Kota Bharu and NO2 and CO in Kangar 
showed a causal relationship with O3 concentration at the significance level of 0.05. 

Table 2. ADF statistics and p-values for non-stationary dataset of the three monitoring stations 

Station Parameter t-statistics p-value 

Nilai 

O3 -0.9403 0.0713 

SO2 -1.1727 0.0157 

NO2 -0.3554 0.8880 

CO -0.5372 0.0727 

PM10 -1.1503 0.0490 

WS -1.8985 0.1636 

T 0.9449 0.1546 

RH -0.9389 0.2589 

Kota Bharu 
T -0.4819 0.6795 

RH -0.5151 0.1079 

Kangar 

O3 -1.4860 0.1280 

NO2 -1.2538 0.2068 

RH -0.3135 0.6065 
 

 

Moreover, detailed cause and effect relationships between parameters in the directional causality were 
obtained. The results of directional causality test are the major findings that distinguish the present study from the 
previous correlation studies on air quality. Figure 4 depicts the outcomes of the directional parameters. The 
causality test was found to be significant at the 0.05 level, because no bidirectional events occurred. At the 
significance level of <0.05, one-directional causality was noted between O3 and NO2, SO2, and WS at the Nilai 
sampling station. Furthermore, SO2 and CO were found to be causal parameters for O3 in Kota Bharu, whereas 
NO2 and CO were found to be the causal parameters at Kangar. 
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As shown in Figure 4, three parameters showed a cause and effect at the significance level of 0.5 at Nilai 
and Kota Bharu. Furthermore, the cause-and-effect relationship between SO2 and NO2 at Nilai was bidirectional. 
At the significance level of 0.05, the causal relationship analysis revealed that air pollutant concentrations and 
meteorological parameters showed varied causation relationships at different monitoring stations. However, as the 
precursors of O3 pollutants, such gaseous pollutants as SO2, NO2, and CO may have a causal relationship with O3.  

Granger causality direction Monitoring Station 

  

Nilai 

 

 

Kota Bharu 

 

Kangar 

Note:          Causality occurred at the significant level of <0.05 

:          Causality occurred at the significant level of <0.10 

:          Causality occurred at the significant level of <0.50 

Figure 4. Direction of causality at all monitoring stations 
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The results of causality relationship in the industrial area (Nilai) were expected due to regional and local 
emissions, which refer to transport and motor vehicle emissions, respectively. Meanwhile, in the urban (Kota 
Bharu) and suburban (Kangar) areas, the results were expected due to regional and local emissions, which refer 
to transport and motor vehicle emissions, respectively. Simultaneously, the transfer of wind emissions from nearby 
places, such as industrial areas, to urban or suburban areas, causes significant O3 pollution. 

 

Table 3. Causality relationship t-statistic and p-values for all sampling stations 

Nilai 

Parameter SO2 NO2 CO PM10 WS T RH 

t-values -2.515 -2.673 0.696 0.017 1.918 -0.439 -0.850 

p-value 0.0132 0.0086 0.4879 0.9867 0.0475 0.6616 0.3971 

Kota Bharu 

Parameter SO2 NO2 CO PM10 WS T RH 

t-values 2.1550 -0.5040 3.5350 -3.4240 0.9680 -0.1760 -0.2250 

p-value 0.0331 0.6155 0.0006 0.0841 0.3349 0.8604 0.8223 

Kangar 

Parameter SO2 NO2 CO PM10 WS T RH 

t-values -1.3510 3.3300 -2.6590 -2.6080 -0.5910 -0.4510 -0.2250 

p-value 0.1792 0.0011 0.0089 0.1102 0.5554 0.6529 0.8223 

Parameters affecting O3 concentration at the significant level of <0.05 are indicated in bold 
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CONCLUSION 

Our findings indicate that industrial (Nilai) monitoring stations recorded higher O3 concentrations than 
urban (Kota Bharu) and suburban (Kangar) monitoring stations. Moreover, the maximum O3 concentrations that 
exceeded the acceptable limit of the MAAQG were only found in Nilai. Meanwhile, in Nilai, Kota Bharu, and 
Kangar, the diurnal dispersion of O3 concentration followed a similar trend. However, O3 concentration peaked at 
midday, following a rapid rise in the morning, and then gradually declined to a low level in the evening. The 
results of the causal association between O3 pollutants and other parameters (e.g., PM10, SO2, NO2, CO, T, WS, 
and RH) indicated that gaseous pollutants, such as SO2, NO2, and CO, showed a causal relationship with O3 
concentration at the significance level of <0.05. In Nilai, wind speed was the sole meteorological parameter 
showing a causal relationship with O3 at the significance level of 0.05. However, all causal relationships at the 
three selected monitoring stations examined were unidirectional, the bidirectional causal relationship of O3 with 
SO2 and NO2 at the significance level of not more than 0.5 at Nilai. This finding was expected owing to the 
mechanism of O3 pollutant, which requires these parameters to build up in the ambient air. Overall, the parameters 
affecting O3 concentration clarified using the causal relationship analysis in the present study can offer an 
important reference for other researchers to improve air quality studies, particularly for prediction purposes. 
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