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ABSTRACT 

Dense phase pneumatic conveying is a preferable method for transportation of a friable, fragile, 

abrasive, or agglomerated in nature material through pipeline with comparatively less wear and 

tear of the system and product as well. A fine particulate material moves as a single entity due to 

its cohesion in vertical or thin horizontal pipes in Plug-1 flow. A model based on mechanics was 

created and later modified using experiments for this type of flow. In this work Artificial Neural 

Networks (ANNs) models are used to study the effect of wall friction coefficient and coefficient 

of wall cohesion on the pressure drop. Three different datasets having 50000, 250000, and 500000 

data points were used to test 19, 21, and 25 ANN architectures respectively. The best architecture 

was found to be t50-t40-r1 architecture with Adamax optimizer, with mean absolute percentage 

error (MAPE) being close to 0.00402% when tested on the 500000 samples dataset with 25000 

test values, 0.0043% when tested on the dataset with 250000 samples and 25000 test values, and 

0.0035% on the 50000 samples dataset with 10000 test values. The s20-s20-r1 architecture with 

Adam optimizer was quick and gave second best results with MAPE being close to 0.009% when 

tested on the 500000 samples dataset, 0.00988% when tested on the dataset with 250000 samples, 
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and 0.00408% when tested on the 50000 samples dataset. The t40-t40-t40-t40-r1 with Adamax 

optimizer was slow but gave the third best results with MAPE being close to 0.0166% when tested 

on the 500000 samples dataset, 0.00496% when tested on the dataset with 250000 samples, and 

0.00480% when tested on the 50000 samples dataset. 

Keywords: Adamax optimizer; ANN; Magnesium Oxide; Plug-1 flow; Pressure drop 

INTRODUCTION 

The energy loss in plugs is mainly due to friction and developed a model for the associated friction 

force (Muschelknautz and Krambrock, 1969). A theoretical model is developed for horizontal plug 

flow in a pipe describing the mechanics of plug motion inside a pipe where a stationary layer of 

particles between plugs is present (Konrad, 1980). During plug movement, some of the particles 

in the stationary layer get picked up due to acceleration and that same number of particles is left 

behind.  So, he balanced the forces on a single plug, using a similar model (Janssen, 1895) and 

also estimated the gravitational force by using (Wilson et al., 1972) technique. Mi and Wypach, 

1995 developed a semi empirical model based on experimental investigations and moving slug 

force balance, to predict pipeline pressure drop of low velocity slug flow in horizontal pipe having 

no cohesion. Pan and Wypach, 1997 developed a model for pressure drop for the low velocity slug 

flow. This model worked well for particles with irregular shapes as well. They also split the radial 

stress into two parts but modified the previous Mi and Wypach model by directly applying radial 

stress to the force balance. Yi, 2001 conducted research to predict the pressure drop during 

conveying of granular materials in the form of a slug with a stationary layer and found that the 

weight of granular material in the slug on pressure drop should also be accounted for. They 

developed a modified equation using the momentum balance of the stationary layer’s resistance to 

accelerating particles for the frontal force of the slug. Due to this resistance, the values of the 
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pressure drop calculated were also higher and closer to experimental results. The pressure drop 

model used in l-in vertical pipe considering the air velocity, plug length, particle size, the cohesive 

properties andpowder moistureis in good agreementwith the2-inand 4-in vertical pipes (Hong and 

Klinzing, 1989; Borzone&Klinzing, 1987; Aziz &Klinzing, 1990).Rabinovich et al., 2012 found 

that plug friction force is a function of pipe diameter, wall friction coefficient, stress ratio and plug 

length and also found that a plug will move as one stiff entity if the stress ratio corresponds to the 

active case. Shaul and Kalman, 2015 defined Plug-1, Plug-2 and Plug-3 kinds of classical plugs in 

which the pressure drop was a function of a number of physical and geometrical properties of the 

plug material. Rawat and Kalman, 2019 constructed a flow regime chart with Archemedes Number 

and Reynolds Number as the x and y coordinates respectively. They also developed two new kinds 

of plugs, Plug-3*, an extension of Plug-3 where the bed is also moving, and Plug-2* where the 

layer between two plugs is moving. They also found that Plug-1 exists for fine particles of C and 

