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ABSTRACT 

The rapid increase in the elderly population and chronic diseases has increased disability worldwide. This 
has led researchers and engineers to create tools and technologies that allow health caregivers, physical trainers, 
and health policymakers to understand, measure, and treat people with disabilities. In addition, artificial 
intelligence techniques have been used to improve the performance of these technologies. This article presents the 
development of a novel classifier that utilizes machine learning (ML) algorithms and biomechanical signals to 
predict a subject's International Physical Activity Questionnaire (IPAQ) and Fall Efficacy Scale (FES) scores. 
Three ML algorithms were applied: K-nearest neighbors (KNN), decision tree, and support vector machine (SVM). 
The results showed classification accuracies of over 95%, 99%, and 89%, respectively, and validated the 
correlation between qualitative scales and biomechanical responses in balance training. This classifier is an 
innovative tool that helps professionals adjust and improve their physical training programs. 

Keywords: Postural Sway; Physical Activity; Support Vector Machine; K-Nearest Neighbors; Decision Tree. 

 
INTRODUCTION 

According to the World Health Organization (WHO), more than one billion people worldwide have some 
type of disability. This is a growing figure, attributed to the aging of the population and the increase in chronic 
diseases (“OMS | Discapacidad y rehabilitación,” n.d.). Balance and postural control are among the main skills 
affected by aging, neuromotor diseases, and trauma at the motor level. 

However, diagnosis, training, and balance rehabilitation processes use evaluation methodologies that are 
usually based on qualitative tests. Tests such as the Berg Balance Scale (Brouwer, Kal, van der Kamp, & Houdijk, 
2019), IPAQ (Craig et al., 2003), and FES (Hauer et al., 2010) are applied by specialized personnel. Nonetheless, 
the results tend to be subjective and depend on the evaluators’ experience. 

 Novel training programs have been developed to obtain more efficient and reliable processes (Betker, 
Szturm, & Moussavi, 2005; Fitzgerald, Trakarnratanakul, Dunne, Smyth, & Caulfield, 2008; Van Diest, Lamoth, 
Stegenga, Verkerke, & Postema, 2013), including assistive robotics technologies (Kharboutly et al., 2015; Patanè 
& Cappa, 2011; Rastegarpanah, Saadat, Borboni, & Stolkin, 2017; Schouten, Boonstra, Nieuwenhuis, Campfens, 
& Van Der Kooij, 2011). However, the benefits, advantages, and disadvantages of these tools for physical training 
and rehabilitation procedures are not yet clear (Gui, Tan, Liu, & Zhang, 2020; Jakob et al., 2018; Zhang et al., 
2017). Due to this, (Agarwal & Deshpande, 2019; Franceschini et al., 2020; Rodgers et al., 2019; Stinear, Lang, 
Zeiler, & Byblow, 2020; Yozbatiran & Francisco, 2019) support the idea of the need for better procedures and 
protocols, which helps to clarify the impact that robotics brings to this type of task and mitigates the problem of 
subjectivity in these procedures. 
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In recent years, various artificial intelligence and machine learning techniques have been implemented in 
topics related to the classification of levels of physical activity and activities of daily living (Pires, Garcia, Pombo, 
Flórez-Revuelta, & Spinsante, 2017), detection of falls  (Sun, Hsieh, & Sosnoff, 2019; Yang & Gao, 2020), 
autonomous training, execution of tasks without the supervision of an expert (Jiao, Wu, Bie, Umek, & Kos, 2018), 
detection of emotions when executing physical exercises (Rincon, Costa, Carrascosa, Novais, & Julian, 2019), and 
methodologies of assisted training with haptic feedback (Bao, Klatt, Whitney, Sienko, & Wiens, 2019a). Recently, 
these applications have used direct measurements such as electrocardiogram (ECG) signals(Allam, Samantray, & 
Ari, 2020; Patro, Jaya Prakash, Jayamanmadha Rao, & Rajesh Kumar, 2020; Prakash & Ari, 2019b, 2019a), 
electroencephalograms (EEG)(Venkata Phanikrishna, Jaya Prakash, & Suchismitha, 2021), and COP to classify, 
monitor, and assist training and rehabilitation programs to improve user performance. 

Based on the state-of-the-art and current trends in intelligence and machine learning algorithms, this 
article presents the development of an automatic classification system for the IPAQ and FES that utilizes postural 
sway signals from an existing database (Santos & Duarte, 2016) and machine learning. The hypothesis proposes 
that it is possible to determine the level of IPAQ and FES and even detect the characteristics of the surface on 
which the training is carried out (stable and unstable surfaces) through the quantitative analysis of signals typical 
of the COP of a user and anthropometric measurements. 

