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ABSTRACT 

The principal focus of this research effort is to investigate a maritime stochastic transportation problem. In this 
case, crude oil shipments are to be transported from multiple sources to multiple destinations. The demand at the 
destinations is normally distributed, and the violation of certain specified lower and upper daily storage limits can 
lead to various types of penalties. We aim to utilize (stochastic) mathematical programming approaches to minimize 
the overall cost of such fleet operation by optimizing the vessel schedules and maintaining acceptable daily storage 
levels considering the stochastic demand structures. This research effort signifies that the nature of daily demand 
distributions in the multiple sources-destinations scheduling-inventory scenario significantly impacts the overall fleet 
schedules and the total expected cost. Therefore, it is crucial to grasp essential stochastic aspects of the daily demands 
to avoid potential misrepresentation of the operational costs. The robustness of the adopted approach is illustrated by 
presenting computational results that are based on a wide range of test problems. Moreover, our computational study 
also examines the impact of variations in demand and the probability of meeting demands on the cost structures.  

 
Keywords: Chance constraints; Integer nonlinear programming; Inventory/shortages; Stochastic vessel sched-

uling; Transportation. 
 

1. AN OVERVIEW AND CONTRIBUTION  

Transportation by sea remains the major mean of transportation in the world-Jean-Paul Rodrigue (2020). Crude 
oil and its derivatives are the major transported products worldwide, making for about 5.9% of the world value.  For 
example, in 2019, the overall dollar value of transported crude oil was about $1.004 trillion. The bulk of crude oil 
was shipped from the Gulf Countries, totaling for about $241.7 billion or 24.1% of the worldwide crude oil exports, 
International Trade Centre (2020). It is imperative to use efficient methods to handle overall vessel operation because 
of the complexity, uncertainty, and combinational natures of such operation. The average per barrel crude oil price 
in 2020 and 2021 is, respectively, about $42 and $65. This price dropped below $20 in early 2020, while the recent 
price (September 2021) is about $69 https://en.wikipedia.org/wiki/COVID-19_pandemic. The continuous changes 
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in the global oil market signify the importance of using practical quantitative transportation approaches to decide on 
a suitable fleet mix, generate vessel schedules, and better understand demand trends. 

 
This proposed research work investigates a maritime transportation-inventory problem that may encounter, for 

example, oil companies in the Gulf countries such as KPC (Kuwait Petroleum Corporation) of Kuwait or Aramco of 
Saudi Arabia. In this case, a company aim to transport crude oil from various source points to multiple destinations 
according to some contracts that specify demand and penalty structures. Typically, the transporting fleet is composed 
of a heterogeneous fleet of self-owned and chartered ships of various types to satisfy demand requirements at each 
destination. Hence, the deliveries of shipments from source points to the destinations are restricted by constraints 
such as the rates of consumption at each destination, penalties imposed by customers when violating certain custom-
ers (destinations) specified lower and upper storage limits, the available vessel transportation routes, and other re-
quirements agreed upon between customers and the company. The principal goal of the transporting company is to 
minimize the expected overall cost of such vessel operation. This cost is composed of the overall cost of operation of 
vessels, the expected total penalties, as well as costs of vessel chartering. This objective can be realized by optimizing 
the vessel schedules while satisfying the stochastic demands at the destinations with acceptable reliability levels. 

         
This research work extends the efforts in Soroush and Al-Yakoob (2018), where a similar vessel scheduling 

problem based on a single source-destination operation is considered. In this case, the authors consider normally 
distributed daily demands at the destinations. This article aims to extend findings established in the previous work to 
a multiple sources-destinations scenario. 

 
Maritime transportation of crude oil and related products is a complex and costly operation. Therefore, efficient 

routing and scheduling of oil tankers become necessary to reduce operational and penalty expenses.  Uncertainties in 
short- and long-term oil demands directly impact the pertinent fleet operational expenses, shortage and excess inven-
tory penalties, chartering costs. We aim to employ a mathematical modeling approach to simultaneously optimize 
the fleet schedules and maintain desirable daily storage levels to meet the stochastic demand requirements at the 
destinations with acceptable reliability levels. Different methods for solving such problems with uncertainties such 
as chance-constrained programming, stochastic programming, robust optimization, simulation-based optimization 
and simulation-based heuristics, and fuzzy programming. Although all of these methods can provide good enough 
solutions, our modeling approach with advances in software and computing power is still a very solid and robust 
option.  In this paper, chance-constrained programming is used to formulate exact mixed-integer nonlinear program-
ming models to obtain good results. 

 
The remainder of this article is organized as follows. Section 2 discusses some of the recent literature pertinent 

to the studied problem. Section 3 first provides basic modeling constructs such as assumptions, notation, and penalties 
and then introduces a stochastic vessel scheduling model (SVSM) for the investigated problem. Normal daily de-
mands are incorporated into Model SVSM, and the variational impact of demands on the expected penalty expenses 
based on the normal demand distributions is examined in Section 4. Section 5 presents computational results and 
sensitivity analyses for the developed models based on a set of test problems. Finally, a summary and conclusions 
related to the proposed work are given in Section 6. 

 

2. LITERTURE REVIEW   

Literature pertinent to the specific maritime stochastic transportation inventory scenario investigated in the cur-
rent research effort can be deemed as a stochastic case of the inventory routing problem (IRP) with multiple sources 
and multiple destinations. The Inventory Routing Problem (IRP) is an extension of the Vehicle Routing Problem 
(VRP) as it considers a combination of both inventory management and routing decisions into a single problem. In 
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general, the objective of the VRP mainly focuses on minimizing the total cost. Çam et al. (2020) formulated a linear 
programming model for the VRP. The authors proposed a new type of objective function and new constraints. The 
objective function tends to minimize the total idle time as in job shop problem rather than minimizing the total cost 
in most of VRP. In order to meet this objective, the vehicle is suggested to work more in order to minimize the total 
waiting time. Their constraints allow subtours and multi visits in different time which will reduce the number of 
vehicle used and increase their efficiency. The authors used the exact method (linear programming ) to solve the 
problem.  

 
In this section, we focus on the literature related to the stochastic maritime transportation-inventory problems; 

which is relatively limited when compared to the deterministic scenarios. Uncertainties in maritime transportation 
affect various aspects such as demands, loading/unloading and shipping times, and freight rates, etc. Most of the 
pertinent studies tackle these uncertainties by utilizing approaches such as chance constrained programming, stochas-
tic programing, robust optimization, simulation-based optimization, and simulation-based heuristics. 

 
Al-Yakoob and Sherali (2018) investigated different scenarios and solution heuristics for a single-source and 

single-destination deterministic maritime scheduling transportation-inventory problem. In particular, Soroush and 
Al-Yakoob (2018) studied a single source-destination stochastic maritime scheduling transportation-inventory prob-
lem with normally distributed daily demands. The authors presented a stochastic optimization model using chance-
constrained programming to obtain the exact mixed-integer nonlinear program with a convex objective function and 
linear constraints. Later, the work in Soroush and Al-Yakoob (2018) was extended by Soroush et al. (2020) by stud-
ying gamma, exponential, and uniform daily demand distributions. Zhao Y. et al. (2018) considered stochastic time 
and demand for a stochastic intermodal service network design problem and developed a two-stage chance con-
strained programming model. Sun Y. et al. (2018) formulated a fuzzy chance-constrained mixed-integer nonlinear 
stochastic program with uncertainty in travel time and capacity to optimize the CO2 emissions in the container routing 
problem. 

 
Agra et al. (2018) studied a single product maritime IRP with a heterogeneous fleet of vessels, multiple produc-

tion and consumption ports with limited storage capacity, constant production and consumption rates, and uncertain 
sailing times. The authors applied an adaptable robust optimization approach to deal with sailing time uncertainties 
and presented a decomposition scheme along with an iterative local search heuristic to report some computational 
results based on a set of real instances. G. Diz et al. (2019) proposed a robust optimization method for a maritime 
IRP with uncertain total time that vessels spend at ports. The goal was to determine the vessel routings while keeping 
the inventory levels at ports within some limits.  

 
Sanaz S. et al. (2020) introduced a maritime inventory-routing problem for liquefied natural gas under uncer-

tainty of travel time. The purpose of the study is to examine and compare the shipping costs of split and nonsplit 
delivery. A metaheuristic method is applied, and the effectiveness of the results is compared with a commercial 
solver. The authors concluded that split delivery is not recommended in maritime transportation with uncertain nature. 
Msakni et al. (2018) proposed a mixed-integer program for a maritime inventory transportation problem of liquefied 
natural gas deliveries and used a column generation approach to solve this problem. Zhang et al. (2017) studied a 
maritime emergency resource allocation problem under dynamic demands and used a robust optimization model as 
a general deterministic model.  Siswanto et al. (2019) considered a maritime inventory routing problem with multiple 
time windows. The authors proposed a multiheuristic based genetic algorithm. Friske et al. (2022) proposed a me-
taheuristic method for solving a maritime inventory routing problem over two discrete-time formulations. 

