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ABSTRACT 

 

In this paper, machining of AZ-91 magnesium alloy was performed in EDM using different 

tool electrode (Cu, CuW and graphite). To perform experiments, Taguchi L18 design of 

experiments was used to reduce experimental runs. EDM process parameters viz. polarity, 

current (Ip), pulse-on-time (Ton), pulse-off-time (Toff), and tool electrode material were 

considered in experimental design to measure the responses (MRR, Ra). Multi-input-single-

output adaptive neuro fuzzy inference system (ANFIS) model was developed to predict 

responses, and predicted results were found in good agreement with the experimental results. 

Maximum MRR (0.089 g/min) was found at positive polarity, Ip-5 A, Ton-50 µs, Toff - 30 µs, 

and Cu tool, and minimum Ra (0.08 µm) was at parameters positive polarity, Ip-4 A, Ton-30 

µs, Toff -20 µs, and Cu tool. Relative errors between experiential results and ANFIS predicted 

results were 1.17 % for MRR, and 2.20 % for Ra. Multi response optimization ANFIS-

VIKOR method was successfully developed and gave compromise solution for MRR and Ra 

corresponding to minimum ANFIS-VIKOR index (Qi). A factor level analysis was performed 

to evaluate optimal factor combination for ANFIS-VIKOR index, and it shows that current 

(Ip) have a significant effect. 
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INTRODUCTION 

 

Electric discharge machine (EDM) is a non-conventional material elimination machine used 

to machine electrically conductive material submerged in dielectric fluid. EDM produced 

complex shapes and structures that cannot be easily machined by conventional machining (Li 

et al., 2003; Li et al., 2002; Amorim et al., 2005). In EDM, a chain of continuous sparks were 

produced when two electrodes comes closer to each other (DiBitonto et al., 1989). During 

machining, controlled process parameters resulted higher surface roughness (Ra), good 

precision, accuracy, small electrode wear, high material removal etc. (Lee et al., 2001; Ho et 

al., 2003). The parameters that affect the machining efficiency and performance are applied 

voltage (V), on-time (Ton), off-time (Toff), duty cycle (τ), peak current (Ip), dielectric pressure, 

tool material, interelectrode-gap, machining-time, polarity etc. 

Magnesium alloys are lightweight alloys so it is extensibility used in the aircraft industries. It 

has outstanding physical properties i.e. low density, bio-compatibility, good damping and 

strength to weight ratio, thus this alloy is favourable in the field of aerospace, transport, 

electronics, and biomedical industries (Song et al., 2020; Luo et al., 2019). Application areas 

of Mg alloys give the motivation to work with EDM for high precision and accuracy (Ali et 

al., 2015; Yeganeh et al., 2015). Razak et al. (2016) has been machined AZ-31 Mg alloy 

using EDM. Four processing parameters viz. voltage, Ton, Toff and Ip have been used to 

measure surface roughness (Ra) and concluded that Ton has greatest impact on Ra.  

In EDM, tool electrode properties and geometry enhanced the machinability of the work 

material (Bhaumik and Maity, 2018; Zhang et al., 2016). Since large number of parameters 

are associated in EDM, thus to reduce flaws in experiments a specific design and analysis 

(DOE) are needed. Taguchi method gives a systematics procedure with minimum number of 

experiments, and also used to optimize the characteristics of single response (Khan et al., 

2020; Ramaswamy et al., 2020). Multi-response optimization techniques viz. RSM, grey 
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relation analysis (GRA), VIKOR, TOPSIS facilitates multiple response optimizations. GRA 

has found a broad application to determine optimal parameters for machining response 

(Kumar et al., 2010; Kumar et al., 2018). The problems that cannot be solved by classical 

methods, are solved by artificial intelligence (AI) tool. AI is a popular tool in science and 

technology. The adaptive neuro fuzzy inference system (ANFIS) is an integration of artificial 

neural network (ANN) and fuzzy inference system (FIS). ANFIS reduced relative error by 

improving membership function of FIS (Rodic et al., 2020; Singh et al., 2020; Maher et al., 

2015). Manikandan et al. (2019) developed grey based ANFIS model to predict grey relation 

grade for machined LM6/SiC/Dunite. The developed grey-ANFIS model had 0.117% relative 

error with experiment results. To predict recast layer thickness, Dhaker et al. (2019) 

developed ANFIS model for laser drilled Inconel 718 and reported relative error of 5%. 