This study primarily focuses on the development of a classifier system. The features extracted from 
stabilometric signals and anthropometric measurements were selected and processed. Continuing with the design 
and choice of optimal parameters of the classifiers commonly used in balance evaluation tasks, KNN (Ahmed, 
Mehmood, Nadeem, Mehmood, & Rizwan, 2017; Liang, Liu, Li, & Zhao, 2019), decision trees (Leu, Ko, Lin, 
Susanto, & Yu, 2017) , and SVM (Bao et al., 2019a) using concurrent algorithms. The selected algorithms present 
several advantages. For instance, SVM is effective in high-dimensional space tasks, even in cases where the 
number of dimensions is greater than the number of samples. KNN is a non-parametric method that is helpful in 
tasks where decision boundaries are not regular, and decision trees are perfect for handling multi-output problems 
(Pedregosa et al., 2011). Finally, the precision, F1-score, and recall results of the three techniques are presented. 

 
 

MATERIALS AND METHODS 

For the design of the physical activity classifier, the database described by (Santos & Duarte, 2016),  
which consisted of information from 1,930 tests performed by 163 subjects, was used. For data capture, the 
participants maintained a stationary standing position for 60 s in four different situations: eyes open or closed, 
while standing on a stable or unstable surface. Each condition was tested in triplicates. The experimental setup is 
illustrated in Fig. 1. 

 

Figure 1. Experimental Setup 
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Eight different signals were captured	through a force platform:  

1. Force [N] (x, y, z) 

2. Moment [Nm]  (x, y, z) 

3. Center-of-Pressure [cm] (x,y) 

The database includes the results of qualitative evaluations of physical activity indices and participant balance. 

• Short Falls Efficacy Scale International  

• International Physical Activity  

• Trail Making Test  

• Mini Balance Evaluation Systems Tests 

The classifier only included information corresponding to healthy subjects who did not report any type of 

disability or disease according to the information provided by the researchers. 

 

Signal processing and filtering 

The signals were filtered and processed before the extraction and selection of relevant features. A fifth-
order Butterworth type low pass filter was applied with a cutoff frequency equal to 5 Hz according to (Doyle, 
Hsiao-Wecksler, Ragan, & Rosengren, 2007; Paillard & Noé, 2015). Because it is not known whether the 
acquisition instruments have a constant calibration for each test, the mean signal level of each sample was 
eliminated by subtracting a polynomial of degree six, which models the behavior of each signal. Fig. 2 shows the 
process described above using data from the force on the Y-axis.  

Figure 2. Signal processing 

 

Feature selection 

The features extracted from the signals were obtained from the categories listed in Table 1. These are 
some of the most common methods for analyzing the COP behavior of individuals (Brouwer et al., 2019; Doyle et 
al., 2007; Yamamoto et al., 2015). Kinematic and statistical estimators of each of the database signals and 
anthropometric measurements of the test subjects were applied. 

A total of 85 features, usually determined using postural control and stabilometry analyzers(Paillard & 
Noé, 2015; Yamamoto et al., 2015), were extracted by combining the categories listed in Table 1. The 
measurements included the maximum displacement, maximum frequency, mean amplitude, area of the COP, 
maximum length in each axis of excursion, maximum force in each axis, root mean square in each axis of 
displacement, and mean displacement angle. Anthropometric variables directly involved in the various balance 
mechanisms of the human body were incorporated: body mass index, weight, foot length, and height. 
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Table 1. Feature extraction categories 

Kinematic Estimator Statistical estimator Anthropometric measures 

1.  95% confidence ellipse 
2.  Length of total displacement 
3.  Root mean square of the COP 
4.  Frequency 
5.  Velocity gradient COP 
6.  Maximum displacement per-

axis 
7.  Angle 

8. Mean 
9. Median 
10. Fashion 
11. Standard deviation 
12. Maximum 
13. Minimum 
14. Variance 

15. Body Mass Index 
(BMI) 

16. Height 
17. Weight 
18. Foot length 

Figure 3. 95% confidence ellipse area 

 

Values within the 95% confidence ellipse area were used to eliminate abnormal disturbance values during 
data capture. This estimator was calculated as described (Doyle et al., 2007); and thetime, angles and maximum 
amplitudes corresponding to the area described by the subject's movement were extracted (Fig. 3). 

Physical activity index classifier 
 

To determine the IPAQ, FES, and surface of the experiment, the data were filtered, scaled, and normalized 
using only healthy subjects (without any reported disease). In total, 648 observations with 85 features were used. 
Eighty% of the data was used for the training process, and the remaining 20% was used for algorithm validation. 
Data from the participants were used either in the training or testing sets. 

