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ABSTRACT

This paper presents two ways of calculating the load angle of a non-salient pole synchronous generator. The 

sine function used for calculation of the load angle of the generator considers its internal voltage, which with variable 

synchronous reactance introduces a double error in the calculation of the load angle. The cotangent function used for 

calculation of the generator’s load angle is based on its active and reactive power and its external voltage. Another 

goal of this paper is to present the steady-state stability of the generator with a new instability proximity index based 

on the cotangent function of load angle calculation. A new instability proximity index is the energy porosity defined 

as an approximate measure of how far the current operating state of the generator is from the state of instability. The 

degree of danger of the generator entering an unstable state according to the relevant electrical quantities is especially 

emphasized by the sensitivity coefficients based on the new instability proximity index. The key findings from this 

research are found in the more accurate calculation of the load angle of the synchronous generator and in connection 

with that the accurate estimation of the distance of the generator from the point of instability. As the more accurate 

load angle is that calculated via the cotangent function and which is smaller than the load angle calculated via the sine 

function, it is possible to load the generator more with the same degree of stability compared to the load based on the 

load angle calculated via the sine function. This results not only in a better safety aspect of the generator operation, but 

also economically, because this approach in calculating the stability of the generator enables greater utilization of the 

generator capacity.

Keywords: Energy porosity; load angle; Steady-state stability. 

INTRODUCTION

The question of stability of the electric power system is considered to have been fully addressed. There are 

many works on the issue, right from the 1920s (Steinmetz, 1920, Evans et al., 1924 & Wilkins, 1926), through the 

already famous works of (Crary, 1945 & Messerle et al., 1956) in the middle of the last century, till its end and the 

beginning of the twenty-first century (Kundur, 1994, Arjona et al., 1999, Savulescu et al., 1993, Kar et al., 1999, Kuo 

et al., 2002 & Sulistiawati, 2018). All these works treated the issue of power system stability as an issue of the whole 

system or as an issue of the system’s components. Different approaches have been applied, such as those based on 

algebraic equations, such as the Routh-Hurwitz criterion (Parks, 1962), the Hermite stability criterion (Parks, 1977), 

and the Schur-Cohn criterion (Serban et al., 2007), then, linearized differential equations (Morgan, 2015), and those 

based on non-linear differential equations [Aeyels, 1998, Zhou et al., 2014 & Pyatnitskiy et al., 1996). Further 

development was based on the state-space approach and methods of Lyapunov (Allaev, 2015). When artificial
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intelligence techniques, such as neural networks, fuzzy logic, etc. emerged, many researchers applied these techniques 

to power system stability issues – especially to the voltage stability issues [Gao et al., 2019). The researches were 

directed towards different aspects of system stability, such as steady-state, transient, frequency, rotor angle, and voltage 

stability (Kundur et al., 2004). However, the problem is multi-dimensional and multi-layered, with considerable 

overlaps among numerous aspects of stability. Power system stabilizers, power electronics, and contemporary 

microprocessor-based regulations offer secure and reliable solutions for power systems exposed to various 

disturbances. However, the problem of stability remains a challenge and offers opportunities for new views to arise 

and solutions to be offered. 

This work considers one aspect of stability, steady-state stability, and investigates it in the context of one 

power system component, the synchronous generator. The steady-state stability of the synchronous generator (SSSG) 

takes into consideration the load angle, i.e., the angle between internal and external voltage vectors. The SSSG, and, 

with it, the change in load angle can be shown through a performance chart, a Cartesian diagram with reactive power 

Q and active power P on the x and y axis, respectively. The performance chart is constrained with practical steady-

state stability in the under-excited generator area, then with the allowable temperature of the stator and rotor coils, and 

with the maximal and minimal values of power of turbine and field excitation current (Weedy et al., 2004). The 

generator operator uses the performance chart to tune the generator in such a way that P and Q of the generator stay in 

the internal area of the chart. For this, the operator needs an appropriate automatic regulation of voltage U and 

frequency f for which an automatic voltage regulator and automatic frequency regulator are used. For the first type of 

regulation, the generator must be equipped with a thyristor-based regulator of the system of excitation. For the second 

type of regulation, the generator’s turbine (steam, hydro, or gas) must be equipped with a P-f regulator. This means 

that the generator’s response to the changes in its operation is connected with complex acts; not with a single type of 

regulation, but with two. 