 
Stochastic programming is a framework for optimization problems with uncertainty. Konur et al. (2017) focused 

on an integrated stochastic inventory control with order splitting problem when the demands have normal, gamma 
and Poisson distributions.  The authors in Konur et al. (2017) also presented a bi-objective mixed-integer nonlinear 
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program to generate the Pareto fronts for the problem. Rahimi et al. (2017) studied an IRP with multiobjectives and 
solved it using a fuzzy distribution approach. Roldán et al. (2017) examined the literature on IRP with stochastic 
demands for a single depot as well as multiple depots. Lima et al. (2018) developed a multistage stochastic program-
ming approach to solve the refined distribution problem of products. In this case, the stochastic model relies on a 
time series analysis and a tree analysis to effectively deal with uncertainty in oil prices and demands. Rodrigues et al. 
(2019) studied the uncertainties related to the travel times of MIRP using a stochastic programming model as one of 
five different general models of the problems. Rafie-Majd et al. (2018) used a Lagrangian relaxation algorithm to 
solve an integrated inventory-location-routing problem with normally distributed demands. Markov et al. (2018) in-
troduced a unified framework for rich vehicle and inventory routing problems with complex physical and temporal 
constraints. 

 
In our study, we focused on the stochastic maritime transportation-inventory problems with uncertainty in de-

mand that is normally distributed. In this paper, a stochastic optimization model is presented using chance-constrained 
programming to obtain the exact mixed-integer nonlinear program with a convex objective function and linear con-
straints. To the best of our knowledge, this is the first research effort to optimally solve and compare the solutions to 
a stochastic maritime transportation-inventory problem in which demands have normal probability distribution, with 
multiple sources and destinations, and four different penalty types are imposed for violating pre-specified lower and 
upper bounds on the destination’s storage levels. 

 

3. PROBLEM FORMULATION 

            As mentioned earlier, this research effort extends the studies in Soroush and Al-Yakoob (2018) and 
Soroush et al. (2020). Therefore, to ease presentation, we will commence in Section 3.1 by restating necessary as-
sumptions and notation drawn from Soroush and Al-Yakoob (2018) and Soroush et al. (2020). Section 3.2 discusses 
various penalty types associated with storage levels that includes type Ⅰ and type Ⅱ associated with shortages and type 
Ⅲ  and type Ⅳ associated with excesses similar to those presented  in Soroush and Al-Yakoob (2018) and Soroush 
et al (2020). New assumptions, notation, and constructs will be also introduced as necessary in the remainder of the 
paper.  Section 3.3 then presents expected penalties and chance constraints, which are employed in Section 3.4 to 
formulate a stochastic vessel model (SVSM) for the proposed problem.  
 

3.1 Preliminary Constructs   

The studied stochastic scenario is investigated based on the following assumptions:  
• Days are units of the time horizon.  
• US dollar is the currency of all costs and all imposed penalties.  
• Barrels are the quantities measure of the product.  
• A time horizon is specified based on a given contract where the product is transported under specific con-

sumption rates from multiple sources to multiple destinations.  
•  Same type vessels have identical properties such as size, capacity, speed, etc.  
• Same type vessels have equal loading/unloading and roundtrip voyage times. 
• A vessel voyage duration is at least two days.  
• Vessel loading/unloading and roundtrip voyage times are known a priori.  
• A vessel is fully loaded when leaving a source, fully unloaded at the designated destinations, then this vessel 

returns to a source. (Partially loaded and unloaded scenarios are investigated in a future research). 
• Based on a vessel availability, a vessel is potentially chartered for the entire duration of the  time horizon or 

for a subset of the time horizon. Further notations are introduced next. 
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Table 1. Indices and parameters of the problem. 
 

Vessel related sets, indices, and parameters 

LEGℎ,",#,$!,%,$" Leg for vessel 𝑛𝑛 of type 𝑡𝑡 ∈ 𝑇𝑇 that leaves source 𝑠𝑠& ∈ 𝑆𝑆 toward desti-
nation 𝑑𝑑 ∈ 𝐷𝐷 on day ℎ ∈ 𝐻𝐻, and then returns to source 𝑠𝑠' ∈ 𝑆𝑆. 

𝑇𝑇",$!,%
()  Sum of loading time of a vessel of type  𝑡𝑡 ∈ 𝑇𝑇 at source 𝑠𝑠& ∈ 𝑆𝑆 plus 

voyage time to destination 𝑑𝑑 ∈ 𝐷𝐷.                

𝑇𝑇",%,$"
*#  Sum of unloading time of a vessel of type 𝑡𝑡 ∈ 𝑇𝑇 at destination 𝑑𝑑 ∈ 𝐷𝐷 

plus voyage time from 𝑑𝑑 back to source 𝑠𝑠' ∈ 𝑆𝑆.                

𝑇𝑇",$!,%,$" 
Total loading/unloading and roundtrip voyage time for a vessel of 
type 𝑡𝑡 ∈ 𝑇𝑇 from source 𝑠𝑠& ∈ 𝑆𝑆 to destination 𝑑𝑑 ∈ 𝐷𝐷, and then return-
ing from destination 𝑑𝑑 to source 𝑠𝑠' ∈ 𝑆𝑆, i.e., 𝑇𝑇",$!,%,$" = 𝑇𝑇",$!,%

()  + 𝑇𝑇",%,$"
*# . 

𝑈𝑈𝑇𝑇",# 
Maximum number of days that a vessel 𝑛𝑛, 𝑛𝑛 = 1, . . . , 𝑇𝑇𝑁𝑁", of type 𝑡𝑡 ∈
𝑇𝑇, can be sent during the time horizon (this time restriction is mainly 
required for maintenance purposes). 

𝑂𝑂𝐶𝐶",# Daily operational cost of vessel 𝑛𝑛, 𝑛𝑛 = 1, . . . , 𝑇𝑇𝑁𝑁", of type 𝑡𝑡 ∈ 𝑇𝑇. 

𝐶𝐶",#,$!,%,$" 
Total operational cost of vessel 𝑛𝑛, 𝑛𝑛 = 1, . . . , 𝑇𝑇𝑁𝑁", of type 𝑡𝑡 ∈ 𝑇𝑇, from 
the source 𝑠𝑠& ∈ 𝑆𝑆 to destination 𝑑𝑑 ∈ 𝐷𝐷, and then returning back to 
source 𝑠𝑠' ∈ 𝑆𝑆, i.e., 𝐶𝐶",#,$!,%,$" = 𝑇𝑇",$!,%,$"(𝑂𝑂𝐶𝐶",#). 

 

3.2 Penalty Types 

Penalties are calculated on daily bases, being determined based on the destinations’ storage levels. These pen-
alties are extended from those presented in Soroush and Al-Yakoob (2018) to take into consideration multiple desti-
nations. We define the following four penalties. 
 

Type Ⅰ Penalty: 

𝑷𝑷𝟏𝟏,𝒉𝒉,𝒅𝒅 = 𝜶𝜶𝒅𝒅𝒎𝒎9𝑺𝑺𝑳𝑳𝒅𝒅𝒎𝒎 − 𝑺𝑺𝒉𝒉,𝒅𝒅=, if 𝑺𝑺𝒉𝒉,𝒅𝒅 ∈ 𝑺𝑺𝑳𝑳𝒅𝒅𝒎𝒎 − 𝑨𝑨𝒅𝒅𝒎𝒎, 𝑺𝑺𝑳𝑳𝒅𝒅𝒎𝒎),            (3.1)    

 

Type Ⅱ Penalty: 

𝑷𝑷𝟐𝟐,𝒉𝒉,𝒅𝒅 = 𝜶𝜶𝒅𝒅𝒎𝒎𝑨𝑨𝒅𝒅𝒎𝒎 + 𝜷𝜷𝒅𝒅𝒎𝒎9𝑺𝑺𝑳𝑳𝒅𝒅𝒎𝒎 − 𝑨𝑨𝒅𝒅𝒎𝒎 − 𝑺𝑺𝒉𝒉,𝒅𝒅=, 𝜷𝜷𝒅𝒅𝒎𝒎 > 𝜶𝜶𝒅𝒅𝒎𝒎, if 𝑺𝑺𝒉𝒉,𝒅𝒅 ∈ (𝑳𝑳𝑩𝑩𝒅𝒅, 𝑺𝑺𝑳𝑳𝒅𝒅𝒎𝒎 − 𝑨𝑨𝒅𝒅𝒎𝒎),   (3.2) 

 

Type Ⅲ Penalty: 

𝑷𝑷𝟑𝟑,𝒉𝒉,𝒅𝒅 = 𝜶𝜶𝒅𝒅𝑴𝑴9𝑺𝑺𝒉𝒉,𝒅𝒅 − 𝑺𝑺𝑳𝑳𝒅𝒅𝑴𝑴=, if 𝑺𝑺𝒉𝒉,𝒅𝒅 ∈ 𝑺𝑺𝑳𝑳𝒅𝒅𝑴𝑴, 𝑺𝑺𝑳𝑳𝒅𝒅𝑴𝑴 + 𝑨𝑨𝒅𝒅𝑴𝑴,       (3.3) 
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Type Ⅳ Penalty: 

𝑷𝑷𝟒𝟒,𝒉𝒉,𝒅𝒅 = 𝜶𝜶𝒅𝒅𝑴𝑴𝑨𝑨𝒅𝒅𝑴𝑴 + 𝜷𝜷𝒅𝒅𝑴𝑴C𝑺𝑺𝒉𝒉,𝒅𝒅 − 9𝑺𝑺𝑳𝑳𝒅𝒅𝑴𝑴 + 𝑨𝑨𝒅𝒅𝑴𝑴=D, 𝜷𝜷𝒅𝒅𝑴𝑴 > 𝜶𝜶𝒅𝒅𝑴𝑴, if 𝑺𝑺𝒉𝒉,𝒅𝒅 ∈ 9𝑺𝑺𝑳𝑳𝒅𝒅𝑴𝑴 + 𝑨𝑨𝒅𝒅𝑴𝑴,𝑼𝑼𝑩𝑩𝒅𝒅=.    (3.4) 

 

3.3 Expected Penalıtıes And Chance Constraınts 

Note that 𝑆𝑆ℎ,%, ℎ ∈ 𝐻𝐻, 𝑑𝑑 ∈ 𝐷𝐷, are random variables with probability density functions (pdfs) 𝑓𝑓ℎ,%(𝑡𝑡), since all 
daily demands are random variables. 