The techniques selected to design the classifier were KNN, decision trees, and SVM. These algorithms 
are supervised classification techniques that are typically used for state or outcome prediction problems based on 
known and correlated data or features.  

Classification techniques were implemented in Python using the scikit-learn tool (Li & Phung, 2014). For 
their validation and evaluation, the F1-score, precision, and recall of each algorithm (Bao, Klatt, Whitney, Sienko, 
& Wiens, 2019b) were evaluated.  

F1-Score = 2·
Precision · Recall
Precision + Recall

 (1) 
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𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑟𝑢𝑒	𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒	𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒	𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒
 (2) 

𝑅𝑒𝑐𝑎𝑙𝑙 = 	
𝑇𝑟𝑢𝑒	𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒	𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒	𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒
 (3) 

Statistical analyses using ANOVA, F-values, and p-values were performed to select the most relevant 
features for each algorithm. These show the statistical significance of independent versus dependent variables and 
are commonly used in problems where the input data are numeric and the output variable is categorical. 

 

Classification algorithms 

The classification algorithms selected to determine the desired outputs were the KNN, decision trees, and 
SVM. The operating parameters are listed in Table 2.  

Table 2. Classification parameters 

Algorithm Parameters Output 

KNN 
 

• K=1 
• Search algorithm =’kd_tree’ 
• distance =Manhattan distance 

IPAQ 

• K=3 
• Search algorithm =’kd_tree’ 
• distance=Manhattan distance 

FES/ Surface 
 

Decision trees 
• Search criteria =entropy 
• Max Depth=30 
• Random state=32 

IPAQ/ 
FES/ 
Surface 

SVM 
• Penalty parameters (C=110.1) 
• Kernel=’rbf’ 
• Decision function shape=one vs one 

IPAQ/ 
FES/ 
Surface 

 

The parameter K of the KNN estimator was evaluated by studying the resulting precision according to 
the variation of K during 100 epochs. Fig. 4, green margin represents the standard deviation of the accuracy for a 
certain number of neighbors (K). The Manhattan distance parameter showed better results compared to the 
traditional Euclidean distance parameter because this measure works best with larger data. 
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Figure 4. Best K for KNN and standard deviation accuracy 

 

The search criterion for the decision tree was entropy as it aimed to eliminate the heterogeneity of the 
elements located in each section of the tree. A search depth of 30 was used because of the large number of extracted 
features. 

Similar to the KNN algorithm, the SVM estimator is constructed as a multiclass estimator, evaluating 
various combinations of parameters by employing a random search with the RandomizedSearchCV library (Li & 
Phung, 2014). The penalty parameters (C), kernel, and weight of the characteristics were found through random 
optimization according to (“3.2. Tuning the hyper-parameters of an estimator — scikit-learn 0.24.1 
documentation,” n.d.).  

 
 

RESULTS AND DISCUSSION 

The following results were obtained by applying different ML techniques to the test set. The designed 
classifier was first evaluated by considering 85 extracted features. Using (2), the results obtained are shown in 
Table 3. To  improve the results, the search for the main features using ANOVA was implemented according to 
the dependent variable studied, IPAQ (High, Low, and Moderate) and FES (High Concern, Medium Concern, and 
Low Concern). 

Table 3. Precision Before Choosing Main Features 

Algorithm 
Precision Before Feature Importance 

IPAQ FES Surface 

KNN 0.87 0.84 0.98 

Decision Tree 1.00 0.97 0.99 

SVM 0.77 0.73 0.97 
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The biomechanical variables reflected by the COP showed acceptable statistical significance when 
evaluating the IPAQ and type of surface; however, in the evaluation of the FES, the anthropometric features of the 
individual showed greater significance than the biomechanical variables. This validates the initial hypothesis 
regarding the possibility of classifying individuals according to quantitative variables. The Main 5 features of each 
outcome are listed in Table 4. 

 

Table 4. Statistical significance of biomechanical features 

Outcome 

Number of 

Feature 

importance 

Main 5 Biomechanical Features p-value 

IPAQ 53 

Variance of Moment in Z 0.000427 

Variance of Moment in X 0.00105 

RMS of Moment in Z 0.00164 

Standard deviation of Moment in Z 0.001648 

Standard deviation of Moment in X 0.00204 

FES 34 

Maximum Frequency in Z 0.044 

Average Force in X 0.05735 

X-Force Mode 0.06471 

Maximum frequency in X 0.06472 

Variance of Force in X 0.069 

Surface 48 

COP displacement in Y 6.91e-156 

COP length in Y 6.53e-146 

Standard deviation COP in Y 2.611e-145 

RMS COP in Y 2.611e-145 

COP length in X 1.742e-144 

  

Once the most relevant features were identified for each outcome, the precision of the classifier was re-evaluated 

for each technique. Table 5 lists the precision after the feature-importance procedure. 