It means that the load angle as a measure of SSSG is an angle-dependent on two factors: regulation of the 

field excitation current and regulation of frequency where one regulation follows the other and vice versa. Due to this, 

the load angle and SSSG cannot be viewed solely through the prism of active power (i.e., regulation of frequency), but 

through that of regulation of the field excitation current (i.e. regulation of terminal voltage) too. In other words, the 

induced electromotive force in the generator is a function of the magnetic flux change and the number of turns in the 

stator winding (armature). The connection of the resultant magnetic field of the generator with the electric power 

system is a function of the speed of the generator’s rotor (magnetic flux change) and changes of field excitation current. 

Both phenomena are taken as apparent power, which comprises active power as a result of power force on the rotor 

shaft (change the rotor speed and, in accordance with it, the magnetic flux and electromotive force in the armature) 

and reactive power as a result of field excitation current change (change the electro-motive force behind synchronous 

reactance and, in accordance with it, the reactive power produced (or absorbed) by the generator, and change in the 

generator power factor too). 

The magnitude of the internally generated voltage induced in a given stator is a function of numerous factors 

that include the construction of the machine, rotor flux, armature reaction flux, common generator flux, and rotation 

speed of the rotor. 

The synchronous reactance of the machine is the sum of the armature leakage reactance and armature reaction 

reactance. The value of synchronous reactance depends on the distortion of the air gap magnetic field caused by the 

current flowing in the stator (armature reaction). A stator resistance Ra and Xs, add up to synchronous impedance Zs, 

which is changed through the load changes on the generator, and because of that, the precise value of internal voltage 

cannot be calculated as the sum of measured output voltage and voltage drop in the stator coil (with constant Zs). 

Another problem is that of the voltage applied across the field circuit, it is not mostly flat and constant over time but 

has a saw- tooth-like waveform. 

The methods for the load angle determination by a procedure based on measured terminal voltage and rotor 

position signals are presented in (Barrera-Cardiel et al., 1999). In (Chen et al., 2000) the load angle is detected by the 

rotor position sensed with a photoelectric sensor mounted on the stator. The accuracy of these load angle estimation 

methods depends on the accuracy of the measurement of voltage and current, the possibility of mounting an encoder 

or sensor on the generator, and on parameters that determine the accuracy (equivalent resistance and reactance). In 

(Sumina et al., 2010) two methods for load angle determination on the salient-pole synchronous generator are 

presented. The first method is based on the measurement of rotor position (using an optical encoder) and power system 
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voltage. In the second method, the load angle estimation is based on the measured values of voltage and current of the 

synchronous generator. The accuracy of this load angle estimation method depends on the accuracy of voltage and 

current measurements and the quadrature-axis reactance Xq and resistance R.  

In (Rahman et al., 2019), the monitoring of field quantities (voltage and current) and load angle measurement 

on the synchronous machine have been implemented successfully. These measurements are made in real-time, running 

all day every day, taking 60 samples per second. In (Wehbe et al., 2012) the least squares-based estimation of 

synchronous generator states and parameters with phasor measurement units (PMU) has been implemented to estimate 

the internal voltage of the generator. But, due to error in estimation and computational burden in these processes of 

calculation, the final estimate of the load angle could have serious errors and delays in it, which could lead to possible 

degradation of controls and analysis. In (Khanum et al., 2014 & Vilchis-Rodriguez et al., 2009) are presented the 

promising measurement hubs for real-time measurement of load angle and field excitation quantities. Estimation of 

load angles of synchronous machines using artificial neural networks and local PMU-based quantities has been 

presented in (Del Angel et al., 2007). As in each of the other measurement techniques, in this also there are problems 

with hardware and software solutions and their application. In the calculation of load angle, so far, there are two 

uncertain variables: synchronous reactance and, arising from it, the internal voltage of the generator. Finally, aspects 

of static stability in the presence of renewable energy sources are given in (Hou et al., 2020). 