A types having Archemedes number (Ar) less than 100 (Geldart, 1973). Aziz and Klinzing, 1988 

studied a flow using pneumatic conveying of coal at low velocity at an angle of 45 degrees. The 

flow was stable as the cohesion among the particles was more than the stresses exerted by air. 

Chen et al., 2002 used silica and kaolin powder to create a two-layer flow, where the inner plug-

like flow was treated as a coulomb solid and the shear layer was treated as a frictional fluid. Mi 

and Wypach, 1995 discovered that it is easier to transport finer particles from dilute to dense phase 

as there is a smaller chance for pressure variations and vibrations to occur. They also presented 

semi empirical correlations to model pressure drop. The Hausner’s Ratio (HR) and cohesion are 

the important parameters that can establish the existence of plug-1 and plug-2. As with Ar< 100 

and HR> 1.25, plug-1 exists; otherwise, plug-2 is expected (Rawat & Kalman, 2019; Hausner, 

1967). The multilayer perceptron (MLP) neural network (Offor & Alabi, 2016) for predicting 
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friction factor in turbulent flow of water with two hidden layers having 30 neurons each had 

relative error up to a maximum of 0.004% when compared with the Colebrook equation.In order 

to generate the training set for the ANN model, they solved the Colebrook equation 

iteratively.Also, Sablani et al., 2003 was able to predict the pressure drop for bingham plastic fluids 

using two input parameters: Bingham Reynolds Number and Hedstrom Number. He used the 

Regula Falsi Method to solve the relations developed by Govier and Aziz, 1972.The dataset 

consisted of 1177 training samples. 150000 iterations were carried out with 1 to 3 hidden layer 

configurations and 2-16 nodes. Total number of networks used was 24. Mean relative error (MRE), 

mean absolute error (MAE), and the standard deviations of the relative (STDR) and absolute 

(STDA) errors, and R2 score were used as the accuracy metrics. The mean relative error of the 

best architecture was close to 2.01% by a 2-8-8-1 configuration. An ANN structure (2-6-8-6-8-6-

1) which is obtained using the NN-SVG tool is used for the current study. In these 2 neurons are 

selected in the input layer, 1 neuron in the output layer and from left to right 6-8-6-8-6 neurons in 

the hidden layers are selected to construct the 2-6-8-6-8-6-1 ANN structure. 

DATASET GENERATION AND PRE-PROCESSING 

Three datasets generated using Python code consisting of 50000, 250000 and 500000 samples 

were used. Datasets were generated by solving the modified pressure drop equation (Rawat & 

Kalman, 2019) and HR. Magnesium Oxide was taken as flow material and initial values were 

taken from the experiment conducted by Rawat and Kalman and the stress transmission coefficient 

was found using the relations given by Rabinovich. The coefficient of wall friction (μw) range 

from 0.1 to 0.9 and coefficient of wall cohesion (Cw) range from 700 to 2000 were taken as input 

parameters for this problem. The flowchart for the dataset generation is given in figure-1. 
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Figure 1. Flowchart for dataset generation 

The test set split was 0.2 for a dataset of 50000 samples, 0.1 for 250000 samples and 0.05 for 

500000 samples to cover the complete range of pressure values. The Python’s Scipy Library is 

used to find the maxima and minima of the function. The 50000 dataset was trained on two random 

states and 250000 and 500000 datasets were trained on a single random state. Feature scaling was 

applied to inputs to standardize them at the beginning of the code.  