 
 Therefore, the expected daily penalties of Types Ⅰ-Ⅳ, respectively, given by 𝐸𝐸C𝑃𝑃3,ℎ,%D 𝑓𝑓𝑓𝑓𝑓𝑓	𝑖𝑖 = 1, . . . ,4, (refer-

ring to (3.1)–(3.4)), are defined as follows: 
 
𝐸𝐸C𝑃𝑃&,ℎ,%D = 𝛼𝛼%4 ∫ (𝑆𝑆𝐿𝐿%4 − 𝑡𝑡)5(#

$

5(#
$67#

$ 𝑓𝑓ℎ,%(𝑡𝑡)𝑑𝑑𝑑𝑑, ℎ ∈ 𝐻𝐻, 𝑑𝑑 ∈ 𝐷𝐷,     (3.5) 
 
 
𝐸𝐸C𝑃𝑃',ℎ,%D = ∫ [𝛼𝛼%4𝐴𝐴%4 + 𝛽𝛽%4(𝑆𝑆𝐿𝐿%4 − 𝐴𝐴%4 − 𝑡𝑡)]5(#

$67#
$

(8#
𝑓𝑓ℎ,%(𝑡𝑡)𝑑𝑑𝑑𝑑, ℎ ∈ 𝐻𝐻, 𝑑𝑑 ∈ 𝐷𝐷,    (3.6) 

 
 
𝐸𝐸C𝑃𝑃9,ℎ,%D = 𝛼𝛼%: ∫ (𝑡𝑡 − 𝑆𝑆𝐿𝐿%:)

5(#
%;7#

%

5(#
% 𝑓𝑓ℎ,%(𝑡𝑡)𝑑𝑑𝑑𝑑, ℎ ∈ 𝐻𝐻, 𝑑𝑑 ∈ 𝐷𝐷,     (3.7) 

 
And 
 
𝐸𝐸C𝑃𝑃<,ℎ,%D = ∫ C𝛼𝛼%:𝐴𝐴%: + 𝛽𝛽%:[𝑡𝑡 − (𝑆𝑆𝐿𝐿%: + 𝐴𝐴%:)]D

*8#
5(#
%;7#

% 𝑓𝑓ℎ,%(𝑡𝑡)𝑑𝑑𝑑𝑑, ℎ ∈ 𝐻𝐻, 𝑑𝑑 ∈ 𝐷𝐷.   (3.8) 
 
 
Therefore, the overall expected penalty on day ℎ ∈ 𝐻𝐻 and destination 𝑑𝑑 ∈ 𝐷𝐷 using (3.5)–(3.8), is given by 

∑ 𝐸𝐸C𝑃𝑃3,ℎ,%D<
3=& . 

 
Figure 1 shows a schematic network structure of some routes in the operation along with the storage levels and 

the penalty types. 
 

 
  Figure 1. Illustration of network structure, storage levels and penalty types of the problem. 

 

Table 1. Indices and parameters of the problem. 
 

Vessel related sets, indices, and parameters 

LEGℎ,",#,$!,%,$" Leg for vessel 𝑛𝑛 of type 𝑡𝑡 ∈ 𝑇𝑇 that leaves source 𝑠𝑠& ∈ 𝑆𝑆 toward desti-
nation 𝑑𝑑 ∈ 𝐷𝐷 on day ℎ ∈ 𝐻𝐻, and then returns to source 𝑠𝑠' ∈ 𝑆𝑆. 

𝑇𝑇",$!,%
()  Sum of loading time of a vessel of type  𝑡𝑡 ∈ 𝑇𝑇 at source 𝑠𝑠& ∈ 𝑆𝑆 plus 

voyage time to destination 𝑑𝑑 ∈ 𝐷𝐷.                

𝑇𝑇",%,$"
*#  Sum of unloading time of a vessel of type 𝑡𝑡 ∈ 𝑇𝑇 at destination 𝑑𝑑 ∈ 𝐷𝐷 

plus voyage time from 𝑑𝑑 back to source 𝑠𝑠' ∈ 𝑆𝑆.                

𝑇𝑇",$!,%,$" 
Total loading/unloading and roundtrip voyage time for a vessel of 
type 𝑡𝑡 ∈ 𝑇𝑇 from source 𝑠𝑠& ∈ 𝑆𝑆 to destination 𝑑𝑑 ∈ 𝐷𝐷, and then return-
ing from destination 𝑑𝑑 to source 𝑠𝑠' ∈ 𝑆𝑆, i.e., 𝑇𝑇",$!,%,$" = 𝑇𝑇",$!,%

()  + 𝑇𝑇",%,$"
*# . 

𝑈𝑈𝑇𝑇",# 
Maximum number of days that a vessel 𝑛𝑛, 𝑛𝑛 = 1, . . . , 𝑇𝑇𝑁𝑁", of type 𝑡𝑡 ∈
𝑇𝑇, can be sent during the time horizon (this time restriction is mainly 
required for maintenance purposes). 

𝑂𝑂𝐶𝐶",# Daily operational cost of vessel 𝑛𝑛, 𝑛𝑛 = 1, . . . , 𝑇𝑇𝑁𝑁", of type 𝑡𝑡 ∈ 𝑇𝑇. 

𝐶𝐶",#,$!,%,$" 
Total operational cost of vessel 𝑛𝑛, 𝑛𝑛 = 1, . . . , 𝑇𝑇𝑁𝑁", of type 𝑡𝑡 ∈ 𝑇𝑇, from 
the source 𝑠𝑠& ∈ 𝑆𝑆 to destination 𝑑𝑑 ∈ 𝐷𝐷, and then returning back to 
source 𝑠𝑠' ∈ 𝑆𝑆, i.e., 𝐶𝐶",#,$!,%,$" = 𝑇𝑇",$!,%,$"(𝑂𝑂𝐶𝐶",#). 

 

3.2 Penalty Types 

Penalties are calculated on daily bases, being determined based on the destinations’ storage levels. These pen-
alties are extended from those presented in Soroush and Al-Yakoob (2018) to take into consideration multiple desti-
nations. We define the following four penalties. 
 

Type Ⅰ Penalty: 

𝑷𝑷𝟏𝟏,𝒉𝒉,𝒅𝒅 = 𝜶𝜶𝒅𝒅𝒎𝒎9𝑺𝑺𝑳𝑳𝒅𝒅𝒎𝒎 − 𝑺𝑺𝒉𝒉,𝒅𝒅=, if 𝑺𝑺𝒉𝒉,𝒅𝒅 ∈ 𝑺𝑺𝑳𝑳𝒅𝒅𝒎𝒎 − 𝑨𝑨𝒅𝒅𝒎𝒎, 𝑺𝑺𝑳𝑳𝒅𝒅𝒎𝒎),            (3.1)    

 

Type Ⅱ Penalty: 

𝑷𝑷𝟐𝟐,𝒉𝒉,𝒅𝒅 = 𝜶𝜶𝒅𝒅𝒎𝒎𝑨𝑨𝒅𝒅𝒎𝒎 + 𝜷𝜷𝒅𝒅𝒎𝒎9𝑺𝑺𝑳𝑳𝒅𝒅𝒎𝒎 − 𝑨𝑨𝒅𝒅𝒎𝒎 − 𝑺𝑺𝒉𝒉,𝒅𝒅=, 𝜷𝜷𝒅𝒅𝒎𝒎 > 𝜶𝜶𝒅𝒅𝒎𝒎, if 𝑺𝑺𝒉𝒉,𝒅𝒅 ∈ (𝑳𝑳𝑩𝑩𝒅𝒅, 𝑺𝑺𝑳𝑳𝒅𝒅𝒎𝒎 − 𝑨𝑨𝒅𝒅𝒎𝒎),   (3.2) 

 

Type Ⅲ Penalty: 

𝑷𝑷𝟑𝟑,𝒉𝒉,𝒅𝒅 = 𝜶𝜶𝒅𝒅𝑴𝑴9𝑺𝑺𝒉𝒉,𝒅𝒅 − 𝑺𝑺𝑳𝑳𝒅𝒅𝑴𝑴=, if 𝑺𝑺𝒉𝒉,𝒅𝒅 ∈ 𝑺𝑺𝑳𝑳𝒅𝒅𝑴𝑴, 𝑺𝑺𝑳𝑳𝒅𝒅𝑴𝑴 + 𝑨𝑨𝒅𝒅𝑴𝑴,       (3.3) 
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3.4 Model SVSM 

Next, we extend model SVSM which is formulated in Soroush and Al-Yakoob (2018). Next, we set binary 
decision variables. Let  

 

 

 
Another set of binary variables is defined to ensure that a vessel is dispatched from sour	𝑠𝑠 on day	ℎ only if it is 

unused on this day.  
 
Let 
 

 

 
Finally, the chartering decision variables are defined as follows: 
 

 

 

Note that 𝑌𝑌ℎ,",#,$! = 0 leads to 𝑋𝑋ℎ,",#,$!,%,$" = 0∀(𝑑𝑑, 𝑠𝑠'). 
 
Let 𝜑𝜑> and 𝜑𝜑? respectively denote the set of X- and Y-variables that are initialized to zero values. Our vessel 

scheduling stochastic model is then formulated as follows. (Note that all coming indices are supposed to take exact 
values.) 
 