ANFIS is a multi-input single output predictor model, thus to optimize multi-response, a 

multi-criteria-decision-making (MCDM) VIKOR (Vlse Kriterijumska Optimizacija 

Kompromisno Resenje) method was integrated with ANFIS. VIKOR gives compromise 

solution to the response in maximum group utility with minimum regret measure (Tong et al., 

2007; Singaravel et al., 2020)  

It was observed from the literature that significant amount of work on machining of different 

materials using EDM are available, but there is scarcity of literature on machining of AZ-91 

Mg alloy. Thus, it is necessary to perform systematic study of machining AZ-91 Mg alloy 

using different processing parameters in EDM. In this work, AZ-91 magnesium alloy was 

machined with ZNC-EDM, to explore the effect of different EDM process parameters (tool 

material, current, pulse-on-time, pulse-off-time, polarity) on different aspects of performance 

characteristics such as MRR and Ra. Also, to predict responses using ANFIS model, followed 

by integration of VIKOR method to find the optimal response parameters (MRR and Ra). 

 

 



Journal of Engg. Research ICCEMME Special Issue 

4 
 

METHODOLOGY 

 

Measurement of responses 

 

MRR is a desire response in machining and mathematically represented by Equation (1).  

𝑀𝑅𝑅 =
 𝑊𝑓−𝑊𝑖

⍴×Tm
, (𝑔/𝑚𝑖𝑛)     (1) 

Where Wi, and Wf, are the weight of specimen before, and after machining respectively, and 

Tm is machining time. 

Surface roughness measures the smoothness and highly affected by process parameters 

during machining in EDM. The value of Ra is determined by Equation (2).  

𝑅𝑎 = 
1

𝑀
∫ 𝑍𝑥(𝑑𝑥)

𝑀

0
(µ𝑚)      (2) 

where, M is evaluation length, and Zx is the height between peaks and valleys. 

 

ANFIS modeling and optimization using ANFIS-VIKOR method 

 

Adaptive neuro-fuzzy inference system (ANFIS) was introduced by Jang (Jang, 1993). First 

order Sugeno model was developed to define the process parameters and hybrid learning rule 

was applied to enhance the fuzzy system constraints. Sugano fuzzy model (also called 

Tsukamoto fuzzy model) was familiarized with a systematic strategy for constructing the 

fuzzy instructions for input-output pair. The construction of two inputs, single output first-

order ANFIS Sugeno system is shown in Figure 1.  

 

Figure 1 ANFIS architecture of two inputs and single output (Jang, 1997). 

Primary layer of ANFIS model includes versatile nodes these nodes have its own functions 

and is represented by Equation (3). 

𝑄1,𝑖 = µ𝐴(𝑥1), 𝑓𝑜𝑟 𝑖 = 1,2 𝑜𝑟 𝑄1,𝑖 = µ𝐵(𝑥2), 𝑓𝑜𝑟 𝑖 = 3,4   (3) 
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In this x1, x2 are process parameters, and Ai and Bi are membership functions for the node. 

Q1i is the membership grade of a fuzzy set A (= A1, A2, B1 or B2) to define the applied degree 

of input. Second layer of ANFIS architecture have a fixed node shows the strength of the 

output. Output of the second layer is represented by Equation (4). 

𝑄2,𝑖  =  𝑤𝑖  =  µ𝐴(𝑥1) × µ𝐵(𝑥2), 𝑖 =  1, 2     (4) 

Firing power of rules are calculated in third layer, it is a fixed node. Its ith node computed as a 

ratio of the ith rule firing strength to the sum of all rules firing strengths and is given by 

Equation (5). 

𝑄3,1  =  𝑤𝑖⃗⃗⃗⃗ =  
𝑤𝑖

𝑤1 + 𝑤2
, 𝑖 =  1, 2      (5) 

The layer four has its own function and is represented by Equation (6). 