DEVELOPMENT OF ANN CODE AND TRAINING 

 

 
Importing Libraries 

Import Numpy, Math,Pandas and Scipy.optimize 

 

 
Generating input values 

Create 2 arrays for μw and Cw consisting of uniformly generated values using 
numpy.random.uniform() function. The range of values is also specified here. 

 

 
Defining The Function 

Define the Transcendental ΔP function, f(x) by writing equation in the equation in the form 
f(x)= 0  

 

 

Solving the Equation  

Use a for loop to solve the ΔP equation for all the ( μw, Cw ) datapoints using fsolve function 
from Scipy.optimize(). Store the results in an array using append(). The initial guess (30 KPa) 

and estimated error  (10-8) are specified here. 

 

 
Printing values and confirming 

Print and check the shapes of all arrays. Print ΔP array using np.hstack() function. Convert ΔP 
array into  into a list using to_list () function. 

 

 

Checking the solution array  
Use another for loop and solve the equation for ΔP list obtained by solving the equation. Store 
the results in an array using append(). This should have zeroes or very small values(not more 

than the estimated error. 
 

 
Saving the data in excel 

Convert μw, Cw and ΔP arrays into dataframes using DataFrame() function from Pandas and 
then convert that dataframe to excel file using df.to_excel () function.  
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The ANN code used in this research was generated using Python 3 programming language.  

Sophisticated machine learning libraries and frameworks like TensorFlow (version 2.1.0), Keras 

(version2.3.1) and Scikit-learn (version 0.23.2) were used. This resulted in faster vectorized code 

without involving any ‘for’ loops. First layer consisted of μw and Cw values as input parameters 

to the ANN. Feature scaling method was applied so that the large value of one input doesn’t 

overshadow the other input.  

Different combinations of hyperparameters like number of layers, number of units in each layer 

and type of activation functions were tested on sample datasets. Number of hidden layers varied 

from 1 to 5. “tanh” and “sigmoid” and ‘’ReLU” activation functions were used for the hidden units 

while only the “ReLU” function was used in the output layer as it outputs only positive values and 

pressure drop can’t be negative in our case. Different optimizers namely Adam, Adagrad, Adamax 

and Stochastic Gradient Descent are used and selected depending upon their suitability to different 

networks; The Mean Square Error was the cost function to be minimized.  

Mini Batch sizes were 1024, 32768 and 131072 for 50000, 250000, 500000 samples respectively. 

The codes were run up to 10000 epochs. Mean absolute percentage error (MAPE), maximum error 

(ME) , explained variance score (EVS) and R2 score were chosen as the metrics to test the accuracy 

of the network. A common test set was assigned for a random state in an n- sample dataset so that 

the ANNs are tested on the same values of friction factor. These many different combinations of 

network architectures on three different datasets were tried as there is no single established 

procedure for choosing these parameters and it comes only by prior experience. Hence, the 

exercise was also important to get a complete idea of the problem. The Python code is written in 

a Jupyter notebook for the s20-s20-r1 network with ‘adam’ optimizer. 

TESTING NETWORK AND TUNING HYPERPARAMETERS 
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Choice of optimization algorithm, number of hidden layers, number of neurons and activation 

function in each hidden layer were the hyperparameters considered in this problem. The approach 

used to tune hyperparameters was similar to coarse-to-fine sampling scheme. After getting a rough 

idea of the problem by trying a number of randomly chosen networks for an n-sample dataset 

(coarse sampling), the hyperparameters were tuned in the region where previously the results were 

more accurate. 

RESULTS AND DISCUSSIONS 

Initially 19 random ANN architectures were trained on the dataset with 50000 data points (50000 

series) on random state 1. The maximum and minimum values in the test set of this shuffling state 

were 44756.4048731213 Pa and 13020.3262892055 Pa respectively (Uniformly Distributed data). 