SVSM:  

Minimize 𝑋𝑋ℎ,",#,$!,%,$" 

+ ∑ ∑ ∑ 𝑬𝑬C𝒑𝒑𝒊𝒊,𝒉𝒉,𝒅𝒅D𝒅𝒅
𝟒𝟒
𝒊𝒊=𝟏𝟏𝒉𝒉  +  $",#𝑉𝑉",#, 

Subject to     

𝑺𝑺𝒉𝒉,𝒅𝒅 = 𝒘𝒘𝒅𝒅 + ∑𝒕𝒕 ∑𝒏𝒏 ∑𝒔𝒔𝟏𝟏 ∑𝒔𝒔𝟐𝟐 ∑𝒉𝒉:
𝒉𝒉;𝑻𝑻𝒕𝒕,𝒔𝒔𝟏𝟏,𝒅𝒅,𝒔𝒔𝟐𝟐

𝑳𝑳𝑳𝑳 ∈{𝟏𝟏,...,𝒉𝒉}
𝜴𝜴𝒕𝒕𝑿𝑿𝒉𝒉,𝒕𝒕,𝒏𝒏,𝒔𝒔𝟏𝟏,𝒅𝒅,𝒔𝒔𝟐𝟐 − 𝑻𝑻𝑪𝑪𝒉𝒉,𝒅𝒅,   (3.9) 

∀𝒉𝒉 and 𝒅𝒅 ∈ {𝟏𝟏, . . . , |𝑫𝑫|}, 

 

𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝9𝑆𝑆𝐿𝐿%4 ≤ 𝑆𝑆ℎ,% ≤ 𝑆𝑆𝐿𝐿%:= ≥ 91 − 𝑟𝑟ℎ,%=, ∀ℎ and 𝑑𝑑 ∈ {1, . . . , |𝐷𝐷|},                  (3.10) 
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𝒀𝒀𝒉𝒉,𝒕𝒕,𝒏𝒏,𝒔𝒔 = 𝒀𝒀𝒉𝒉6𝟏𝟏,𝒕𝒕,𝒏𝒏,𝒔𝒔 − ∑ ∑𝒔𝒔𝟐𝟐 𝑿𝑿𝒉𝒉6𝟏𝟏,𝒕𝒕,𝒏𝒏,𝒔𝒔,𝒅𝒅,𝒔𝒔𝟐𝟐𝒅𝒅 + ∑ ∑ ∑𝒉𝒉:
𝒉𝒉;𝑻𝑻𝒕𝒕,𝒔𝒔𝟏𝟏,𝒅𝒅,𝒔𝒔=𝒉𝒉

𝒅𝒅 𝑿𝑿𝒉𝒉,𝒕𝒕,𝒏𝒏,𝒔𝒔𝟏𝟏,𝒅𝒅,𝒔𝒔,𝒔𝒔𝟏𝟏               (3.11) 

∀ℎ ≥ 2, 𝑡𝑡, 𝑛𝑛, 𝑠𝑠, 

 
∑𝒅𝒅 ∑𝒔𝒔𝟐𝟐 𝑿𝑿𝒉𝒉,𝒕𝒕,𝒏𝒏,𝒔𝒔,𝒅𝒅,𝒔𝒔𝟐𝟐 ≤ 𝒀𝒀𝒉𝒉,𝒕𝒕,𝒏𝒏,𝒔𝒔, ∀𝒉𝒉, 𝒕𝒕, 𝒏𝒏, 𝒔𝒔,                           (3.12) 

 

𝒀𝒀𝒉𝒉,𝒕𝒕,𝒏𝒏,𝒔𝒔  𝑽𝑽𝒕𝒕,𝒏𝒏,   𝒉𝒉, 𝒕𝒕, 𝒏𝒏 ∈ {𝑶𝑶𝒕𝒕 + 𝟏𝟏, . . . , 𝑶𝑶𝒕𝒕 + 𝑪𝑪𝑯𝑯𝒕𝒕},                                             (3.13) 

 
∑𝒕𝒕 ∑𝒏𝒏 ∑𝒅𝒅 ∑𝒔𝒔𝟏𝟏 𝜴𝜴𝒕𝒕𝑿𝑿𝒉𝒉,𝒕𝒕,𝒏𝒏,𝒔𝒔,𝒅𝒅,𝒔𝒔𝟏𝟏 ≤ 𝑸𝑸𝒔𝒔, ∀𝒉𝒉 and 𝒔𝒔 ∈ {𝟏𝟏, . . . , |𝑺𝑺|},                 (3.14) 

 

𝑻𝑻𝒕𝒕,𝒔𝒔𝟏𝟏,𝒅𝒅,𝒔𝒔𝟐𝟐  𝑼𝑼𝑻𝑻𝒕𝒕,𝒏𝒏,   𝒕𝒕, 𝒏𝒏,                  (3.15) 

 

𝑋𝑋ℎ,",#,$!,%,$" ∈ {0,1} for 𝑋𝑋ℎ,",#,$!,%,$" ∀ℎ, 𝑡𝑡, 𝑛𝑛, 𝑠𝑠&, 𝑑𝑑, 𝑠𝑠', and                  (3.16) 

𝑌𝑌ℎ,",#,$ ∈ [0,1], for 𝑌𝑌ℎ,",#,$ ∀ℎ, 𝑡𝑡, 𝑛𝑛, 𝑠𝑠, and  

𝑉𝑉",# [0,1],  𝑡𝑡, 𝑛𝑛 = 𝑂𝑂" + 1, . . , 𝑂𝑂" + 𝐶𝐶𝐻𝐻", 

𝑺𝑺𝒉𝒉,𝒅𝒅 ≥ 𝟎𝟎,  ∀𝒉𝒉and 𝒅𝒅 ∈ {𝟏𝟏, . . . , |𝑫𝑫|}. 

  

4. MODEL SVSM WITH NORMAL DAILY DEMAND 

       Initially, we further study the chance constraint given by (3.10) daily demands that are normally distributed. 
Then, we state four theorems to set the foundation for deriving closed-form expressions for the exact expected total 
daily penalties of Types Ⅰ-Ⅳ defined in (3.5-3.8). Our proposed stochastic optimization model with normal demands 
(SVSM-N) is then presented. 

 
For a given ℎ ∈ 𝐻𝐻 and 𝑑𝑑 ∈ 𝐷𝐷, the daily demands 𝑅𝑅J!,%, ℎ& = 1, . . . , ℎ are independent normal random variables 

with means 𝜇̂𝜇ℎ!,% and variances 𝜎𝜎~J!,%
'  i.e.,	 𝑅𝑅J!,%~𝑁𝑁9𝜇̂𝜇J!,%, 𝜎𝜎~J!,%

' =. The cumulative daily demands 𝑇𝑇𝐶𝐶ℎ,% =
∑ 𝑅𝑅ℎ!,%
ℎ
ℎ!=&  are also normally distributed, i.e.,	𝑇𝑇𝐶𝐶ℎ,%~𝑁𝑁9𝜇𝜇ℎ,%, 𝜎𝜎ℎ,%' =, where the mean and variance of 𝑇𝑇𝐶𝐶ℎ,%	are de-

fined by 𝜇𝜇ℎ,% = ∑ 𝜇̂𝜇ℎ!,%
ℎ
ℎ!=&   and 𝜎𝜎ℎ,%' = ∑ 𝜎𝜎~ℎ!,%

'ℎ
ℎ!=& , respectively. Also, the storage level 𝑆𝑆ℎ,% given in (3.9) is a 

normal random variable with mean 𝑀𝑀ℎ,%	and variance 𝜎𝜎ℎ,%' . Hence, 𝑀𝑀ℎ,% is defined as follows:  
 

𝑀𝑀ℎ,% = 𝑤𝑤% + ∑ ∑ ∑ ∑ ∑ 𝛺𝛺"𝑋𝑋ℎ!,",#,$!,%,$"ℎ!∈K&,...,ℎ6L.,/!,#,/"
01 M$"∈5$!∈5

LN.
#=&"∈L − 𝜇𝜇ℎ,%, ∀ℎ ∈ 𝐻𝐻, 𝑑𝑑 ∈ 𝐷𝐷.  (4.1) 
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3.4 Model SVSM 

Next, we extend model SVSM which is formulated in Soroush and Al-Yakoob (2018). Next, we set binary 
decision variables. Let  

 

 

 
Another set of binary variables is defined to ensure that a vessel is dispatched from sour	𝑠𝑠 on day	ℎ only if it is 

unused on this day.  
 
Let 
 

 

 
Finally, the chartering decision variables are defined as follows: 
 

 

 

Note that 𝑌𝑌ℎ,",#,$! = 0 leads to 𝑋𝑋ℎ,",#,$!,%,$" = 0∀(𝑑𝑑, 𝑠𝑠'). 
 
Let 𝜑𝜑> and 𝜑𝜑? respectively denote the set of X- and Y-variables that are initialized to zero values. Our vessel 

scheduling stochastic model is then formulated as follows. (Note that all coming indices are supposed to take exact 
values.) 
 