The main task of the power system is its stable operation, which is reflected in the appropriate load angle of 

the generators, frequency stability and voltage stability. Knowing the exact load angle of the generators enables the 

design of more stable and better controllers (Kien et al., 2021). The last works that can be found in the literature related 

to the calculation of the load angle is the work presented by (You, 2021), where a load angle measurement algorithm 

of synchronous generator adaptive to non-integer teeth ratio has been investigated. The algorithm proposed in this 

work uses the generator terminal voltage and the generator turbine teeth signal to calculate the generator load angle. 

In (Kumar&Babu, 2021) is presented a single machine to infinite bus power system by modelling it as Duffing equation 

with softening spring where through the method of multiple scales an approximate analytical expression which 

describes the variation of load angle is derived. 

Many generators today operate with a load angle far below the limit value. The reason for this is the vigilance 

of the generator operator with regard to the actual value of the generator load angle, which cannot be determined with 

complete certainty by the above methods. The desire of the authors of this article is to determine which way of 

calculating the load angle gives the best results: the one over the function of the sine or cotangent. The first part of this 

paper presents a comparison of two ways of calculating the load angle: one is based on the sinusoidal function and the 

other on the cotangent function. The second part of this paper deals with the energy porosity of the generator in relation 

to its load angle and its steady-state stability. The paper ends with a conclusion and discussion. 

METHODS FOR SOLVING THE PROBLEM OF CALCULATING THE LOAD ANGLE 

OF A SYNCHRONOUS GENERATOR 

Through this section the load angle is shown via the sine and cotangent functions. Both cases were analyzed 

by the analytical-algebraic approach. The result of this analysis are the equations and their graphical representation. A 

new graphical representation of the load angle via the cotangent function can become a new more successful tool for 

power plant operators in generator control. 

Load Angle of Synchronous Generator Calculated Using Sine Function 

The SSSG is presented through the well-known relationship (with negligible stator winding resistance): 

𝑃 =
3𝑈𝑓 ∙ 𝐸

𝑋𝑠

𝑠𝑖𝑛𝛿                                                                                     (1) 

The load angle from ′Equation(1)′ is given by: 
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𝑠𝑖𝑛𝛿 =
𝑃 ∙ 𝑋𝑠 

3𝑈𝑓 ∙ 𝐸
⟹ 𝛿 = 𝑎𝑟𝑐𝑠𝑖𝑛 [

𝑃 ∙ 𝑋𝑠 

3𝑈𝑓 ∙ 𝐸
]                                                      (2) 

Load Angle of Synchronous Generator Calculated Using Cotangent Function 

On the other side, the load angle can be calculated as follows. The active power P of the generator is given as 

in ′Equation(1)′ and the reactive power Q of the generator is given as in ′Equation(3)′: 

𝑄 = −
3𝑈𝑓

2

𝑋𝑠

+
3𝐸 ∙ 𝑈𝑓

𝑋𝑠

𝑐𝑜𝑠 𝛿                                                                        (3) 

The shunt capacities of the generator are ignored. 