However, the maxima and minima found using the python code was 12631.94700467 Pa and 

44768.99578927 Pa respectively. Hence the minima ranges had some considerable difference. It 

was decided that any value below 12 KPa would be enough to ensure that the minimum ΔP range 

has been covered well. Hence after trying 13 random architectures, the random state was changed 

to 2. Now the maximum and minimum were 44741.28956 and 12.7430722390717 respectively, 

which are quite close to the extrema. The architectures took 4-13 minutes to train for 10000 

iterations and a coarse –to-fine sampling scheme was used to arrive at the result. The Results of 

the ANN architectures tried on 50000 samples dataset is shown in table-1. 

Table 1. The Results of the ANN architectures tried on 50000 samples dataset 

S.N

o. 
H1 H2 H3 H4 O 

MAPE 

(%) 
ME EVS R2 Score Optimizer 

1 s6    r1 
0.109587

650 

0.5943666537

14359 

0.9999606052

51383 

0.999960

60518313

8 

adamax 

2 t16    r1 
0.029315

792 

0.1684872236

53771 

0.9999975278

31089 

0.999997

51895473

3 

sgd 
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3 
r7

8 
   r1 

0.016169

026 

0.0667358477

45122 

0.9999993180

11189 

0.999999

31658370

9 

adamax 

4 r8 
r6

0 
  r1 

2.738562

300 

7.0791323410

53910 

0.9832479429

46736 

0.983215

47766939

8 

adagrad 

5 s7 s7   r1 
0.010210

403 

0.0354610486

85370 

0.9999998074

57110 

0.999999

77946635

4 

adam 

6 t16 
s3

2 
  r1 

0.051914

003 

0.1370782283

19985 

0.9999952043

33510 

0.999992

17277716

9 

sgd 

7 t16 
t2

4 
t2  r1 

0.554563

460 

0.6412132099

37234 

0.9997415458

80185 

0.999278

84419578

9 

sgd 

8 s2 s4 s2  r1 
0.057990

562 

0.1543696249

41962 

0.9999937983

06446 

0.999993

75589317

5 

adamax 

9 
r2

5 

r8

7 
r27  r1 

0.756012

140 

3.4158599698

07670 

0.9980685410

25304 

0.998068

30337987

3 

adagrad 

10 s4 s4 s4 s4 r1 
0.098860

730 

0.3379748093

15632 

0.9999825286

39600 

0.999982

10280978

7 

adamax 

11 t3 t6 t3 t6 r1 
0.043891

046 

0.1595385300

18757 

0.9999969630

05556 

0.999996

08105820

2 

adam 

12 
r7

8 
   r1 

0.020882

930 

0.0522091710

97930 

0.9999989754

99467 

0.999998

96751993

8 

adamax 

13 
r1

00 
   r1 

0.014794

015 

0.0526681979

03813 

0.9999995694

49065 

0.999999

56653359

9 

adamax 

14 s7 s7   r1 
0.023538

800 

0.0877666577

00946 

0.9999989429

76857 

0.999998

89322732

4 

adamax 

15 
s1

0 

s1

0 
  r1 

0.005668

796 

0.0308192099

02900 

0.9999999375

65604 

0.999999

92856509

3 

adam 

16 
s2

0 

s2

0 
  r1 

0 . 00408

7003 

0.01 7768878

748235 

0.9999999623

35078 

0.999999

96022651 
adam 

17 r5 t6 s5  r1 
0.026617

197 

0.0953850762

36795 

0.9999986546

20514 

0.999998

61090146

2 

adam 

18 s7 t6 s7  r1 
0.016977

996 

0.0629005620

97845 

0.9999995830

86981 

0.999999

42837969

1 

adamax 

19 t10 
r2

0 
t10 r20 r1 

0.010500

674 

0.0290648614

47198 

0.9999997718

62608 

0.999999

75692402

4 

adamax 
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where, in columns H heading represents the hidden layer number, O is for output layer. Optimizer 

used is given in the last column. ‘t’, ‘s’ and ‘r’ imply tanh, Sigmoid and ReLU activation functions 

respectively. The number of units in the corresponding layer is also given with the letter denoting 

function (for a layer denoted as t4 means that it has four neurons/ hidden units and the activation 

function for all those four units is tanh. Together many such layers will make a complete ANN, 

having notations like t10-r20-t10-r20-r1), whereas each row represents one ANN architecture.  

