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ABSTRACT 

    Insulation faults are major problems in high-voltage cable lines. The major factors in insulation faults are 
the harmonic currents and the metal sheath voltage (MV) that occur on the metal sheath of cables. MV and harmonic 
distortion should be minimized to prevent insulation faults. Thus, sectional solid bonding with different grounding 
resistance (SSBr) methods has been developed as a new bonding method for minimizing harmonic current and MV. 
In addition, SSBr should be optimized by optimizing the minimum MV and harmonic distortion rate of high-voltage 
cables. Inertia-weighted particle swarm optimization (iPSO), particle swarm optimization (PSO), genetic algorithm 
(GA), and differential evolution algorithm (DEA) are used for the optimization of SSBr, and three groups of prediction 
methods are used separately as objective functions of the optimization methods to determine the minimum MV and 
harmonic distortion; these groups include neural networks, hybrid neural networks, and regression methods. Hybrid 
neural network with inertia-weighted particle swarm optimization (H-iPSO), linear regression, and feedforward 
backpropagation neural networks were selected from their groups according to training errors. Solid bonding method, 
which is widely used for bonding high-voltage cables,  is simulated in this study. When solid bonding is used, the 
maximum harmonic distortion rate is measured as 8.15 %, and the maximum MV is measured as 1086 V. When H-
iPSO is used as the prediction method and PSO is used as the optimization method, the maximum harmonic distortion 
rate is measured as 5.28 %, and the maximum MV is measured as 57 V. Both insulation fault and electroshock can be 
prevented by the optimized SSBr method. 

      Keywords: High Voltage Cable Bonding; Hybrid Artificial Neural Network; Optimization. 

 

INTRODUCTION 

A high-voltage cable occurs from different layers. The most important layer is the insulation layer. Polyvinyl 
chloride (PVC), polyethylene (PET), and cross-linked polyethylene (XLPE) insulation materials are used in the 
insulation layer according to the voltage level.  In a high-voltage cable, the insulation layer is covered by the 
semiconductor layer, which itself is covered by the metal sheath. In high-voltage cable, the insulation faults are 
generally at the head and end of the line, as verified in consultation with an electricity distribution company. When a 
line current flows in the conductor of a high-voltage cable, the metal sheath voltage (MV) occurs on the metal sheath, 
and MV increases towards the end of the line. Thus, the metal sheath is grounded, using cable bonding methods (Ruiz 
et al. 2007; Jung et al. 2005), to reduce the MV. When the metal sheath of a high-voltage cable is grounded, the metal 
sheath current (MC) flows on the metal sheath because of the load current. Hence, the cable insulation temperature 
increases. In addition, if the load current includes the harmonic current (HC), the insulation temperature increases 
because of the MC and HC (Glover et al. 2012, Mehdi et al. 2014). High-voltage and high-temperature damage the 
insulation material of the cable (Shuai et al. 2016; Bak et al. 2016). The cable bonding methods indicated in the 
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literature (IEEE Standard 2014) do not adequately address the insulation faults based on high thermal and electric 
field effects. Sectional solid bonding method can be used to prevent insulation faults based on high thermal and electric 
field effects (Akbal 2016; Akbal 2018). However, this method can be used for a maximum of 1-km cable lines (Akbal 
2018). Cable grounding is very important for preventing cable insulation faults. Thus, optimal cable bonding should 
be performed to avoid cable insulation faults. This study proposes a new cable grounding method for the prevention 
of insulator failures caused by thermal and high electric fields in long cable lines.. Sectional solid bonding with 
different grounding resistance (SSBr) methods is suggested as a new cable bonding method for long cable lines, and 
the SSBr method is optimized with intelligent techniques to minimize the high electric field and thermal effects. 

In section two, the material and methods used are introduced. The SSBr method developed to prevent cable 
insulation failures caused by high MV and harmonic currents is described. Artificial intelligence methods used to 
determine the optimum parameter values in the SSBr method are also introduced, and information regarding the 
optimization of the SSBr method is provided. Section 3 presents the results and discussion. In this section, the 
simulation results of the SSBr method optimized using different methods are presented. By evaluating these results, 
the artificial intelligence methods that provide the best results in the optimization of the SSBr method are determined, 
and the conclusions are presented in Section 4.  