Table 5. Precision of classifiers after choice of main features 

Algorithm 
Precision After feature Importance 

IPAQ FES Surface 

KNN 0.97 0.92 0.98 

Decision Tree 1.00 1.00 0.97 

SVM 0.85 0.84 0.99 
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The results obtained suggest that the procedure of choice and optimization of parameters for each 
estimator improved the average precision of the KNN classifiers from 89.6% to 95.6% and that of the SVM from 
83.3% to 89.3%, considering their performance in estimating the IPAQ, FES, and Surface.  

The decision tree registered an increase in FES prediction; however, it registered a slight decrease when 
predicting the surface of the experiment. This suggests that the algorithm requires all 85 extracted features to 
achieve the highest precision. 

Finally, (2) and (3) were replaced in (1) to evaluate the F1-Score. The performance results of the classifier 
are listed in Table 6, and the average performance of the classifiers throughout the different validations of the 
IPAQ, FES, and Surface are listed in Table 7. 

 

Table 6. Results of F1 score and Recall of each classifier. 

Algorithm 

F1 Score and Recall After feature Importance 

IPAQ FES Surface 

F1 score recall F1 score recall F1 score recall 

KNN 0.97 0.97 0.91 0.90 0.98 0.98 

Decision Tree 1.00 1.00 1.00 1.00 0.97 0.97 

SVM 0.84 0.83 0.81 0.81 0.99 0.99 

 

 

Table 7. Average performance of classifiers 

 

Average Performance (IPAQ, 

FES, Surface) 
KNN 

Decision 

Tree 
SVM 

Precision 95.6% 99% 89.3% 

F1-score 95.3% 99% 88% 

Recall 95% 99% 87.6% 

 

The average results support the use of COP as a direct measure of physical activity status. In addition, 
these results (over 95 %)  are comparable to those of other studies that applied direct measures of human beings, 
such as ECG (Allam et al., 2020; Prakash & Ari, 2019b) and EEG(Venkata Phanikrishna et al., 2021), and applied 
similar ML techniques with similar average results. Although the tests did not present greater complexity to the 
participants, and the extracted signals did not show easily identifiable patterns of behavior, the classification 
algorithms achieved a high average performance when classifying the various states of the IPAQ and FES.  

Of note, these results are comparable with those of Liao et al.(Liao, Wu, Wei, Chou, & Chang, 2021), 
who used the same database selected for this article to analyze COP signals using a decision tree and empirical 
mode decomposition to predict falls among older adults. This supports the use of ML and COP measures for 
classifying physical activity conditions. 

 Finally, the biomechanical variables extracted from the COP were directly correlated with the type of 
surface on which the standing experiments were performed. Although this was a predictable result, it corroborated 
the design of the classifiers and highlighted the ability of these techniques to identify correlations in features that 
are difficult to observe with the naked eye, even by highly trained personnel (therapists, physiatrists, trainers, etc.). 
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The main limitation of the proposed classifier is related to the database. Although data recollection was stated in 
the study protocol (Santos & Duarte, 2016), there may be biases and confounders that affect the generalizability 
of the data to other populations. 

 
 

CONCLUSION 

The designed classifier uses the COP to classify the IPAQ and FES of subjects with a high accuracy of 
over 95.6%. In addition, a correlation between the qualitative assessment scales (IPAQ and FES) and the features 
of the biomechanical behavior of the human body was found using the feature importance process. Thus, the high 
F1 score, recall, and precision of the designed algorithms validated the application of these techniques to predict 
the IPAQ, FES, and Surface. Moreover, this classifier is an innovative tool to support diagnosis, assessment, and 
physical training processes through a direct measure of the COP. 

This system shows the possibility of using similar solutions to support the diagnosis and evaluation of 
physical activity by specialized personnel. The integration of this classifier with the assistive robotics system for 
balance training presented by (Rivera, Abril, Niño-Suarez, Avilés, & Castillo-Castañeda, 2021), is intended to 
mitigate the problem of subjectivity present in balance evaluation systems, allowing them to adjust the assistance 
parameters of the robotic platform according to the user's performance. 

In future studies we intend to compile a database of healthy subjects during the execution of dynamic 
exercises (e.g., limits of stability and reaching exercises) to determine the correlation between the variables 
extracted by the classifier and the performance of the user in certain balance training. This will help evaluators 
adjust or validate procedures in clinical settings.  
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