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ABSTRACT 

 Amplitude and rate saturations are one of the problems of flight control systems which puts 

the closed-loop system stability at risk. These nonlinear elements are mainly responsible for the 

type II pilot induces oscillations (PIOs). In this paper, a robust unconstrained generalized 

predictive controller (GPC) with a self-tuning regulator (STR) structure is designed in the 

frequency domain to prevent the type II PIOs. Furthermore, the sensitivity function is used for 

tuning the GPC parameters and investigating the stability and robustness of the system against the 

uncertainties of the controller parameters. To get better results, a constrained GPC is further 

designed considering the rate, amplitude, and both saturations. Rate and amplitude saturations are 

considered as input constraints in the design stage. Finally, the performances of the proposed 

controllers are compared to that of a PID controller. 
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INTRODUCTION 

The actuator, one of the components of control loops of an aircraft, plays a prominent role in 

the flight system. However, the actuator saturations, that are amplitude and rate saturations existing 

in the real system as nonlinear elements, bring about some limitations for the aircraft (Welsch and 

Fichter, 2020, Yuan et al., 2020). Rate and amplitude saturations limit the system to execute 

commands and reject disturbances. Due to the saturation of the actuator, the output of the controller 

and the input of system may differ. Thus, the control action is no longer able to guide the system 

as its states cannot be properly updated, leading to system malfunction. 

The pilot inducted oscillations (PIOs) in modern flight control systems have deep roots in 

actuators’ saturation (Bucolo et al., 2020). These oscillations are classified in type II of PIO, which 

is a quasi-linear oscillation with some nonlinear factors of the pilot-aircraft system (Jones, 2020). 

PIO is recognized as the instability in closed-loop system, including aircraft-pilot loop, which 

frequently occurs when the pilot is unable to adapt to the dynamics of the vehicle during high-

performance flight operation. PIO occurs when there is 180 degrees of phase difference between 

aircraft’s behavior or state, angular velocity, or normal acceleration and pilot’s control inputs.  

PIO is classified into three main categories: 

1- Type I PIO: Linear oscillations of the pilot-aircraft system.  

2- Type II PIO: quasi-linear oscillations with nonlinear elements of the pilot-aircraft system.  

The activation of rate or amplitude saturation is mainly responsible for this type of PIO. 

3- Type III PIO: non-linear and unstable oscillations of the pilot-aircraft system. 

Model Predictive Control (MPC) methods can be employed to tackle a wide diversity of 

control problems. In (Galuppini et al., 2018), the authors investigated actuator nonlinearities such 

as saturation and dead-zone in the control system and introduced two methods of Hybrid MPC and 
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standard MPC to solve this problem. In (Zaychik and Miller, 2019), the authors investigated the 

complex nonlinear behavior of a flight control system in a simulator of flight system at NASA 

Research Center. Introspective Control System (ICS) as a form of MPC is presented. In (Peng et 

al., 2017), a fast MPC with considering actuator saturation is designed for large-scale structures 

and compared with the standard MPC. In (Kassaeiyan et al., 2019) two methods of Linear MPC 

and Nonlinear MPC are designed to control the path tracking of the robotic system with 

considering the saturation range of the actuator. In (Song et al., 2016), an H2/H∞ distributed robust 

MPC is proposed for uncertain systems, and both actuator rate saturation and packet loss were 

considered. In these researches, different methods of MPC have been proposed to deal with 

saturation, but only some of them have precisely investigated the PIO phenomenon using MPC. 

In addition, the use of Generalized Predictive Control (GPC) has received less attention. The 

mentioned MPC methods do not investigate the uncertainty of MPC parameters. Furthermore, a 

specific method for tuning these parameters is not stated and most of them are based on trial and 

error. All of these points have been the impetus for this research. 

This paper aims to propose a suitable generalized predictive controller to address the 

aforementioned problems. First, a robust unconstrained GPC with STR structure is proposed in 

the frequency domain. Then, to improve the results, the non-linear elements of actuator saturation 

are considered as input constraints, and the GPC is designed, first by considering the rate saturation 

and eventually with both rate and amplitude saturation. Finally, the designed controllers are 

compared to the PID controller.  

MATHEMATICAL MODEL OF THE SYSTEM 

In (Wenqian et al., 2010) a model for the flight nominal conditions of T-33 jet is presented.  
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in which τ = 0.8 s, ωs = 4.9 rad/s, ζs = 0.7, q and δe are the pitch rate and the deflection of elevator.  

The control block is depicted in Figure 1. As one can see, it includes the rate and amplitude 

limit saturation, in which 𝑢′′ is the control input to the actuator and ωa = 20.2 (rad/s) is the cutoff 

frequency. Upper and lower rate limits occur at 10 deg/s and -10 deg/s, respectively. Moreover, 

the upper and lower amplitude saturation limits occur at 10 deg and -10 deg, respectively. 

 

Figure1. Control block diagram. 

GENERALIZED PREDICTIVE CONTROL 

The GPC was designed by Clark et al. (Clarke et al., 1987), and it has turned into one of the 

well-known and favorite methods of predictive control in industry and research. This method can 

be used to control an unstable and non-minimum phase systems.  