SVSM:  

Minimize 𝑋𝑋ℎ,",#,$!,%,$" 

+ ∑ ∑ ∑ 𝑬𝑬C𝒑𝒑𝒊𝒊,𝒉𝒉,𝒅𝒅D𝒅𝒅
𝟒𝟒
𝒊𝒊=𝟏𝟏𝒉𝒉  +  $",#𝑉𝑉",#, 

Subject to     

𝑺𝑺𝒉𝒉,𝒅𝒅 = 𝒘𝒘𝒅𝒅 + ∑𝒕𝒕 ∑𝒏𝒏 ∑𝒔𝒔𝟏𝟏 ∑𝒔𝒔𝟐𝟐 ∑𝒉𝒉:
𝒉𝒉;𝑻𝑻𝒕𝒕,𝒔𝒔𝟏𝟏,𝒅𝒅,𝒔𝒔𝟐𝟐

𝑳𝑳𝑳𝑳 ∈{𝟏𝟏,...,𝒉𝒉}
𝜴𝜴𝒕𝒕𝑿𝑿𝒉𝒉,𝒕𝒕,𝒏𝒏,𝒔𝒔𝟏𝟏,𝒅𝒅,𝒔𝒔𝟐𝟐 − 𝑻𝑻𝑪𝑪𝒉𝒉,𝒅𝒅,   (3.9) 

∀𝒉𝒉 and 𝒅𝒅 ∈ {𝟏𝟏, . . . , |𝑫𝑫|}, 

 

𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝9𝑆𝑆𝐿𝐿%4 ≤ 𝑆𝑆ℎ,% ≤ 𝑆𝑆𝐿𝐿%:= ≥ 91 − 𝑟𝑟ℎ,%=, ∀ℎ and 𝑑𝑑 ∈ {1, . . . , |𝐷𝐷|},                  (3.10) 
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Then, we deduce the following constraint: 
 

𝑀𝑀ℎ,% ≥ 3.5𝜎𝜎ℎ,%, ℎ ∈ 𝐻𝐻, 𝑑𝑑 ∈ 𝐷𝐷.      (4.2) 

 
                        
  The chance constraint (3.10) can be equivalently written as  
 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 Ö5(#
$6:ℎ,#
Oℎ,#

≤ 𝑁𝑁5ℎ,# ≤
5(#
%6:ℎ,#
Oℎ,#

Ü ≥ 91 − 𝑟𝑟ℎ,%=, ℎ ∈ 𝐻𝐻, 𝑑𝑑 ∈ 𝐷𝐷.      (4.3) 

 
thus, the chance constraint (4.3) can be stated as follows: 
 
 

𝑀𝑀ℎ,% ≤ 𝑆𝑆𝐿𝐿%: − 𝜀𝜀ℎ,%∗ 𝜎𝜎ℎ,%, ℎ ∈ 𝐻𝐻, 𝑑𝑑 ∈ 𝐷𝐷.      (4.4) 

 
Hence, 
 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 Ö𝑁𝑁5ℎ,# ≤
5(#
$6:ℎ,#
Oℎ,#

Ü ≤ 𝜏𝜏ℎ,%, ℎ ∈ 𝐻𝐻, 𝑑𝑑 ∈ 𝐷𝐷,      (4.5) 

 
and 
 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 Ö𝑁𝑁5ℎ,# ≥
5(#
%6:ℎ,#
Oℎ,#

Ü ≤ 𝜍𝜍ℎ,%, ℎ ∈ 𝐻𝐻, 𝑑𝑑 ∈ 𝐷𝐷,      (4.6) 

 
where 𝜏𝜏ℎ,% and 𝜍𝜍ℎ,% are specific known constants defined as 0 < 𝜏𝜏ℎ,% < 1 and 0 < 𝜍𝜍ℎ,% < 1, and 𝜏𝜏ℎ,% + 𝜍𝜍ℎ,% =

𝑟𝑟ℎ,%, in order to guarantee a maximum probabilities that 𝑆𝑆ℎ,% ∈ [𝑆𝑆𝐿𝐿%4, 𝑆𝑆𝐿𝐿%:], ℎ ∈ 𝐻𝐻, 𝑑𝑑 ∈ 𝐷𝐷. Now, for ℎ ∈ 𝐻𝐻, 𝑑𝑑 ∈ 𝐷𝐷, 

let 𝜏𝜏ℎ,%∗  be as 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃C𝑁𝑁5ℎ,# ≤ 𝜏𝜏ℎ,%∗ D = ∫ 𝜙𝜙(𝑡𝑡)𝑑𝑑𝑑𝑑 = 𝜏𝜏ℎ,%
Qℎ,#
∗

6∞ . This implies that R5(#
$6:ℎ,#S
Oℎ,#T

𝜏𝜏ℎ,%∗ , ℎ ∈ 𝐻𝐻, 𝑑𝑑 ∈ 𝐷𝐷, and thus, 

the chance constraint (4.5) can be stated as follows:  

 
𝑀𝑀ℎ,% ≥ 𝑆𝑆𝐿𝐿%4 − 𝜏𝜏ℎ,%∗ 𝜎𝜎ℎ,%, ℎ ∈ 𝐻𝐻, 𝑑𝑑 ∈ 𝐷𝐷.        (4.7) 

 

Also, ℎ ∈ 𝐻𝐻, 𝑑𝑑 ∈ 𝐷𝐷, let 𝜍𝜍J,% be such that 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃C𝑁𝑁53,# ≥ 𝜍𝜍J,%∗ D = ∫ 𝜙𝜙(𝑡𝑡)𝑑𝑑𝑑𝑑 = 𝜍𝜍J,%∗
U
V3,#
∗ . This implies that 

Vℎ,#
∗ TR5(#

%6:ℎ,#S

Oℎ,#
; thus, the chance constraint (4.6) can be stated as follows: 

 

𝑀𝑀ℎ,% ≤ 𝑆𝑆𝐿𝐿%: − 𝜍𝜍ℎ,%∗ 𝜎𝜎ℎ,%, ℎ ∈ 𝐻𝐻, 𝑑𝑑 ∈ 𝐷𝐷.                            (4.8) 

 
Based on Theorems 1–4 that are presented and proved in Soroush and Al-Yakoob (2018),  the exact expected 

total daily penalties of Types Ⅰ-Ⅳ 𝐸𝐸C𝑃𝑃J,%D = ∑ 𝐸𝐸C𝑃𝑃3,J,%D<
3=& , can be written in the following closed-form expression:  
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𝐸𝐸C𝑃𝑃ℎ,%D = 𝜎𝜎ℎ,%

⎣
⎢
⎢
⎢
⎡𝛼𝛼%
4C𝜙𝜙9𝑧𝑧&,ℎ,%= + 𝑧𝑧&,ℎ,%𝛷𝛷9𝑧𝑧&,ℎ,%=D + (𝛽𝛽%4 − 𝛼𝛼%4)C𝜙𝜙9𝑧𝑧',ℎ,%= + 𝑧𝑧',ℎ,%𝛷𝛷9𝑧𝑧',ℎ,%=D

+𝛼𝛼%:C𝜙𝜙9𝑧𝑧9,ℎ,%= + 𝑧𝑧9,ℎ,%𝛷𝛷9𝑧𝑧9,ℎ,%=D
+(𝛽𝛽%: − 𝛼𝛼%:)C𝜙𝜙9𝑧𝑧<,ℎ,%= + 𝑧𝑧<,ℎ,%𝛷𝛷9𝑧𝑧<,ℎ,%=D
−𝛽𝛽%:𝑧𝑧<,ℎ,% ⎦

⎥
⎥
⎥
⎤

   (4.9) 

 

Where 
 

𝑧𝑧&,ℎ,% =
R5(#

$6:ℎ,#S
Oℎ,#

                      (4.10) 

 
 
𝑧𝑧',ℎ,% =

R5(#
$67#

$6:ℎ,#S
Oℎ,#

                      (4.11) 

 
 

𝑧𝑧9,ℎ,% =
R5(#

%6:ℎ,#S
Oℎ,#

                      (4.12) 

 
 

𝑧𝑧<,ℎ,% =
R5(#

%;7#
%6:ℎ,#S
Oℎ,#

                      (4.13) 

 
 
              +𝛼𝛼%:𝐴𝐴%: 
 

and 𝑀𝑀ℎ,% is given by (4.1). Next, we state our mixed-integer nonlinear program SVSM-N. 
 

SVSM-N: 

Minimize 𝑿𝑿𝒉𝒉,𝒕𝒕,𝒏𝒏,𝒔𝒔𝟏𝟏,𝒅𝒅,𝒔𝒔𝟐𝟐  

+ ∑ ∑ ∑ 𝑬𝑬C𝒑𝒑𝒊𝒊,𝒉𝒉,𝒅𝒅D𝒅𝒅
𝟒𝟒
𝒊𝒊=𝟏𝟏𝒉𝒉  +  $𝒕𝒕,𝒏𝒏𝑽𝑽𝒕𝒕,𝒏𝒏,  

 where 𝐸𝐸C𝑃𝑃J,%D is given by (4.9),𝜇𝜇ℎ,% = ∑ 𝜇̂𝜇ℎ!,%
ℎ
ℎ!=&  and 𝜎𝜎ℎ,% = ï∑ 𝜎𝜎~ℎ!,%

'ℎ
ℎ!=& , ∀ℎ ∈ 𝐻𝐻, 𝑑𝑑 ∈ 𝐷𝐷. 

 subject to (3.11)–(3.16), (4.1), (4.2), (4.7), and (4.8).  