In the dataset 2 with 250000 data points, instead of trying different random states, the test set was 

increased so that there are sufficient numbers of data points in any random state that the whole 

range of pressure drop is covered. Which means that the highest (44.7578432453543 kPa) and 

lowest (12.8115912238585 kPa) values of test set in random state 1 are close to the maxima and 

minima of pressure drop function found using the python code, which were 12631.94700467 Pa 

and 44768.99578927 Pa respectively. Here in the next table-2, 21 networks were tested which took 

9-150 minutes to run 10000 iterations. The system time depends on a lot of factors impacting 

system usage and hence was not considered. Also, here we have to train the network only once, 

i.e., the input data is not dynamic. Once trained, there will be no need to change the input dataset. 

Table 2. The Results of the ANN architectures tried on 250000 samples dataset 

S.N

o. 

H1 H2 H3 H4 H5 Q MAPE 

(%) 

ME EVS R2 Score Optimizer 

1 s28         r1 0.255051

100 

1.91673978

7400200 

0.9997748

39282203 

0.999774

80090089

7 

sgd 

2 r135         r1 0.012030

075 

0.07362198

1973961 

0.9999995

90661847 

0.999999

59028724

6 

 adamax 

3 t76         r1 0.027280

215 

0.27483686

3816219 

0.9999968

03232912 

0.999996

80055887

4 

 adamax 

4 s15 s1

5 

      r1 0.012559

166 

0.10556730

2048640 

0.9999996

34455471 

0.999999

63443103

3 

 adamax 

5  r32 r44       r1 0.174442

200 

0.54931196

1472469 

0.9999835

37182826 

0.999947

40486012

2 

 sgd 
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6 t24 t28       r1 26.77886