 

MATERIAL AND METHOD 

Several bonding methods for grounding the metal part of a cable have been proposed (IEEE Standard 2014). 
Single-point bonding is used in short lines, and solid bonding and cross-bonding are used in long lines. However, if 
the line harmonics are at a high level, MV, HC, and MC increase significantly in the metal parts of the cable owing to 
the use of these methods. Thus, cable insulation faults and electroshocks are observed in high-voltage cable lines. The 
SSBr method is suggested for long cable lines that operate under high-harmonic distortion conditions. In the SSBr 
method, shown in Figure 1, the total cable length is divided into minor parts. The minor part length (L), different 
grounding resistances (Rg1 and Rg2), and grounding inductances (Lg) are minor parameters.  MV is restricted by the 
optimum minor part length and the current harmonics are restricted by the optimum Lg. 

 

Figure 1. SSBr method. 

The high-voltage cable-bonding method should satisfy both economic and technical requirements. Thus, 
these factors were considered in the design of the optimized SSBr method. If the number of minor parts is minimal, 
the economic condition is provided. If the MV and harmonic distortion rate are lower than certain limits, technical 
conditions are provided.  

Primarily, L, Rg1, and Rg2 optimization problems should be solved, and the MV should be determined for 
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L, Rg1, and Rg2 optimizations because these optimizations are performed according to the MV value. The MV value, 
which can be calculated using the MV formulation, was used as the objective value in the optimization method. 
However, the affinity of MV formulation is very low (Akbal 2018). Thus, prediction methods were used instead of 
the formulas. The prediction methods used were neural networks, hybrid neural networks, and regression methods. 
The predicted MV was used as the fitness value in the optimization process. Neural networks (NN) were used for 
prediction studies in electrical engineering (Achanta et al. 2012; Weigerta et al. 2010).  

Artificial neural networks have learning features, and learning occurs through mathematical modeling. The 
most basic elements of artificial neural networks are neurons. Neurons work as a transfer function and are modeled 
using (1). 
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The inputs are defined as xj, weights are defined by wij, bias is defined as bi, transfer function is defined as 
fi, and output is defined as yi. Mean square error (MSE), shown in (2), is used to calculate the training errors. 
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The forecasting error is defined as E(t), the requested value of the output is defined as p(i), and the real value 
of the output is defined as o(i). The weights that yielded the lowest training error were the most suitable weights for 
the neural network. Therefore, the weights were updated at each iteration using equation (3). Figure 2 shows how a 
neuron functions as a transfer function. 

                 ( ) ( ) ( )= D+ +1 ii iww t t w t                                                                        (3) 

Neural networks consist of an input layer, a hidden layer, and an output layer, as shown in Figure 3. In 
addition, ANNs have different network structures in artificial neural networks. In this study, feedforward 
backpropagation (FFBP), layer recurrent (LyR), nonlinear autoregressive network with exogenous inputs (NARX), 
perceptron (P), and probabilistic (Pb) neural network structures were used.  

 

              Figure 2. Neuron working                                                                      Figure 3. The layers of neural network 

 In the hybrid artificial neural network method, the weights of the ANN are updated using 
optimization methods instead of (3). The algorithm for the hybrid ANN method is illustrated in Figure 4. 
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Figure 4. Hybrid ANN algorithm. 

The optimization method was used to update the weights of the neural network in the hybrid neural network 
method to obtain the minimum training error [34,35]. Inertia-weighted particle swarm optimization (iPSO), particle 
swarm optimization (PSO), genetic algorithm (GA), and differential evolution algorithm (DEA) were used as 
optimization methods in hybrid neural networks. Neural network and GA hybrid method is called H-GA, the neural 
network and DEA hybrid method is called H-DEA, the neural network and PSO hybrid method is called H-PSO, and 
ANN and iPSO hybrid method is called H-iPSO. Regression was another prediction method used in this study, as it 
has been used to solve prediction problems in electrical engineering (Zhonga et al. 2019; Wang et al. 2012). In 
regression, the estimation process is based on the relationship between the dependent and independent variables, as 
shown in equation (4) (Sahinler 2000). 