This paper uses the CARIMA model (Eq. 2), which is the basis for GPC: 

1 d 1 1
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where, y(t), u(t), and d represent the system output and input and delay time, respectively. e(t) 

denotes the white noise with zero mean, and A, B, and T are polynomials of backward shift 

actuator. 

The following cost function: 

   
u 2

1

N N
2 2

1 2 u d

j 1 j N

ˆJ(N , N , N ) r( j) u(t j 1) q( j) y(t j | t) y (t j)
 

           (3) 

should be minimized, ŷ (t + jǀt) is j step ahead prediction of the plant output. N1, N2, and Nu are the 

minimum prediction horizon, maximum prediction horizon, and the control horizon. q(j) and r(j) 

are the weighting sequences; defined as follows: 

2i

1 1 2

2 j

u

q(i) i N , N 1, , N

r( j) j 1,2, , N





   

  
 (4) 

yd (t + j) is the future reference trajectory obtained by filtering the ideal reference trajectory r 

(t + j). 

1. GPC with STR Structure 

Now, it is turn to design a GPC controller with an STR structure (Camacho and Alba, 2013), 

its closed-loop relations must be converted to a block diagram of Figure 2, where R and S are 

polynomials.  

 

Figure 2. The GPC with the STR structure with noise and disturbance. 
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After some manipulations, one can end up with the following control rule: 

1 1

1 1

T(z ) S(z )
u(t) w(t) y(t)

R(z ) R(z )

 

 
     (5) 

To find the optimal value of the cost function in (3), we use the Diophantine equation in (6) to 

optimally predict ŷ (t + j), as follows: 

1 2

1 1 1 1 j

j j

N  j  N

T(z ) A(z )E (z ) F (z )z
    

 

  

 

 (6) 

Another Diophantine equation is defined as follows: 

1 1 1 1 1 j

j j j
E (z )B(z ) T(z )H (z ) I (z )z

     
    (7) 

If T(z-1) = 1, then the best predictions for future outputs are as follows: 

1

j
ŷ(t j) u(t j)H (z ) f (t j)


        (8) 

where f is the system’s free response, as follows: 

1 1

j j
f (t j) I (z ) u(t 1) F (z )y(t)

 
       (9) 

Future control signals are obtained as follows: 

T 1 T

d d
U (G QG R) G Q(Y f ) K(Y f )


        (10) 

The first control signal is obtained using the first row of the K: 

2

1

1 1N

j j 1

1 d j 1 1

j N

F (z ) I (z )
u(t) K (Y f ) k [w(t j) y(t) u(t)z ]

T(z ) T(z )

 



 



         (11) 

S(q-1) and R(q-1) polynomials are obtained by comparing Eqs. (11) and (5) as follows: 
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y(t) is obtained by replacing the calculated control signal in the closed-loop relation, as follows: 

1

1 1

BTz TR
y(t) w(t) e(t)

RA BSz RA BSz



 
 

   
  (13) 

2. Robustness Analysis of GPC 

When it comes to control engineering, it is of crucial importance to address the stability issues 

of the control system as well as its robustness to system uncertainties (Naeijian and Khosravi, 

2020, Bijani and Khosravi, 2018). In this section, the sensitivity function is used for tuning the 

GPC parameters and investigating the robustness and stability of the system against the 

uncertainties of the controller parameters. It worths mentioning that for the phase margin and gain 

margin greater or equal to 29 degrees and 6 dB, respectively, and a delay margin equal to the 

sampling time (Δτ = Ts), the system has good robustness while its stability is guaranteed (Landau, 

1998). Therefore, using the sensitivity functions, the bounds are designed in such a way that these 

cases are established. 

Assuming that the noise and turbulence of the output are entered in the control loop as Figure 

2, one can write the closed-loop equations as follows: 

1 1

1 1 1

BTz AR BSz
y(t) w(t) d(t) n(t)

RA BSz RA BSz RA BSz

 

  


  

     
  (14) 

    where d(t) is the output disturbance and n(t) is the output noise. The transfer function of d(t) to 

y(t), which is the transfer function of output sensitivity to output disturbance, is defined as follows: 
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The transfer function of n(t) to y(t) is the sensitivity of the system output to noise: 

n
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To form the robust bounds, a concept called modulus margin, or ΔM is used which is obtained 

by the minimum distance between the open-loop transfer function G(z-1) and the point (−1, 0). 

   
d d
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1 1
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The following relations exist between ΔM, phase margin (Δϕ), and gain margin, (ΔG): 

1 M
G , 2arcsin( ) M

1 M 2


     

 
  (18) 

Given the above equations, the value of ΔM must be greater than or equal to 0.5 to have the 

desired value of gain and phase margins. 

There is another concept that shows the consistency of the system in the face of uncertainty in 

delay, which is called delay margin. 

The delay margin, or Δτ is equal to the maximum amount of delay that can be added to a open-

loop system while system can remain stable. The following equation exists for the delay margin: 

cr


 


  (19) 

where Δϕ is the phase margin and 𝜔𝑐𝑟 is the crossover frequency. 