0000 

22.8011114

49089600 

0.1237981

71476729 

-

1.090427

78928087

0 

 adagrad 

7 s10 s1

0 

      r1 0.013191

713 

0.09200605

3269344 

0.9999996

03141647 

0.999999

58834004

8 

 adam 

8 s15 s1

6 

s15     r1 0.020294

227 

0.09955398

6407594 

0.9999992

86417734 

0.999999

15871724

3 

 adam 

9 t9 t8 t12     r1 0.014065

002 

0.03924638

5717629 

0.9999997

5806l853 

0.999999

61044206

7 

 adam 

10 r6 r6 r6     r1 0.081889

670 

0.43102582

8659969 

0.9999799

42760884 

0.999979

23425933

8 

 adam 

11 r4 s9 t4     r1 0.035440

434 

0.27440580

3025203 

0.9999974

57224921 

0.999997

27273851

1 

 adamax 

12 s6 s6 s6 s6   r1 0.036697

257 

0.13507741

0194100 

0.9999976

74623557 

0.999997

64824847

2 

 adam 

13 t9 t7 t9 t7   r1 0.020655

535 

0.04789551

2284143 

0.9999992

16488209 

0.999999

21647254

0 

 adamax 

14 t16 s2

4 

t16 s24   r1 0.016188

933 

0.055l6998

3722047 

0.9999995

16929888 

0.999999

49597807

2 

 adamax 

15 t29 t29 t29 t29 t29 r1 0.007262

473 

0.05278690

2569457 

0.9999998

59424823 

0.999999

85870690

1 

 adamax 

16 r45 r25 r45 r25   r1 0.035377

740 

0.26496442

7292781 

0.9999951

31642068 

0.999995l

01975695 

 adamax 

17 s6 s8 s6 s8 s6 r1 0.016293

276 

0.27003471

4557008 

0.9999990

57384543 

0.999999

05733829

8 

 adam 

18 s32 s3

2 

s32 s32   r1 0.014759

447 

0.05179588

3990602 

0.9999995

04152263 

0.999999

50221933

3 

 adamax 

19 s20 s2

0 

s20 s20 s20 r1 0.038427

014 

0.16096393

6663941 

0.9999989

18071426 

0.999997

31982752

8 

 adam 

20 t40 t40 t40 t40   r1 0.004961

211 

0.03674720

6535928 

0.9999999

41976250 

0.999999

94187083

4 

 adamax 

21 s60 s6

0 

s60 s60   r1 0.069739

390 

0.14243844

5701024 

0.9999989

19268325 

0.999993

31064267

2 

 adam 

 

In the dataset 3 with 500000 data points, a single random state was tried to cover the whole range 

of pressure drop values due to a large number of values in the test set (25000). Hence, 475000 
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values were used to train the networks. The maximum and minimum values of the test set were 

44.7642095277823 kPa and 12.9147189854906 kPa respectively, which are close to the extrema 

of the pressure drop function, which are 12631.94700467 Pa and 44768.99578927 Pa. Overall 25 

networks were tried with a maximum number of layers 5 this time, and the networks took 22 -293 

minutes to run. The results are shown in table-3. 

Table 3. The Results of the ANN architectures tried on 500000 samples dataset 

S.N

o. 

H1 H2 H3 H4 H5 Q MAPE 

(%) 

ME EVS R2 Score Optimizer 

1 s88         r1 0.018028

073 

0.28380049

9593645 

0.99999858

6119223 

0.999998

58094402

3 

adamax 

2 r150         r1 0.553831

640 

1.17216719

8812390 

0.99992377

5759280 

0.999508

59473574

0 

sgd 

3 t78         r1 0.043879

500 

0.39170302

6449114 

0.99999384

9159885 

0.999993

79719540

2 

adamax 

4 t22 t18       r1 0.007865

883 

0.05048217

0736224 

0.99999989

2641000 

0.999999

86457846

2 

adamax 

5 r33 r44       r1 0.032210

420 

0.29091490

9994036 

0.99999526

4232565 

0.999995

17604647

3 

adamax 

6 s15 t20       r1 0.009629

170 

0.08534850

3744036 

0.99999981

4422981 

0.999999

79741234

0 

adamax 

7 s60 t70       r1 0.009306

306 

0.09725035

9212786 

0.99999976

7278212 

0.999999

76674693

6 

adamax 

8 t40 t30       r1 0.004952

371 

0.04688872

5912005 

0.99999994

2181792 

0.999999

93954667

3 

adamax 

9 t60 t50       r1 0.005106

382 

0.05430449

7396380 

0.99999993

1553378 

0.999999

92766188

1 

adamax 

10 t50 t40       r1 0.004023

054 

0.03224028

8412005 

0.99999995

6925613 

0.999999

95692426

5 

adamax 

11 s8 t10 s8     r1 0.019870

633 

0.11286010

0423723 

0.99999917

3075410 

0.999999

16938935

8 

adam 

12 t6 t6 t6     r1 0.453410

630 

0.41962176

5978121 

0.99993927

0301347 

0.999700

18114381

1 

sgd 

13 t55 r77 t45     r1 0.011517

203 

0.05676116

2435443 

0.99999972

4936100 

0.999999

72458130

2 

adamax 
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14 r44 r44 r44     r1 2.361609