.Y a b X= +                                                                                                                (4)    
 

In Equation (4), the dependent variable is denoted by Y. Therefore, Y is the estimated parameter, and X is 
the independent variable. In particular, X denotes the estimator variable, where a is the intersection value of the 
regression line and b is the slope of the regression line. There are different regression structures, and linear regression 
(LR), robust linear regression (RLR), stepwise linear regression (SWLR), fine tree regression (FTR), linear support 
vector machine regression (LMVMR), and cubic support vector machine regression (CMVMR) been used as 
regression methods in prediction studies. The input and output matrices were obtained from the simulation results for 
the prediction method. The simulation program used was PMCAD/EMTDC to simulate the various cable lines. These 
matrices were used to train the prediction methods. The minor part length (L), grounding resistances (Rg1 and Rg2), 
load currents (Ia, Ib, Ic), zero sequence current (ZC), zero-sequence voltage (Ez), total voltage harmonic distortion at 
the head of line (HV), total voltage harmonic at the end of line (EV), and sheath currents of each phase (Ik1, Ik2,Ik3) 
are effective for MV (Moutassem et al. 2010; Wei et al. 2018). Thus, the input data are these data, and the output data 
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re the MV measured in the simulation studies. The matrices are shown in Figure 5.  

 Figure 5. The training process matrices.                                         Figure 6. L, Rg1 and Rg2 optimization process input 

matrix. 

The optimum L, Rg1, and Rg2 values were determined using the trained prediction method in the research 
space.  Thus, a new input matrix is essential in the research space.  The input matrix is shown in Figure 6. Ia, Ib, Ic, 
HV, EV, ZC, Ez, Ik1, Ik2, and Ik3 values did not change, and L, Rg1, and Rg2 values were taken from the L, Rg1, 
and Rg2 matrices. Thus, vector is generated by these parameters. L, Rg1, and Rg2 matrices were generated using the 
optimization method.  In the input matrix, each vector represents a cable line, and the MV of each vector is predicted 
using the trained prediction method. Therefore, the optimum L, Rg1, and Rg2 values were determined using the trained 
prediction method based on the MV value of the vector. The output matrix was generated with the forecasted MVs, 
as shown in Figure 7, and the optimization algorithm shown in Figure 8 was used to optimize L, Rg1, and Rg2. The 
affinity value in the optimization algorithm shows the vector quality, and is calculated using (5). Where 70.71 V (peak) 
is the touch voltage limit for a person according to the IEC 479-1 standard.   

 Affinity Value= 70.71 V – the forecasted MV                                                                                (5)  

 In Lg optimization, the optimum Lg value is determined according to the minimum current harmonic 
distortion rate on the metal sheath.  If the current harmonic distortion rate is reduced, the cable temperature is reduced, 
and cable insulation fault is avoided.   

 

Figure 7. L, Rg1 and Rg2 optimization process output matrix 

 

In addition, the trained prediction method was used as the objective method. Thus, the input and output 
matrices occur according to different line simulation results. The matrices are shown in Figure 9. The vectors included 
L, HC, and Lg. The measured current harmonic distortion difference between the cable terminations (Df) was used to 
generate the output matrix in the training process. The trained prediction method was used to forecast Df, which was 
used as an objective value in optimization methods.  First, a new input matrix is generated to determine the optimum 
Lg value. Namely, the optimum Lg value is determined by the trained prediction method in the research space. The 
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new input matrix for the research space is shown in Figure 10. In the vector of the input matrix, L and HC are kept 
constant because the values of these parameters are certain, and the Lg values of the vectors are changed to find the 
optimum Lg value. In addition, the Lg matrix was obtained using the optimization method for different Lg values. Df 
was predicted using the trained prediction method using vectors. The prediction process is illustrated in Figure 11. 
The best vector was determined according to the minimum Df value of the vector, and the Lg optimization algorithm 
is shown in Figure 12. 

 

Figure 8. L, Rg1 and Rg2 optimization algorithm 
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  Figure 9. Input and output matrices for training process.                          