After several algebraic calculations, the formula for load angle calculation is obtained: 

 

𝑐𝑜𝑡𝑎𝑛𝛿 =

(𝑄 +
3 ∙ 𝑈𝑓

2

𝑋𝑠
)

𝑃
⇒ 

𝛿 = 𝑎𝑟𝑐𝑐𝑜𝑡𝑎𝑛

(𝑄 +
3 ∙ 𝑈𝑓

2

𝑋𝑠
)

𝑃
= 𝑎𝑟𝑐𝑐𝑜𝑡𝑎𝑛(𝐿), where 

𝐿 =

(𝑄 +
3 ∙ 𝑈𝑓

2

𝑋𝑠
)

𝑃
                                                                           (4) 

 

The load angle, Figure 1, describes the generator response to the load characterized by P and Q, without the 

need to measure or calculate the internal voltage E which cannot be precisely calculated due to changeable R and Xs.  

 

Figure 1. L- δ characteristic 

 

The calculated load angle in ′Equation(4)′ is the same as one presented in (Kundur, 1994), only that in 

(Kundur, 1994) the load angle is represented for generators with salient poles. The values for P and Q can be calculated 

from ′Equation(4)′: 
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𝑃 =

(𝑄 +
3 ∙ 𝑈𝑓

2

𝑋𝑠
)

𝑐𝑜𝑡𝑎𝑛𝛿
= 𝑡𝑎𝑛𝛿 ∙  (𝑄 +

3 ∙ 𝑈𝑓
2

𝑋𝑠

)                                                  (5) 

where changes in P=f(δ) are presented in Figure 2. 

𝑄 = 𝑃 ∙ 𝑐𝑜𝑡𝑎𝑛𝛿 −
3 ∙ 𝑈𝑓

2

𝑋𝑠

                                                                          (6) 

 

 

Figure 2. P as a function of δ (as tanδ at 900 is not defined, the limit value for P=f(δ) is selected at 890) 

 

From ′Equation(5)′ and ′Equation(6)′ can be determined the extreme P and Q values: 

𝑃 = 0 for 𝑐𝑜𝑡𝑎𝑛𝛿 = ∞ (𝛿 = 0)  ∨  𝑄 = −
3 ∙ 𝑈𝑓

2

𝑋𝑠

                                          (7) 

𝑃 = ∞ for 𝑐𝑜𝑡𝑎𝑛𝛿 = 0 (𝛿 = 𝜋/2)  ∨  𝑄 = ∞                                                 (8) 

𝑄 = 0 for 𝑃 ∙ 𝑐𝑜𝑡𝑎𝑛𝛿 =
3 ∙ 𝑈𝑓

2

𝑋𝑠

                                                           (9) 

𝑄 = ∞ for 𝑐𝑜𝑡𝑎𝑛𝛿 = ∞ (𝛿 = 0)                                                     (10) 

 

The reactive power is de facto constrained by Ifmax and active power is de facto constrained by the maximal 

power of the turbine. On the base of ′Equation(7)′ to ′Equation(10)′ and mentioned constraints, the operating chart for 

the generator can be formed as in Figure 3. 
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Figure 3. Operating chart of generator based on load angle calculation from ′Equation(7)′ to ′Equation(10)′ 

Figure 4 shows two operating charts, one based on the classical operating chart of a generator (via sinδ) and 

the second based on the cotanδ presentation, by which are determined operating states of the generator for δ=300.  
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Figure 4. The operating point of the generator is presented in two ways; the load angle takes a value of 300 

Also, the presentation of P and Q changes on the cotanδ platform for the inductive and capacitive regimes of 

the generator’s operating state is presented in Figure 5. 

 

Figure 5. Inductive and capacitive regimes of generator operation 
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ENERGY POROSITY AS AN INDEX OF STEADY-STATE STABILITY OF 

SYNCHRONOUS GENERATOR 

This analysis continues with the introduction of a dimensionless variable to assess the steady-state stability 

of the generator. This variable is called the energy porosity (EPOR) with respect to the load angle and the SSSG. The 

load angle obtained by ′Equation(4)′ can be associated to the area through which mechanical and electrical energies 

"flow". It is the only space through which the generated mechanical and electrical energy interpenetrate and if this 

space is saturated, a stability problem arises. 