 
The objective function of model SVSM-N minimizes the sum of the overall vessel operational expenses, total 

expected penalty cost, and total chartering costs. Constraints (3.11)–(3.16) impose certain restrictions on the operation 
of vessels. Constraint (4.1) defines the mean daily storage level 𝑀𝑀ℎ,%. Constraint (4.2) guarantees the nonnegativity 
of the daily storage level. Constraints (4.7) and (4.8) express the chance constraint (3.10) and ensure that the mean 
storage level lies in [𝑆𝑆𝐿𝐿%4, 𝑆𝑆𝐿𝐿%:], for ℎ ∈ 𝐻𝐻, 𝑑𝑑 ∈ 𝐷𝐷. 
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Then, we deduce the following constraint: 
 

𝑀𝑀ℎ,% ≥ 3.5𝜎𝜎ℎ,%, ℎ ∈ 𝐻𝐻, 𝑑𝑑 ∈ 𝐷𝐷.      (4.2) 

 
                        
  The chance constraint (3.10) can be equivalently written as  
 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 Ö5(#
$6:ℎ,#
Oℎ,#

≤ 𝑁𝑁5ℎ,# ≤
5(#
%6:ℎ,#
Oℎ,#

Ü ≥ 91 − 𝑟𝑟ℎ,%=, ℎ ∈ 𝐻𝐻, 𝑑𝑑 ∈ 𝐷𝐷.      (4.3) 

 
thus, the chance constraint (4.3) can be stated as follows: 
 
 

𝑀𝑀ℎ,% ≤ 𝑆𝑆𝐿𝐿%: − 𝜀𝜀ℎ,%∗ 𝜎𝜎ℎ,%, ℎ ∈ 𝐻𝐻, 𝑑𝑑 ∈ 𝐷𝐷.      (4.4) 

 
Hence, 
 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 Ö𝑁𝑁5ℎ,# ≤
5(#
$6:ℎ,#
Oℎ,#

Ü ≤ 𝜏𝜏ℎ,%, ℎ ∈ 𝐻𝐻, 𝑑𝑑 ∈ 𝐷𝐷,      (4.5) 

 
and 
 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 Ö𝑁𝑁5ℎ,# ≥
5(#
%6:ℎ,#
Oℎ,#

Ü ≤ 𝜍𝜍ℎ,%, ℎ ∈ 𝐻𝐻, 𝑑𝑑 ∈ 𝐷𝐷,      (4.6) 

 
where 𝜏𝜏ℎ,% and 𝜍𝜍ℎ,% are specific known constants defined as 0 < 𝜏𝜏ℎ,% < 1 and 0 < 𝜍𝜍ℎ,% < 1, and 𝜏𝜏ℎ,% + 𝜍𝜍ℎ,% =

𝑟𝑟ℎ,%, in order to guarantee a maximum probabilities that 𝑆𝑆ℎ,% ∈ [𝑆𝑆𝐿𝐿%4, 𝑆𝑆𝐿𝐿%:], ℎ ∈ 𝐻𝐻, 𝑑𝑑 ∈ 𝐷𝐷. Now, for ℎ ∈ 𝐻𝐻, 𝑑𝑑 ∈ 𝐷𝐷, 

let 𝜏𝜏ℎ,%∗  be as 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃C𝑁𝑁5ℎ,# ≤ 𝜏𝜏ℎ,%∗ D = ∫ 𝜙𝜙(𝑡𝑡)𝑑𝑑𝑑𝑑 = 𝜏𝜏ℎ,%
Qℎ,#
∗

6∞ . This implies that R5(#
$6:ℎ,#S
Oℎ,#T

𝜏𝜏ℎ,%∗ , ℎ ∈ 𝐻𝐻, 𝑑𝑑 ∈ 𝐷𝐷, and thus, 

the chance constraint (4.5) can be stated as follows:  

 
𝑀𝑀ℎ,% ≥ 𝑆𝑆𝐿𝐿%4 − 𝜏𝜏ℎ,%∗ 𝜎𝜎ℎ,%, ℎ ∈ 𝐻𝐻, 𝑑𝑑 ∈ 𝐷𝐷.        (4.7) 

 

Also, ℎ ∈ 𝐻𝐻, 𝑑𝑑 ∈ 𝐷𝐷, let 𝜍𝜍J,% be such that 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃C𝑁𝑁53,# ≥ 𝜍𝜍J,%∗ D = ∫ 𝜙𝜙(𝑡𝑡)𝑑𝑑𝑑𝑑 = 𝜍𝜍J,%∗
U
V3,#
∗ . This implies that 

Vℎ,#
∗ TR5(#

%6:ℎ,#S

Oℎ,#
; thus, the chance constraint (4.6) can be stated as follows: 

 

𝑀𝑀ℎ,% ≤ 𝑆𝑆𝐿𝐿%: − 𝜍𝜍ℎ,%∗ 𝜎𝜎ℎ,%, ℎ ∈ 𝐻𝐻, 𝑑𝑑 ∈ 𝐷𝐷.                            (4.8) 

 
Based on Theorems 1–4 that are presented and proved in Soroush and Al-Yakoob (2018),  the exact expected 

total daily penalties of Types Ⅰ-Ⅳ 𝐸𝐸C𝑃𝑃J,%D = ∑ 𝐸𝐸C𝑃𝑃3,J,%D<
3=& , can be written in the following closed-form expression:  
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5. COMPUTATIONAL RESULTS AND SENSITIVITY ANALYSES  

This section presents some computational experiments related to solving SVSM-N and its respective determin-
istic model DVSM. Also, we conduct sensitivity analyses in order to assess that if the optimal expected total cost is 
affected by the changes in the probabilities and variations of daily demands. 
 

5.1. Generatıon of Test Problems 

   We consider 12 test problems, denoted by P1–P12, based on which, for each test problem, we randomly gener-
ate 50 instances. We present the same example and inputs used in Soroush and Al-Yakoob (2018) Tables 2, 3, and 4 
given subsequently provide extra data to all test problems.  

 
Table 2. Basic data and assumptions. 

 

Sources |𝑆𝑆| = 2: 𝑆𝑆 = {1,2} 

Destinations|𝐷𝐷| = 2: 𝐷𝐷 = {1,2} 

Vessel types |𝑇𝑇| = 3: 𝑇𝑇 = {1,2,3} 

𝑈𝑈𝑇𝑇",# = 𝑈𝑈𝑇𝑇", for 𝑡𝑡 ∈ 𝑇𝑇 and 𝑛𝑛 = 1, . . . , 𝑁𝑁𝑇𝑇" 
The maximum vessel usage in days within a time 
horizon is the same for all vessels of the same type, 
say denoted by 𝑈𝑈𝑇𝑇". 

 

Table 3. Intervals for randomly generating the common input data for the test problems. 
 P1 –P12 

 

Total loading/unloading and roundtrip voyage 
times for vessels of types 1, 2, and 3, i.e., for 
9𝑇𝑇&,$!,%,$", 𝑇𝑇',$!,%,$", 𝑇𝑇9,$!,%,$"=, where it is assumed 
that 𝑇𝑇",$!,%,$"

()  = 𝑇𝑇",$!,%,$"
*# ,𝑠𝑠&, 𝑠𝑠' = 1,2  𝑑𝑑 = 1,2: 

                     ([4, 8], [10, 14], [16, 20]) 

Total loading/unloading and roundtrip voyage 
times for vessels of types 1, 2, and 3, i.e., for 
9𝑇𝑇&,$!,%,$", 𝑇𝑇',$!,%,$", 𝑇𝑇9,$!,%,$"=, where it is assumed 
that 𝑇𝑇",$!,%,$"

()  = 𝑇𝑇",$!,%,$"
*# ,𝑠𝑠&, 𝑠𝑠' = 1,2,          𝑑𝑑 = 1,2: 

                     ([4, 8], [10, 14], [16, 20]) 
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Table 4. Intervals for randomly generating specific input data for test problems P1 –P12 with normal  
demands. 

 

Normal demands 

9𝜇̂𝜇ℎ,%, 𝜎𝜎~ℎ,%=, ℎ ∈ 𝐻𝐻, 𝑑𝑑 = 1,2 ([150, 200], [35, 40]) 

𝑤𝑤%, 𝑑𝑑 = 1,2 [5000, 6000] 

𝑆𝑆𝐿𝐿%4, 𝑑𝑑 = 1,2 [1750, 2750] 

𝑆𝑆𝐿𝐿%:, 𝑑𝑑 = 1,2 [5500, 6500] 

𝐴𝐴%4, 𝑑𝑑 = 1,2 [900, 1100] 

𝐴𝐴%:, 𝑑𝑑 = 1,2 [900, 1100] 

 
For the Normal distributed daily demands, the means and standard deviations 9𝜇̂𝜇J,%, 𝜎𝜎~J,%= are, respectively, 

randomly generated from ([150, 200], [35,40]), where 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃9𝑅𝑅J,% ≥ 0= ≈ 1, ∀ℎ ∈ 𝐻𝐻, 𝑑𝑑 = 1,2 (as indicated earlier 

in chapter 4. Models SVSM-N are solved based on the randomly generated 750 instances, fifty instances of each 

of the problems P& – P&'. The 750 instances of DVSM relative to SVSM-N were generated by specifying the 

deterministic daily demands equal to ℎ& ∈ 𝐻𝐻, 𝑑𝑑 = 1,2, (𝜎𝜎~ℎ!,% is ignored).  

 
5.2 Computatıonal Experıments  

To conduct our computational experimentations, we have used a HP Laptop 14-cf0xxx computer with Intel(R) 
Core(TM) i5-8250U CPU, 1.80 GHz, 8 GB of RAM, 64-bit OS. We solved DVSM using the CPLEX optimization 
package with its enhanced branch-and-cut methods for solving mixed-integer programs, whereas, to solve models 
SVSM-N, we applied Particle Swam Optimization using MATLAB R2020a for solving mixed-integer nonlinear 
programs. The termination limit was set at 16,500,000 iterations. We also set the convergence criteria at “Global 
Optimality.” Obtained results indicated that all the generated instances of SVSM-N and DVSM were optimally solved 
within the set limits. We define the following terms that will be used in our computational and sensitivity analyses in 
the remainder of this chapter.  
 