𝑄4,𝑖  =  𝑤𝑖⃗⃗⃗⃗ ×  𝑓𝑖 = 𝑤𝑖(𝑝𝑖 × 𝑥1 + 𝑞𝑖 × 𝑥2 + 𝑟)   (6) 

where wi is a generalized firing strength created by layer 3. 𝑝𝑖, 𝑞𝑖, 𝑟  are the node parameters. 

The fifth layer has fixed node and reported overall output as summation of all signals. 

Mathematical representation of the output is represented by Equation (7).  

𝑂𝑣𝑒𝑟𝑎𝑙𝑙 𝑜𝑢𝑡𝑝𝑢𝑡 =  𝑄5,𝑖  =  ∑ 𝑤𝑖⃗⃗⃗⃗ ×  𝑓𝑖𝑖  =  
∑ 𝑤𝑖⃗⃗ ⃗⃗  × 𝑓𝑖𝑖

∑ 𝑤𝑖×𝑓𝑖𝑖
   (7) 

In a complex decision-making situation, decision-makers use a tool MCDM to achieve 

optimal response. In the case of conflicting criteria, VIKOR gives compromises solution to 

find the optimal solution in the form of VIKOR index. Since, ANFIS is a multi-input single 

output prediction model thus to optimize predicted response VIKOR method integrated with 

ANFIS names as ANFIS-VIKOR method.  

Data obtained from experiments used as input in ANFIS, and after that ANFIS predicted, 

values were used to form decision matrix. Decision matrix was normalized using linear 

normalization as suggested by Opricovic and Tzeng (2004). Linear normalization is more 

reliable than vector normalization. Normalize matrix (D) is given by the Equation (8). Weight 

of the criteria affects VIKOR index, in this study equal weight are given to both criteria 

(MRR and Ra).  The basic steps to find VIKOR index is same as studied by the researcher 

(Opricovic et al., 2004; Kumar et al.,2021). The normalization of decision matrix is given by 
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D. The normalized matrix D is given by Equation (8). Where 𝑅𝑖
∗(𝑘) is the normalized value 

for ith alternative and kth criteria. 

𝐷 =  [𝑅𝑖
∗(𝑘)]𝑚 × 𝑛         (8) 

EXPERIMENTAL DETAILS 
 

AZ-91 magnesium alloy was procured in the form of slab of dimensions 40mm x 40mm x 

100mm and the chemical compositions were determined using spark-spectro analysis method 

as shown in Table 1. 

Table 1 Basic chemical composition of Mg-AZ91 Alloy. 

Elements Al Mn Zn Si Cu Ni 

Percentage 8.93% 0.21% 0.64% 0.017 % 0.009% 0.002% 

Specimens ware cut from the slab in the dimensions of 15mm×15mm×8mm using wire-EDM 

(WEDM). To makes a proper contact between tool and work-piece and also to reduce error in 

machining, the work-piece surface was polished using polishing papers. Five controllable 

factors (process parameters) viz. polarity, peak current, pulse-on-time, pulse-off-time and tool 

electrodes are used to perform experiments (Table 2). All other parameters such as voltage, 

fluid pressure, EDM oil temperature etc. are considered as constant. In this work, Taguchi 

mixed design L18 design of experiments (DOE) was use to perform experiment runs. 

Experimental runs in the uncoded form are given in Table 3. 

Table 2 Independent process parameters matrix with their respective levels. 

Process parameters  Unit  Level 1 Level 2 Level 3 

Polarity   Negative (N) Positive (P)  

Peak-Current (Ip)  A 4 5 6 

Pulse-on-Time(Ton)  µs 30 40 50 

Pulse-off-time(Toff)  µs 20 25 30 

Tool material  Cu Gr CuW 
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RESULTS AND DISCUSSION 

MRR is a desired response and requires maximum in machining using EDM and is given in 

Table 3. To find the effect of process parameters on MRR, S/N ration was calculated using 

Equation (9). MRR follows “larger the batter” criteria and large value of S/N ratio gives 

optimum value of MRR (Kumar et al., 2020). 

𝑆/𝑁 =  −10 × 𝑙𝑜𝑔(
1

𝑛
∑

1

𝑌2)    (9) 

Table 3 Response table for MRR and Ra with independent process parameters. 