Therefore, the energy porosity of the generator with respect to its load angle and its steady-state stability is 

defined as: 

          𝐸𝑃𝑂𝑅 = |
𝑐𝑜𝑡𝑎𝑛(90◦) − 𝑐𝑜𝑡𝑎𝑛𝛿

𝑐𝑜𝑡𝑎𝑛(89◦)
| = |

0 − 𝑐𝑜𝑡𝑎𝑛𝛿

0.017455
| ≈≈ 57.3 ∙ 𝑐𝑜𝑡𝑎𝑛𝛿 = 57.3 ∙

(𝑄 +
3 ∙ 𝑈𝑓

2

𝑋𝑠
)

𝑃
=           

= 57.3 ∙ 𝐿                                                                  (11) 

The numerator in ′Equation(11)′ represents a void space of the total load angle space represented by the 

denominator in ′Equation(11)′. As the cotan(900) is zero, to have a calculable EPOR and to be on the side caution when 

calculating EPOR and estimating the SSSG, the cotan(900) in the denominator of ′Equation(11)′ is replaced by 

cotan(890)= 0.017455. The relationship between EPOR and load angle is presented in Figure 6.  

 

 

Figure 6. The relationship between EPOR and load angle (from cotanδ) 

In the physical sense, theoretically, the porosity is infinitive for unloaded generator (practically, it is limited 

by turbine power) and for point of the unstable operating state characterized by δ=π/2, generator’s porosity is 

characterized by the capacitive operating state with maximal reactive power engaged from the electric power network 

(leading working mode; absorb VAr in amount−
3𝑈𝑓

2

𝑋𝑠
). 

MEASUREMENT AND CALCULATION RESULTS 

Load Angle Calculation Using Sine and Cotangent Functions 

To show the difference in the results of the calculation of SSSG using the functions of sine and cotangent, a 

synchronous generator with the following characteristics was selected: Un=400 V, S=10 kVA, power factor lagging is 
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0.8, the synchronous reactance of 9 Ω/phase, and a neglected armature resistance. The phase voltage of this generator 

at rated condition could be calculated as follows: 

𝑈𝑓 =
400

√3
= 231 𝑉                                                                             (12) 

The armature current per phase at rated condition is: 

𝐼𝐴 =
𝑆

3 ∙ 𝑈𝑓

=
10 𝑘𝑉𝐴

3 ∙ 231
= 14,4 𝐴                                                              (13) 

The internally generated voltage at the rated condition is: 

𝐸 = 𝑈𝑓 + + 𝑅𝐴𝐼𝐴 + 𝑗𝑋𝑠𝐼𝐴 = 

= 231 + 1.5 ∙ 14.4 + 𝑗(12 ∙ 14.4) = 306∠30.2 𝑉                                         (14) 

The active power P of the generator is: 

𝑃 = 3 ∙ 𝑈𝑓 ∙ 𝐼𝐴 ∙ 𝑐𝑜𝑠𝜌 = 3 ∙ 231 ∙ 14.4 ∙ 0.8 = 8 𝑘𝑊                                     (15) 

and reactive power Q is: 

       𝑄 = 3 ∙ 𝑈𝑓 ∙ 𝐼𝐴 ∙ 𝑠𝑖𝑛𝜌 = 3 ∙ 231 ∙ 14.4 ∙ 0.6 = 6 𝑘𝑉𝐴𝑟                                    (16) 

The load angle calculated through sinδ depends on of two uncertain variables (Xs and E) and the load angle 

calculated through cotanδ depends on of one uncertain variable, Xs. From ′Equation(2)′ and ′Equation(4)′ can be 

calculated sinδ and cotanδ, respectively, in amounts of 0.34 and 2.97. From these values, the load angles are 19.90 and 

18.60. 