500 

7.98251189

4857310 

0.98531793

9240120 

0.985306

39933786

2 

adagrad 

15 t40 t40 t40 t40   r1 0.039482

567 

0.07185210

4818255 

0.99999865

7544442 

0.999997

78969880

8 

adam 

16 r26 r42 r42 r26   r1 0.056255

040 

0.31664122

8353411 

0.99998820

4428046 

0.999988

17367592

5 

adamax 

17 s32 s16 s32 s16   r1 0.060928

680 

0.22635805

6135346 

0.99999316

7983045 

0.999991

66982875

7 

adam 

18 s57 s55 s57 s55   r1 0.032887

783 

0.20141448

2747942 

0.99999754

9456732 

0.999997

54785843

3 

adamax 

19 r8 s16 t32 r64   r1 0.078608

215 

0.46723021

7611223 

0.99998578

4484047 

0.999983

35707793

2 

adam 

20 t29 t32 t29 t29 t32 r1 0.011806

865 

0.04873166

4995685 

0.99999969

6509332 

0.999999

69624958

0 

adamax 

21 s16 s18 s16 s18 s16 r1 0.067833

130 

0.17763102

0612885 

0.99999780

7236903 

0.999992

72229220

0 

adam 

22 t70 t70 t70 t70 t70 r1 0.049979

390 

0.07080018

5136626 

0.99999942

3231475 

0.999996

88792144

8 

adamax 

23 s40 s40 s40 s40 s40 r1 0.021841

615 

0.15736925

6086518 

0.99999891

5594956 

0.999998

90670253

0 

adam 

24 t9 t12 t9 t12 t9 r1 0.021615

993 

0.13155974

6419817 

0.99999903

5776699 

0.999999

03261359

1 

adamax 

25 s12 t14 s12 t14 s12 r1 0.160978

930 

0.62359084

3831927 

0.99994815

0656801 

0.999947

94307973

3 

adamax 

 

The best performing network are s20-s20-r1 with ‘adam’ optimizer in dataset 1, t40-t40-t40-t40-

r1 with ‘adamax’ optimizer in dataset 2 and t50-t40-r1 with ‘adamax’ optimizer in dataset 3 in 

terms of all four accuracy metrics, with MAPE particularly being around 0.004%, 0.005% and 

0.004% respectively. Networks which are either too shallow (one hidden layer) or too deep (three, 

four hidden layers) doesnot perform well. Hence it is not always necessary that deeper networks 

will perform better. Second best in terms of MAPE and EVS score are s10-s10-r1 with ‘adam’ 

optimizer, t29-t29-t29-t29-t29-r1 with ‘adamax’ optimizer and in terms of ME, t10-r20-t10-r20-r1 
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with ‘adamax’ optimizer, t9-t8-t12-r1 with ‘adam’ optimizer in dataset 1, dataset 2 respectively. 

In dataset 3 second best is t40-t30-r1 in all four metrics with ‘adamax’ optimizer. In general, 

networks having sigmoid function in all hidden layers with sufficient number of nodes and ‘adam’ 

optimizer in dataset 1, tanh function and ‘adamax’ optimizer in dataset 2 and dataset 3 did better. 

The worst performance in all four metrics is shown by r8-r60-r1 with ‘adagrad’ optimizer, with 

MAPE around 2.74% in dataset 1, t24-t28-r1 with ‘adagrad’ optimizer, with MAPE around 

26.77% in dataset 2 and r44-r44-r44-r1 with ‘adagrad’ optimizer, with MAPE around 2.36% in 

dataset 3. Second worst performance in all four metrics are r25-r87-r27-r1 with ‘adagrad’ 

optimizer with MAPE around 0.76% in dataset 1, s28-r1 with ‘sgd’ optimizer with MAPE around 

0.26% in dataset 2 and r150-r1 with ‘sgd’ optimizer with MAPE around 0.55% in dataset 3. 

After finding the best ANN architecture for each dataset, it is also important to see how these 

networks perform when trained on another dataset. The best architectures from each dataset were 

tested with another datasets. 

CONCLUSIONS 

The performance shown by architectures from all datasets adam, adamax optimizers with tanh, 

sigmoid functions for the hidden layer and ‘ReLU’ only for output layer are recommended and 

also two to four hidden layers are enough with number of neurons being 10 to 50. 
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