S.No.  Polarity  Ip (A)  Ton (µs) Toff (µs)  Tool MRR (g/min) Ra (µm) 

1 P 4 30 20 Cu 0.021 0.08 

2 P 4 40 25 CuW 0.023 4.7 

3 P 4 50 30 Gr 0.021 0.49 

4 P 5 30 20 CuW 0.025 4.6 

5 P 5 40 25 Gr 0.028 2.42 

6 P 5 50 30 Cu 0.089 0.39 

7 P 6 30 25 Cu 0.020 4.76 

8 P 6 40 30 CuW 0.022 4.64 

9 P 6 50 20 Gr 0.034 0.36 

10 N 4 30 30  Gr 0.036 3.17 

11 N 4 40 20 Cu 0.009 2.11 

12 N 4 50 25 CuW 0.014 2.13 

13 N 5 30 25 Gr 0.040 1.92 

14 N 5 40 30 Cu 0.010 0.16 

15 N 5 50 20 CuW 0.014 3.41 

16 N 6 30 30 CuW 0.008 0.29 

17 N 6 40 20 Gr 0.054 4.04 

18 N 6 50 26 Cu 0.014 1.44 

Surface roughness of EDMed surface was measured using surface roughness tester (Time 

3100) and is given in Table 4. Smaller value of Ra is desirable in machining as it follows 

“lower the better” criteria, and is calculated using Equation (10). 

𝑆/𝑁 =  −10 × 𝑙𝑜𝑔(
1

𝑛
∑𝑌2)    (10) 

 

Figure 2 Main effect plots with input parameters for (a) MRR, and (b) Ra. 
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S/N ratio is a single response optimization method and used to reduce noise in MRR and Ra 

measurement. Large value of S/N ratio (db) gives optimum value of machining response. 

Maximum value of MRR is 0.089 (g/min) corresponds to large value of S/N ratio – 21.03db 

(Table 4). For, minimum value of Ra is 0.08 µm, corresponds to large value of S/N ratio 

21.94db. To find the effect of process parameters on response, a main effect plot for MRR 

and Ra, were plotted as shown in Figure 2. MRR increased as the polarity changed negative to 

positive due to increase in available energy in the work-piece as shown in Fig. 2(a), similar 

results was also reported by DiBitonto et al. (1989). On increase in Ton, and Toff, MRR 

increased, but in case of Ip initially MRR increased and then decreased, it is because large 

number of electrons restricted the motion of ions in the medium. MRR found maximum 

among studied tool materials when the work-piece was machined using Graphite tool (Fig. 

2a), this is due to sublimation characteristics of graphite as it does not solidified on the work-

material and always gives fresh work-surface to erode. Surface deteriorates with increase in 

MRR and the mean value of Ra was found more (worst surface roughness) in case of positive 

polarity, and it increased with increase in Ip due to available large amount of discharge energy 

which resulted uneven surface. Cu tool generates smoother surface as compared to Gr and 

CuW tool as exhibit in Fig. 2(b). 

Table 4 Predicted results of MRR and Ra with S/N ratio using ANFIS model. 

Exp

. 

No. 

Experiment

al MRR 

(g/min) 

Experi

mental 

Ra 

S/N 

ratio 

MRR 

S/N 

ratio 

SR 

Predicted 

MRR 

(g/min) 

Predicted 

Ra 

% 

error 

MRR 

% 

error 

Ra 

1 0.021 0.08 -33.63 21.94 0.021 0.0808 0.05 1.00 

2 0.023 4.7 -32.63 -13.44 0.024 4.68 3.56 0.43 

3 0.021 0.49 -33.65 6.20 0.021 0.497 0.36 1.43 

4 0.025 4.6 -31.99 -13.26 0.025 4.65 0.26 1.09 

5 0.028 2.42 -31.03 -7.68 0.029 2.41 3.20 0.41 

6 0.089 0.39 -21.03 8.18 0.089 0.494 0.19 26.67 

7 0.020 4.76 -33.91 -13.55 0.021 4.78 2.64 0.42 

8 0.022 4.64 -32.99 -13.33 0.023 4.65 0.79 0.22 
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9 0.034 0.36 -29.38 8.87 0.034 0.365 0.16 1.39 