 

 

                                                                                                                                              Figure 12. Lg optimization algorithm 

Figure 10. The new input matrix for Lg optimization 

 

 

 

 

                            

 

 
Figure 11. Output matrix for optimization of Lg optimization. 
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RESULTS AND DISCUSSION 

In the simulation studies, 61 cable lines were modeled and simulated to obtain the input and output matrices 
for the training process.  The cross-section of the cable used in the cable lines was 1x240mm2, its insulation material 
was XLPE, and its operating voltage was 35 kV.  After the simulation studies, a 61 × 13 matrix was determined as the 
input matrix and a 61 × 1 matrix was determined as the output matrix for the training process of L, Rg1, and Rg2 
optimization.   

The iPSO, PSO, GA, and DEA were used for the optimization of SSBr. The number of iterations for the 
optimization methods was set to 100 and the number of populations to 50. For PSO and iPSO, the c1 coefficient was 
set to 2, and the c2 coefficient to 2. In addition, the starting coefficient was 0.4, and the ending coefficient was 0.9, 
when calculating the inertia weight in the iPSO method. In the GA method, the crossover rate was 0.7, and the mutation 
rate was 0.01. In the DEA method, the crossover ratio was set to 0.7. The prediction methods were divided into three 
groups in this study.  The first group comprises neural networks, the second group comprises regression methods, and 
the third group comprises hybrid neural networks. The training errors of the first group of prediction methods are 
listed in Table 1. It can be observed that the training error of FFBP is lower than that of the other neural network 
methods. Thus, FFBP was selected as the first prediction method from the first group of prediction methods. The 
training errors of the second-group prediction methods are listed in Table 2. Notably, the training error of LR is lower 
than the other regression methods. Thus, LR was selected as the second prediction method from the first group of 
prediction methods. 

 

 

 

 

The training error of H-iPSO is lower than those of the other hybrid neural network methods. Hence, H-iPSO 
was selected as the third prediction method from the third group of prediction methods.  The H-iPSO, LR, and FFBP 
prediction methods are considered separately as the objective functions of the optimization methods in L, Rg1, Rg2, 
and Lg optimization. The input matrix is a 108 × 3 matrix, and the output matrix is a 108 × 1 matrix for the training 
process in the Lg optimization. Df is forecasted using trained prediction methods to determine the optimum Lg value. 
The optimum minor part parameters are listed in Table 4, Table 5, and Table 6. When H-iPSO is considered as the 
objective function, the optimum minor part parameter values are determined, as listed in Table 4. When LR is 
considered as the objective function, the optimum minor part parameter values are determined, as listed in Table 5. 

The Prediction Method Training Errors 

FFBP 0.4125 

NARX 0.7515 

P 5.6140 

LyR 5.9893 

Pb 5.9893 

The Prediction Method Training Errors 

LR 0.3424 

RLR 0.4476 

FTR 0.8946 

LMVMR 1.1522 

CMVMR 1.0013 

The Prediction Method Training Errors 

H-PSO 0.3343 

H-DEA 0.5318 

H-GA 0.7588 

H-iPSO 0.2277 

Table3. Training Errors of 
The Third Group. 

 

Table 2. Training Errors  
of The Second Group. 

 

Table 1.  Training Errors 
of The First Group 
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Table 4. Optimum L, Rg1, Rg2, and Lg values.                                                     Table 5. Optimum L, Rg1, Rg2, and Lg 

values. 

 

 

  

 

 

 

When FFBP is considered as the objective function, the optimum minor part parameter values are determined, 
as listed in Table 6. After the optimum values are determined, simulations of the optimum minor part parameters are 
performed to determine the suitability of the determined optimum minor part parameter values. In the simulation 
studies, the cable line was grounded with SSBr, as shown in Figure 1, and the determined optimum parameter values 
were used on the bonded cable line. In addition, the total line length of the cable line was 5000 m. MV and HC of the 
cable terminations were measured in the simulation studies. The common high-voltage line parameters are Ia, Ib, Ic, 
line voltages (phase-to-ground), total current harmonic distortion in each phase (THDI), and total voltage harmonic 
distortion in each phase (THDV), as listed in Table 7. 