1. v*(DVSM): Optimal objective function value of model DVSM, which represents the total cost (overall oper-

ational cost, penalty cost, and chartering cost) obtained via solving the deterministic model DVSM. 
2. v*(SVSM-I):  Optimal objective function value of model SVSM-I, which represents the expected total cost 

(overall operational cost, expected total penalty cost, and chartering cost) obtained via solving the stochastic 
model SVSM-I, where I=N for the normal demand. 

3. Overcost-I (%) = 100[v*(SVSM-I) – v*(DVSM)] / v*(DVSM):  Percentage over cost of v∗(SVSM-I) relative 
to v∗(DVSM), where I=N for the normal case. 

4. Min-I: Least Overcost-I (%) obtained when solving Model SVSM-I based on instances of a given test prob-
lem, where I=N for the normal case. 

1 ,
ˆ ,h dµ
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affected by the changes in the probabilities and variations of daily demands. 
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   We consider 12 test problems, denoted by P1–P12, based on which, for each test problem, we randomly gener-
ate 50 instances. We present the same example and inputs used in Soroush and Al-Yakoob (2018) Tables 2, 3, and 4 
given subsequently provide extra data to all test problems.  

 
Table 2. Basic data and assumptions. 

 

Sources |𝑆𝑆| = 2: 𝑆𝑆 = {1,2} 

Destinations|𝐷𝐷| = 2: 𝐷𝐷 = {1,2} 

Vessel types |𝑇𝑇| = 3: 𝑇𝑇 = {1,2,3} 
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horizon is the same for all vessels of the same type, 
say denoted by 𝑈𝑈𝑇𝑇". 

 

Table 3. Intervals for randomly generating the common input data for the test problems. 
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Total loading/unloading and roundtrip voyage 
times for vessels of types 1, 2, and 3, i.e., for 
9𝑇𝑇&,$!,%,$", 𝑇𝑇',$!,%,$", 𝑇𝑇9,$!,%,$"=, where it is assumed 
that 𝑇𝑇",$!,%,$"

()  = 𝑇𝑇",$!,%,$"
*# ,𝑠𝑠&, 𝑠𝑠' = 1,2  𝑑𝑑 = 1,2: 

                     ([4, 8], [10, 14], [16, 20]) 

Total loading/unloading and roundtrip voyage 
times for vessels of types 1, 2, and 3, i.e., for 
9𝑇𝑇&,$!,%,$", 𝑇𝑇',$!,%,$", 𝑇𝑇9,$!,%,$"=, where it is assumed 
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5. Max-I: Largest Overcost-I (%) obtained when solving Model SVSM-I based on instances of a given test 
problem, where I=N for the normal case. 

6. Med-I: Median Overcost-I (%) obtained when solving Model SVSM-I based on instances of a given test 
problem, where I=N for the normal case. 

7. Ave-I: Average of Overcost-I (%) obtained when solving Model SVSM-I based on instances of a given test 
problem, where I=N for the normal case. 

8. Op-cost-I: Average of operational costs of vessels obtained when solving Model SVSM-I based on instances 
of a given test problem, where I=N for the normal case. 

9. Exp-total-pen-I:  Average of expected total penalties obtained when solving model SVSM-I based on in-
stances of a given test problem, where I=N for the normal case. 

10. Chart-cost-I:  Average of chartering costs obtained when solving model SVSM-I based on instances of a 
given test problem, where I=N for the normal case. 

11. RT: Average of run times (in seconds) for solving model DVSM. based on instances of a given test problem, 
12. RT-I: Average of run times (in seconds) for solving stochastic model SVSM-I, based on instances of a given 

test problem, where I=N for model SVSM-N. 
 

 Table 5. Summary statistics of Overcost-N(%), the breakdowns (in percent) of the expected total cost, and the 
run times RT-N and RT. 

 
Based on the results of Table 5, the following observations under the summary statistics of the Overcost-N (%), 

expected total cost components obtained via solving SVSM-N, and the average run times are presented by using one-
tailed or two tailed Wilcoxon rank-sum tests.   
 

1. The over cost given by Overcost-N (%) is noticeably larger than zero (p -value < 0.0001, one-tailed test) due 
to meeting the demands from the no penalty interval for the storage levels with the prescribed reliabilities. 
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2. The overcosts of problem instances having similar time horizon for a stochastic model are (in most cases) not 
significantly different (p -value > 0.2284, two-tailed test); hence, the configurations of the self-owned and 
chartered vessels (in most cases) does not lead to significant impact on the over cost. 

3. Increasing the days of the time horizon consistently leads to an increase in Overcost-N (%) (p -value < 0.0001, 
one-tailed test). 

4. The expected total cost obtained via solving a stochastic model is significantly higher than that of its deter-
ministic counterpart (p-value < 0.00001, one-tailed test). As an example, with regard to the expected total 
cost components obtained via solving SVSM-N, the expected Type Ⅰ penalty percentage is significantly 
higher than the expected Type Ⅱ penalty percentage using one-tailed test with p -value < 0.0001; and the 
expected Type Ⅲ penalty percentage is significantly higher than that of Type Ⅳ (p -value < 0.0001, one-
tailed test). The expected Type Ⅰ and Type Ⅲ penalties percentages are significantly the same using two-
tailed test with p -value > 0.2557, since their relevant symbols are generated randomly from same intervals. 

5. It was observed that, at any time horizon, chartering vessels significantly increase the following:  
(i) The cost percentage using one-tailed test with p -value < 0.0001.  
(ii) The expected type 2 penalty percentage, in order to prevent any stock-outs of the product using one-

tailed test with p -value < 0.0001. 
(iii) The chartering vessels cost percentage using one- tailed test with p -value < 0.0001.  

6. We found that any increase in the number of days in horizon impacts the following: 
(i) The vessel operational percentage cost will significantly decrease (p -value < 0.0001, one-tailed test),  
(ii) The expected total penalty percentage will significantly increase (p -value < 0.0001, one-tailed test),  
(iii)  The chartering cost percentage will not be affected (p -value > 0.1884, one-tailed test). 

7. For the run time of the operation, we noticed the following: 
(i) The run solution time for a stochastic model is more than that of its deterministic counterpart instance 

(p-value < 0.00001, one-tailed test). 
(ii) The run times for solving various instances with the same time horizon of a stochastic model are not 

significantly different (p-value > 0.2532, two-tailed test). It’s also occur for their corresponding deter-
ministic instances. 

(iii) An increase in the days of time horizon constantly leads to an increase in the run solution time for a 
stochastic model (p-value < 0.0001, one-tailed test). This also applies to the run time of its deterministic 
counterpart. 

 
The above findings substantiate the proposition that the nature of the daily demand probability distribution sig-

nificantly impacts the expected total cost as well as its components. Therefore, discarding demand uncertainties is 
likely to underestimate the overall operational costs, penalty expenses and chartering costs, leading to unrealistic 
solutions. The same findings were also deduced in Soroush and Al-Yakoob (2018) and Soroush et al. (2020) for the 
single source and single destination scenario.  

 
We have also examined the similarity of the optimal schedules obtained from SVSM-N and its DVSM. A meas-

ure was introduced to determine the percentage of similarity between an optimal schedule obtained via one of the 
stochastic models (SVSM-N) and its DVSM counterpart. This percentage is defined as 100 [no. of similar voyages 
(of all vessels of all types) in the optimal schedules obtained from a stochastic model and its DVSM counterpart] / 
[max. of the no. of that voyages]. As example, suppose that 0%, 25%, 50%, and 100% similarities, respectively, show 
that our voyages are entirely different, 25% similar, 50% similar, and completely the same. 

 
Table 6 presents the input data and normal demand for a specific instance. Table 7 provides the optimal sched-

ules for SVSM-N, and their DVSM counterparts as well as the percentages of similarity and overcost between the 
optimal schedules. The percentage of similarity of the optimal schedules for SVSM-N and its DVSM is 8.33% (the 
two schedules share only one identical vessel voyage, i.e., vessel 1 of type 1 leaving on day 2 and returning on day 
6).  

 

5. Max-I: Largest Overcost-I (%) obtained when solving Model SVSM-I based on instances of a given test 
problem, where I=N for the normal case. 

6. Med-I: Median Overcost-I (%) obtained when solving Model SVSM-I based on instances of a given test 
problem, where I=N for the normal case. 

7. Ave-I: Average of Overcost-I (%) obtained when solving Model SVSM-I based on instances of a given test 
problem, where I=N for the normal case. 

8. Op-cost-I: Average of operational costs of vessels obtained when solving Model SVSM-I based on instances 
of a given test problem, where I=N for the normal case. 

9. Exp-total-pen-I:  Average of expected total penalties obtained when solving model SVSM-I based on in-
stances of a given test problem, where I=N for the normal case. 

10. Chart-cost-I:  Average of chartering costs obtained when solving model SVSM-I based on instances of a 
given test problem, where I=N for the normal case. 

11. RT: Average of run times (in seconds) for solving model DVSM. based on instances of a given test problem, 
12. RT-I: Average of run times (in seconds) for solving stochastic model SVSM-I, based on instances of a given 

test problem, where I=N for model SVSM-N. 
 

 Table 5. Summary statistics of Overcost-N(%), the breakdowns (in percent) of the expected total cost, and the 
run times RT-N and RT. 

 
Based on the results of Table 5, the following observations under the summary statistics of the Overcost-N (%), 

expected total cost components obtained via solving SVSM-N, and the average run times are presented by using one-
tailed or two tailed Wilcoxon rank-sum tests.   
 