10 0.036 3.17 -28.93 -10.02 0.036 3.21 0.07 1.26 

11 0.009 2.11 -40.72 -6.49 0.009 2.11 0.68 0.00 

12 0.013 2.13 -37.39 -6.57 0.014 2.15 2.23 0.94 

13 0.040 1.92 -27.96 -5.67 0.041 1.93 2.54 0.52 

14 0.010 0.16 -40.11 15.92 0.010 0.161 0.57 0.63 

15 0.014 3.41 -37.24 -10.66 0.014 3.45 0.28 1.17 

16 0.008 0.29 -42.12 10.75 0.008 0.294 0.13 1.38 

17 0.054 4.04 -25.32 -12.13 0.055 4.04 0.76 0.00 

18 0.014 1.44 -37.36 -3.17 0.014 1.45 2.56 0.69 

 

To measure the impact of process parameters and factor level on response, a factor level 

analysis was performed using mean value. The large difference between factor levels shows 

high impact on machining response. The large value of delta means higher ranks. Process 

parameter ranks for MRR and Ra are represented in Table 5. MRR are highly influenced by 

tool material followed by Ip, polarity, Toff, and Ton. Optimal factor level for maximum MRR is 

the corresponding higher mean values i.e. polarity-2, Ip-2, Ton-3, Toff-3, and Tool-2. Tool 

materials have highest impact on Ra followed by Ton, Toff, Ip, and polarity. The optimal factor 

level for minimum value of Ra is their corresponding smaller mean value, i.e. polarity-1, Ip-1, 

Ton-3, Toff -3, and Tool-1. 

Table 5 Impact of process parameters, and factor level on response measure. 

Level Polarity Ip (A) Ton (µs) Toff (µs) Tool 

Response mean for MRR 

1 0.02196 0.02057 0.02495 0.02617 0.02706 

2 0.03150 0.03427 0.02453 0.02311 0.03546 

3  0.02535 0.03072 0.03091 0.01767 

Delta 0.00954 0.01370 0.00619 0.00780 0.01780 

Rank 3 2 5 4 1 

Response mean for Ra 

1 2.074 2.113 2.470 2.433 1.490 

2 2.493 2.150 3.012 2.895 2.067 

3  2.588 1.370 1.523 3.295 

Delta 0.419 0.475 1.642 1.372 1.805 

Rank 5 4 2 3 1 
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ANFIS model results 

Predicted value of MRR and Ra are shown in Table 4. To develop ANFIS model, MATLAB 

Neural Network Toolbox function was used and its architecture is represented in Figure 3. 

The ANFIS factors and modeling parameters are illustrated in Table 6. In ANFIS model, 

Gaussian function with two membership function for polarity and three membership function 

for Ip, Ton, Toff, and tool materials. 

Table 6 Factors for ANFIS modeling. 

Parameters Values Parameters Values 

Number of input 5   

Membership function Gaussmf Size of training data 

set 
18x5 

Error Tolerance 0.0 Number of output 2 2 

Number of epochs 101 Optimisation Method Hybrid 

 

 

Figure 3 ANFIS model architecture with five inputs. 

Relative percentage error (RE) between experimental and predicted results was calculated for 

MRR and Ra using Equation (11). Calculated REs using ANFIS model were 1.17%, and 

2.20%, for MRR, and Ra, respectively. Figure 4 shows the graph between experimental and 

predicted results. 

Relative error % =  
Experimental value − Model value

Experimental value 
×  100   (11) 
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Figure 4 Graph between experimental and predicted results of (a) MRR, and (b) Ra. 

The surface plot generated for MRR (Figure 5) and for Ra (Figure 6) through ANFIS models. 

Increase in MRR, reduces surface roughness of machined surface, which is clearly observed 

in Figure 5 and 6. Fig. 5(a, b) show that MRR increased on decrease in Ip and Ton at positive 

polarity, whereas Ra follows opposite pattern as shown in Fig.6 (a, b). Fig. 5(c) and 6(c) 

exhibit that increase in Toff reduced MRR, and increase in Ra, respectively, at positive 

polarity. Fig. 5(d) shows that MRR was maximum when machining is performed using 

graphite tool, which is also confirmed by main effect plot (Fig. 2a). Maximum surface 

roughness was observed when material machined with copper tool (Fig. 6d) which is also 

confirmed by Fig. 2(b). 