 

Table 6. Optimum L, Rg1, Rg2 and Lg values.                                    Table 7. Certain Line Parameters. 

 

 

  

 

 

 

Optimization 
Method 

L (m) Rg1 
(ohm) 

Rg2 
(ohm) 

Lg (H) 

iPSO 378 19.9 2.7 0.00091 

PSO 364 21.5 2.1 0.00052 

GA 249 7.38 9.36 0.03230 

DEA 255 20.3 9.13 0.02760 

Optimization 
Method 

L (m) Rg1 
(ohm) 

Rg2 
(ohm) 

Lg (H) 

iPSO 246 9.42 15.65 0.0013 

PSO 251 8.12 23.54 0.0015 

GA 251 13 15 0.0468 

DEA 251 6.31 7.74 0.0265 

Optimization 
Method 

L (m) Rg1 
(ohm) 

Rg2 
(ohm) 

Lg (H) 

iPSO 250 14.29 21.55 0.0092 

PSO 239 10.57 20.51 0.008

9 

GA 249 21 13 0.0427 

DEA 250 22.41 15.07 0.0278 

    
    

    

    

Line Current 
(A) 

Line Voltage 
(kV) 

THDI 
(%) 

THDV 
(%) 

609 23.4 3.25 3.93 

608 23.4 4.93 4.40 

598 22.7 2.85 4.66 



Bahadır AKBAL  
 

167 
 

  

The sheath voltage of solid bonding is lower than that of 
cross-bonding [15,16,17]. Thus, the bonding of a high-voltage cable 
line with a length of 5 km was achieved by using solid bonding to 
compare the optimized SSBr method. The solid bonding shown in 
Figure 10 is used for the same high-voltage line, and the result of the 
solid bonding is shown in Table 8. 

                                                                                                                        

 

 

 

                                                                                                                                        Table 8. The Result of Solid Bonding 

 

 

 

 

 

Figure 10. Solid bonding. 

 

As shown in Table 8, MV and HC increase significantly, so cable faults and electroshocks are observed at 
the cable termination points,  where HL and EL represent the head and end of the line, respectively.  In the SSBr 
optimization, H-iPSO, LR, and FFBP were considered as objective functions, and the determined optimum values, as 
shown in Tables 4, 5, and 6, respectively, were used in the SSBr method simulations. The simulation results of these 
optimization methods for H-iPSO as the objective function are presented in Tables 9, 10, 11, and 12. The head-of-the-
line cable termination values and the end of the line cable termination values are shown for each phase because voltage 
increases are generally observed at the cable termination points. 

 

Table 9. Result of iPSO optimization Method                                            Table 10. Result of PSO optimization Method 

 

Table 11. Result of GA optimization Method                                         Table 12. Result of DEA optimization Method 

Parameters  HL   EL  

L1 L2 L3 L1 L2 L3 

MV (V) 1086 1081 1023 947 1068 1078 

THDI (%) 4.96 8.04 5.23 4.87 8.15 5.48 

Parameters  HL   EL  

L1 L2 L3 L1 L2 L3 

MV (V) 68 74 63 70 68 69 

THDI (%) 4.42 5.72 2.86 4.42 5.73 2.87 

Parameters  HL   EL  

L1 L2 L3 L1 L2 L3 

MV (V) 52 57 50 52 52 52 

THDI (%) 4.97 5.26 2.53 4.98 5.28 2.54 
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 When H-iPSO was used as the objective function of PSO, the measured MV values on the metal 
sheath were lower than the touch voltage limit and other optimization methods. In addition, the THDI values did not 
increase significantly on the metal sheath during PSO optimization. Therefore, cable insulation faults and 
electroshocks were prevented by the H-iPSO and PSO. The simulation results of the optimization method for LR as 
the objective function are listed in Tables 13, 14, 15, and 16. 