1. The over cost given by Overcost-N (%) is noticeably larger than zero (p -value < 0.0001, one-tailed test) due 
to meeting the demands from the no penalty interval for the storage levels with the prescribed reliabilities. 
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Table 6. Extra Input data for a problem instance with normal demand. 
 

 
 
 
 

 
 
 
 
 
 
 
 
 
 

 
Table 7. Optimal schedules of SVSM-N, and DVSM for the problem instance of Table 6 and the  

percentages of their overcosts and schedule similarities. 
 

(a) SVSM-N versus its DVSM 

SVSM-N optimal schedule DVSM optimal schedule  

Vessel no. Vessel type Leav. day Ret. day Vessel no. Vessel type Leav. day Ret. day 

1 1 1 5 1 1 2 6 

1 1 2 6 3 1 5 9 

2 1 8 14 1 1 7 11 

3 1 10 16 2 1 9 13 

2 1 13 17 3 1 11 15 

4 1 14 18 4 1 13 17 

1 1 15 19 2 1 15 19 

3 1 17 21 3 1 20 24 

1 1 20 24 2 1 21 25 

4 1 21 25 1 1 22 26 

3 1 22 26     

2 1 23 27     

v ∗(SVSM-N) = $359,580  v ∗(DVSM) = $299,760 

Overcost-N (%) = 19.96% and, schedule similarity percentage = 8.33% 

(a) specific input data 

 Normal demand with 9𝜇̂𝜇J,%, 𝜎𝜎~J,%==(150, 40), ℎ ∈ 𝐻𝐻, 𝑑𝑑 = 1,2 

𝑤𝑤%, 𝑑𝑑 = 1,2 4000 

𝑆𝑆𝐿𝐿%4, 𝑑𝑑 = 1,2 2250 

𝑆𝑆𝐿𝐿%:, 𝑑𝑑 = 1,2 6000 

𝐴𝐴%4, 𝑑𝑑 = 1,2 1000 

𝐴𝐴%:, 𝑑𝑑 = 1,2 1000 
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Table 8. Summary statistics on the similarities’ percentages of the SVSM-N,  
and DVSM optimal schedules for 𝐏𝐏𝟏𝟏 – 𝐏𝐏𝟏𝟏𝟏𝟏 

 
(a) SVSM-N versus its DVSM 

Similarity (%) 

Test problem (1) Min (2) Max (3) Avg (4) 

P1 5.25 18.99 11.86 

P2 5.44 19.76 11.97 

P3 6.02 19.98 12.19 

Average 5.57 19.58 12.01 

P4 4.12 15.88 9.88 

P5 4.23 16.05 9.97 

P6 4.56 16.74 10.08 

Average 4.30 16.22 9.98 

P7 3.06 11.05 5.64 

P8 3.68 11.58 5.85 

P9 3.79 12.07 6.01 

Average 3.51 11.57 5.83 

P10 1.09 4.63 1.87 

P11 1.25 5.28 2.37 

P12 1.62 5.71 2.76 

Average 1.32 5.21 2.33 
 
We also have computed the percentages of similarity between the optimal schedules for SVSM-N and its re-

spective DVSM associated with the various instances of each of the test problems P& – P&'. Table 8 displays the 
minimum, average, and maximum of such percentages for every problem. The results indicate the following: 
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3. The percentages of similarity for the instances of the same number of days in horizon of each problem are 

significantly the same using two-tailed Wilcoxon rank-sum test with p-value > 0.3327.  
4. The percentages of similarity are noticeably decreased according to the increase of the number of days in the 

time horizon using one-tailed Wilcoxon rank-sum test with p-value < 0.00001. 

For more details related to the computational results and analysis, please refer to the  
Dina E. A. (2021). A Vessel Scheduling and Inventory Problem with Normal and Gamma Demand Distributions 

– Multiple Sources and Destinations 
[Master's Thesis, Kuwait University] (http://dx.doi.org/10.13140/RG.2.2.18801.40806)  
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5.3 Sensıtıvıty Analyses 

This section investigates the effects when 91 − 𝑟𝑟J,%=, ℎ ∈ 𝐻𝐻, 𝑑𝑑 ∈ 𝐷𝐷, (i.e., service levels)  takes various values 
on the Overcost-N(%) relative to its DVSM of the test problems P& – P&'. From Table 9, we can notice that the 
increase in 91 − 𝑟𝑟ℎ,%=values leads to the increase in the Overcost-N(%) relative to its DVSM ( p -value < 0.0001, 
one-tailed test). Then, higher probabilities in order to meet demand consistently lead to higher overcosts. 

 
Table 9. Overcost-N(%) for the test problems 𝐏𝐏𝟏𝟏 – 𝐏𝐏𝟏𝟏𝟏𝟏 when 9𝟏𝟏 − 𝒓𝒓𝒉𝒉,𝒅𝒅= takes various values. 

 
(a) SVSM-N versus its DVSM 

91 − 𝑟𝑟ℎ,%= 

Test problem 0.80 0.85 0.90 0.95 

P1 14.67 18.04 19.56 21.19 

P2 14.04 19.12 19.87 21.71 

P3 15.51 19.68 21.02 22.47 

Average 14.74 18.95 20.15 21.79 

P4 22.51 26.72 29.04 31.36 

P5 22.87 25.32 29.57 31.24 

P6 23.03 28.08 30.89 32.66 

Average 22.80 26.71 29.83 31.75 

P7 37.92 44.02 46.87 50.01 

P8 38.79 45.69 47.42 50.24 

P9 39.58 46.83 48.05 51.07 

Average 38.76 45.51 47.45 50.44 

P10 55.28 63.07 65.82 66.15 

P11 56.79 64.26 66.02 67.23 

P12 57.08 64.03 66.97 68.04 

Average 56.38 63.79 66.27 67.14 
 
In addition, in Table 10, we sought the effects when the standard deviations 𝜎𝜎~J!,% of normal daily demands are 

randomly generated from various intervals based on the test problems P& – P&'. Table 10 displays the results for in 
which the standard deviations of daily demands, ℎ& ∈ 𝐻𝐻, 𝑑𝑑 ∈ 𝐷𝐷 are randomly sampled from various intervals, 
while the expected demands 𝜇̂𝜇ℎ!,%  are generated from the same interval [150, 200] for SVSM-N versus its DVSM.  
The results of Table 10 indicate the following:  

 
1. A decrease in demand variations reduces the overcost (p-value < 0.0001, one-tailed test).  
2. When the demand variations reduce to zero, the overcosts will also decrease to zero; that is, v * (SVSM-N) 

reduced to its respective v * (DVSM) values. 
 

1 ,
ˆ ,h ds
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Table 10. Overcost-N(%) for the test problems 𝐏𝐏𝟏𝟏 – 𝐏𝐏𝟏𝟏𝟏𝟏 when the standard deviations 𝝈𝝈ù𝒉𝒉𝟏𝟏,𝒅𝒅 of normal  
daily demands is randomly generated from various intervals. 

 
(a) SVSM-N versus its DVSM 

𝜎𝜎~ℎ!,% 

Test problem [5,10] [15,20] [25,30] [35,40] 

P1 6.12 9.54 14.87 17.99 

P2 6.04 9.76 15.96 18.91 

P3 7.41 10.68 17.52 19.48 

Average 6.52 9.99 16.12 18.79 

P4 8.50 16.42 24.13 28.06 

P5 10.57 17.38 26.02 30.39 

P6 9.88 19.25 27.19 31.90 

Average 9.65 17.68 25.78 30.12 

P7 12.02 35.81 38.81 45.45 

P8 13.75 37.87 39.52 46.24 

P9 14.28 39.66 41.95 47.08 

Average 13.35 37.78 40.09 46.26 

P10 20.04 44.45 52.81 64.45 

P11 22.75 47.54 54.02 66.24 

P12 24.28 49.89 56.95 68.08 

Average 22.36 47.29 54.59 66.26 
 

6. CONCLUDING REMARKS 

The specific vessel scheduling transportation problem considered in this research effort incorporates multiple 
sources, and multiple destinations with normal demand distribution. We have formulated exact mixed-integer non-
linear programming models SVSM-N for the normal demand scenario using chance-constrained programming.  

 
The following findings highlight our computational experimentation: 
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sponding deterministic models. 

2. An increase in the days of time horizon consistently widens the gap between the optimal objective values for 
SVSM-N and their respective deterministic counterparts. 

3.  Any increase in the probabilities for meeting the demands triggers an increase in the optimal objective values 
for SVSM-N. 

4.  Any reduction in the variations in daily demands and the CV of demands diminishes the optimal objective 
values for SVSM-N. 

5. The optimal objective values for SVSM-N are significantly higher than those of their deterministic counter-
parts. 
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1 ,
ˆ ,h ds
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Thus, this research effort signifies that the nature of demand distribution in the multiple sources and multiple 
destinations scheduling-inventory scenario significantly impacts the overall fleet schedules and the total expected 
cost. Therefore, it is crucial to grasp essential stochastic aspects of the daily demands to avoid potential misrepresen-
tation of the operational costs. The limitation of the proposed method is essentially the difficulty to solve large-scale 
mix-integer programming models. However, with the advances in optimization solvers and computer power, we can 
nowadays solve large-scale mix-integer programming models in a relatively reasonable time.  

 
An extension of our modeling approach is to generalize problem scenarios with other penalty structures. Another 

extension is to investigate new stochastic demand scenarios with multiple sources and destinations. Future work 
should also consider probabilistic aspects related to the vessel loading/unloading, travel times, and partially 
loaded/unloaded vessels. 
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