 
Figure. 5 Surface plots generated by ANFIS model for MRR. 

 

 
Figure 6 Surface plots generated by ANFIS model for Ra.  

 

Optimization using ANFIS-VIKOR method 

 

ANFIS model is used to predict the response whereas VIKOR method for optimization. In 

ANFIS-VIKOR method, response predicted from ANFIS model was used as an input in 

VIKOR method. Predicted responses were normalized to make uniformity in data. The 

response measure which required maximum was considered as utility measure whereas 
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minimum as regret measure. Equal weight (w = 0.5) is given to both responses. Compromised 

solution for maximum MRR and minimum Ra were calculated using ANFIS-VIKOR index 

(Qi) (Table 7).  

Table 7 Results obtained from ANFIS-VIKOR method. 

Exp. 

No. 

ANFIS Predicted 

results 

Normalized 

value 

Utility 

measure 

Regret 

measure 

ANFIS-VIKOR 

index 

 MRR 

(g/min) 

Ra 

(µm) 

MRR Ra Si Rei Qi 

1 0.021 0.0808 0.148 0.007 0.920 0.420 0.869 

2 0.024 4.68 0.173 0.385 0.409 0.489 0.575 

3 0.021 0.497 0.148 0.041 0.876 0.420 0.838 

4 0.025 4.65 0.180 0.382 0.406 0.486 0.570 

5 0.029 2.41 0.207 0.198 0.621 0.369 0.597 

6 0.089 0.494 0.632 0.041 0.456 0.044 0.121 

7 0.021 4.78 0.148 0.393 0.420 0.500 0.595 

8 0.023 4.65 0.161 0.382 0.422 0.486 0.581 

9 0.034 0.365 0.242 0.030 0.808 0.339 0.700 

10 0.036 3.21 0.256 0.264 0.494 0.333 0.465 

11 0.009 2.11 0.066 0.173 0.775 0.491 0.843 

12 0.014 2.15 0.099 0.177 0.743 0.463 0.789 

13 0.041 1.93 0.293 0.159 0.598 0.295 0.499 

14 0.010 0.161 0.071 0.013 0.979 0.487 0.986 

15 0.014 3.45 0.098 0.284 0.605 0.464 0.689 

16 0.008 0.294 0.056 0.024 0.977 0.500 0.999 

17 0.055 4.04 0.390 0.332 0.289 0.421 0.414 

18 0.014 1.45 0.099 0.119 0.817 0.145 0.842 

In ANFIS-VIKOR index, experiment having Qi value near to zero is highest rank, and 

represents best combination of result. In this study experiment number 6 is best ranked by Qi. 

A confirmation test was performed on optimal factor level given by ANFIS-VIKOR method. 

Results of confirmation test are listed in Table 8.  

Table 8 Confirmation test result on optimal factor level. 

Optimal process parameters Experimental Result 

 

Polarity Ip Ton Toff Tool MRR (g/min) Ra (µm) 

P (+) 5 50 25 CuW 0.072 0.160 
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CONCLUSIONS 

 

Five process parameters (polarity, Ip, Ton, Toff, and tool) were used for machining AZ 91 alloy 

using Taguchi mixed design L18 DOE to evaluate response parameters MRR and Ra.  ANFIS-

VIKOR method was used to predict and optimize the responses. The following conclusion 

was drawn from this study. 

 Maximum MRR (0.089 g/min) was found at positive polarity, Ip-5 A, Ton-50 µs, Toff - 

30 µs, and Cu tool and minimum Ra (0.08 µm) was at parameters positive polarity, Ip-

4 A, Ton-30 µs, Toff -20 µs, and Cu tool. These results were also confirmed by the 

single response optimization tool S/N ratio. Factor level analysis showed that tool 

materials have highest impact on the MRR and Ra. 

 The ANFIS model was successfully developed for MRR and Ra and developed model 

gives an accuracy of 98.83%, and 97.80%, for MRR, and Ra, respectively.  

 The multi response optimization ANFIS-VIKOR method was successfully developed 

and gave compromise solution for MRR and Ra corresponding to minimum ANFIS-

VIKOR index (Qi). This method shows experiment number 6 has best rank.  
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