Table 13. Result of iPSO optimization Method                                  Table 14. Result of PSO optimization Method 

 

 

Table 15. Result of GA optimization Method                                 Table 16. Result of DEA optimization Method 

 

 

When LR is considered an objective function of the optimization methods, the MV values on the metal sheath are 

generally larger than the touch voltage limit. The simulation results of the optimization method when FFBP is 

considered as the objective function are listed in Tables 17, 18, 19, and 20. 

 

Parameters  HL   EL  

L1 L2 L3 L1 L2 L3 

MV (V) 101 102 93 105 101 104 

THDI (%) 2.35 2.97 4.56 2.37 3.04 4.60 

Parameters  HL   EL  

L1 L2 L3 L1 L2 L3 

MV (V) 107 104 95 107 103 105 

THDI (%) 2.38 3.00 2.86 2.40 3.06 4.67 

Parameters  HL   EL  

L1 L2 L3 L1 L2 L3 

MV (V) 99 102 91 88 97 100 

THDI (%) 5.23 2.71 6.44 5.24 2.73 6.45 

Parameters  HL   EL  

L1 L2 L3 L1 L2 L3 

MV (V) 96 99 88 86 94 96 

THDI (%) 5.16 2.71 6.37 5.17 2.73 6.39 

Parameters  HL   EL  

L1 L2 L3 L1 L2 L3 

MV (V) 100 101 93 91 101 105 

THDI (%) 5.34 2.30 5.79 5.35 2.39 5.86 

Parameters  HL   EL  

L1 L2 L3 L1 L2 L3 

MV (V) 101 102 93 90 101 104 

THDI (%) 5.40 2.35 5.95 5.42 2.41 5.99 
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Table 17. Result of iPSO optimization Method                            Table 18. Result of PSO optimization Method 

 

 

 

 

 

Table 19. Result of GA optimization Method                                    Table 20.  Result of DEA optimization Method 

 

When FFBP is considered as an objective function of the optimization methods, the MV values on the metal sheath 

are generally larger than the touch voltage limit. Therefore, cable insulation faults or electroshocks can be observed 

in the cable line when FFBP or LR is considered as an objective function. 

 

 

CONCLUSION 

      Metal sheath grounding prevents cable insulation faults, and the most important factors for insulation 
faults are MV and HC. Cable insulation fault was prevented by minimizing the MV and current harmonic distortion. 
Solid bonding was used as a bonding method for grounding a metal sheath, and when solid bonding methods were 
used for bonding a 5 km cable line, the minimum MV was measured as 947 V, and the maximum MV was 1086 V on 
the metal sheath. These values are very high for cable lines. In addition, the current harmonic distortion is very high. 
Namely, the bonding methods used in the literature are inadequate for the minimization of MV and current harmonics, 
so these methods do not prevent cable insulation faults caused by MV and HC. Thus, an optimized SSBr method was 
suggested for the minimization of MV and HC. Swarm intelligence and evolutionary optimizations were compared to 
minimize MV and HC. iPSO and PSO were used for swarm intelligence, and GA and DEA were used for evolutionary 

Parameters  HL   EL  

L1 L2 L3 L1 L2 L3 

MV (V) 67 74 58 67 68 65 

THDI (%) 3.24 6.17 7.08 3.24 6.17 7.09 

Parameter

s 

 HL   EL  

L1 L2 L3 L1 L2 L3 

MV (V) 72 78 62 72 78 69 

THDI (%) 3.36 5.87 7.19 3.36 5.87 7.20 

Parameters  HL   EL  

L1 L2 L3 L1 L2 L3 

MV (V) 99 99 87 90 100 99 

THDI (%) 5.33 2.28 5.83 5.36 2.38 5.92 

Parameters  HL   EL  

L1 L2 L3 L1 L2 L3 

MV (V) 99 101 87 88 99 97 

THDI (%) 5.32 2.36 5.98 5.33 2.42 6.03 
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intelligence.  When H-iPSO is considered the objective function of PSO for the optimization of SSBr, the maximum 
MV is 57 V (peak). This value is lower than the touch voltage limit and MVs of the other optimization methods and 
the solid bonding method. In addition, the current harmonic distortion did not increase significantly at the cable 
terminations. Hence, cable faults and electroshocks are prevented by the optimized SSBr method used with swarm 
intelligence. 
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