Let us consider two systems 
1

B
G

A
 and 

1

2

Bz
G

A



 with a unit delay. As a unit delay is 

desirable for the system, the following relations are established between the two systems: 
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By replacing 𝐺1 and 𝐺2 we will have: 
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And as a result, using the equation 1 1
ynyd

S (z ) S (z ) 1   , one can conclude that: 

dy1 1

1 1
1 S 1

1 z 1 z 
   

 
  (23) 

So considering (23) and: 

d

1

y
S (z ) 2




   (24) 

the GPC parameters must be selected so that 
d

1

y
S (z )


 and 

n

1

y
S (z )


 can remain within the above 

bounds. It is obvious from Figure 3 that for the parameters in Table 1, 
d

1

y
S (z )


 and 

n

1

y
S (z )


 are 

placed inside the robust bounds, and the system has good robustness. 

Table 1. Simulation Parameters  

Parameter Value 

α 0.5 

N1 1 

N2 20 

Nu 10 
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(a) Output sensitivity function to disturbance bounds. 

 

(b) Output sensitivity function to noise bounds. 

Figure 3. Robust bounds for β = 1. 

CONSTRAINED GPC WITH RATE SATURATION 

Considering the rate saturation, the control signal (continuous-time) must be in the following 

range: 

min maxu u u    (25) 

where 
max

u 10 / s  and 
min

u 10 / s   . In discrete time, one can write: 
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where: 

max max s min min su u T , u u T      (27) 

One can re-write (26) as follows: 

u
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N max
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I U
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UI
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  (28) 

where ΔU(t) includes the increments in future control signals as follows: 

u

u(t)

u(t 1)

u(t 2)

u

t

(t N

)

1)

U(






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 
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

 
 
 
 
 
 
  

  (29) 

Also, 𝛥𝑈𝑚𝑎𝑥 and 𝛥𝑈𝑚𝑖𝑛 are the vectors with 𝑁𝑢 entries. 

CONSTRAINED GPC WITH RATE AND AMPLITUDE SATURATION 

Now, considering the amplitude saturation, the control signal (continuous-time) must be in 

the following range: 

min max

min max

min u max

u u(t) u

u u(t 1) u

u u(t N 1) u

 

  

   

  (30) 

Therefore, the constraints on the amplitude can be formulated as: 
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which can be written as follows: 

 
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U US
U(t)

U US





  
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 (32) 

where 𝑈𝑚𝑎𝑥 and 𝑈𝑚𝑖𝑛 are vectors with 𝑁𝑢 entries. 

The cost function is as follows: 

T T

d dJ ( UG f Y ) Q( UG f Y ) U R U           (33) 

We can convert the above cost function into standard quadratic programming (QP): 

T T

0

1
J U(t) H U(t) c U(t) c

2
       (34) 

where by defining 
d

Y f E , H, c, and 𝑐0 are as follows: 

 T T T

0H 2 G QG R , c 2G QE , c E QE      (35) 

At any sampling time, the cost function (34) should be solved considering constraints (28) and 

(32). This is done by using the QP method in MATLAB environment. 

SIMULATION RESULTS 

In this section, the simulations of all three GPCs as well as a PID controller are shown and 

compared with each other to show the accuracy of the design. The PID controller is designed by 

classical methods using gain and phase margin. The performances of the above controllers are 

shown in Figure 4. It is obvious that the output tracking is better performed in the GPCs as 

compared to PID controller. It can also be seen that the constrained GPC with the amplitude and 

rate saturation outperforms other controllers in terms of reference tracking. 
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Figure 4. The output responses of the robust unconstrained GPC, CGPC, and PID. 

The control signals of the above controllers are shown in Figure 5, where one can see that the 

value of the control signal in the CGPC Rate Limit controller does not exceed 8  degrees. In both 

Rate Limit CGPC and Rate and Amp. Limit CGPC, the control commands are issued at all times 

so that the rate does not exceed the designer’s desired value (which is constrained at 10 / s here). 

In this figure, again, the constrained GPC has shown more favorable behavior by considering the 

saturation of the rate and amplitude.  

 

Figure 5. The control action of the robust unconstrained GPC, CGPC, and PID. 
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As Figure 5 shows, the rate and amplitude limit GPC performs better than other controllers 

because it penalizes both the rate and amplitude of the control action. Also, the rate of the control 

signal is shown in Figure 6 that constrained GPC has less control effort. 

 

 

Figure 6. The rate of control action of the robust unconstrained GPC, CGPC, and PID. 

According to Figure 6, the performance of constrained GPCs is better than other controllers. 

CONCLUSION 

In this paper, a robust unconstrained GPC was proposed. It used a STR structure to prevent the 

type II PIOs resulted from actuators’ rate and amplitude saturation. Furthermore, the tuning of 

GPC weights and parameters is done in the frequency domain using the robust control approach. 

A constrained GPC including the rate, amplitude, or both saturation types as input constraints in 

the design stage was also designed. The results showed that the constrained GPC that considers 

the rate and amplitude saturation provided a far better performance as compared to other 

controllers. 
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