Exact value of the load angle is obtained by measuring the duration of the pulse whose front edge is 

synchronized with the passage of the rotor through a certain position, and the rear edge with the passage of the 

fundamental harmonic voltage of one phase through zero. The obtained pulse duration time is proportional to the load 

angle. The rotor position detector is fixed and mounted on a fixed housing. An electrodynamic brake connected to a 

synchronous generator simulates different generator loads. 

The hardware structure located in the Laboratory for Electrical Machines of the Faculty of Electrical 

Engineering, University of Tuzla, used for experiments is shown in Figure 7. 

 

Figure 7. Hardware structure used to accurately measure load angle 
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The value of load angles for different operating states based on ′Equation(2)′ and ′Equation(4)′ can be seen in 

Table 1. 

Table 1. Exact load angle (measured) and calculated using sinδ and cotanδ  

S  

(

kVA) 

E 

(

V) 

P 

(

kW) 

Q 

(

kVAr) 

E

xact δ (◦) 

s

inδ 

δ 

(◦) 

c

otanδ 

δ 

(◦) 

Per

centage error 

with respect 

to sinδ 

(%) 

Perce

ntage error 

with respect to 

cotanδ 

(%) 

1

0 

3

06 

8

.0 

6

.0 

19

.0 

0

.34 

1

9.9 

2

.97 

1

8.6 

5.2 2.1 

8 
2

88 

6

.3 

4

.8 

15

.8 

0

.28 

1

6.3 

3

.58 

1

5.6 

3.2 1.3 

6 
2

73 

4

.8 

3

.6 

12

.9 

0

.23 

1

3.3 

4

.45 

1

2.7 

3.1 1.6 

5 
2

66 

4

.0 

3

.0 

10

.8 

0

.19 

1

1.0 

4

.72 

1

0.9 

1.8 0.92 

8 

f

or 

cosφ=0.7 

2

89 

5

.6 

5

.7 

13

.0 

 

0

.25 

1

4.5 

 

4

.2 

1

3.4 

11.

5 
3.0 

Mean absolute percentage error (%) 
4.9

6 
1.78 

 

The mean absolute percentage error of the load angle calculated using sinδ in relation to the measured value, 

for a wide load range, is 4.96%. Moreover, the error in assessment of the load angle of the generator via the sinδ 

function increases with decreasing cosφ (power factor).  
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Energy Porosity Calculation 

The values of EPOR for various input data are presented in Table 2.  

Table 2. The EPORs and load angles for various operating states of generator 

C

ase 

S  

(

kVA) 

E 

(

V) 

P 

(

kW) 

Q 

(

kVAr) 

s

inδ 

δ 

(◦) 

c

otanδ 

δ 

(◦) 

EP

OR 

1 
1

0 

3

06 

8

.0 
6 

0

.34 

2

0 

2

.97 

1

8.6 

17

0* 

2 8 
2

88 

6

.3 

4

.8 

0

.28 

1

6.3 

3

.58 

1

5.6 

20

5 

3 6 
2

73 

4

.8 

3

.6 

0

.23 

1

3.3 

4

.45 

1

2.7 

25

5 

4 5  
2

66 
4 

3

.0 

0

.19 

1

1.0 

4

.72 

1

0.9 

29

8** 

5 

8 

f

or 

cosφ=0.7 

2

89 

5

.6 

5

.7 

 

0

.25 

1

4.5 

 

4

.2 

1

3.4 

24

0 

 

* It means the worst level of SSSG among the presented 

operational states 

** It means the best level of SSSG among the presented 

operational states 
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The presentation of EPOR of generator operating state from the point of view of its steady-state stability 

enables us to research the aspects of that stability. The porosity of generator close to zero where 𝑄 = −
3𝑈𝑓

2

𝑋𝑠
 indicates 

the critical value of porosity and the need to bring the generator to an operating state of higher porosity. 

The porosity of the synchronous generator from point of view of its steady-state stability is already depleted 

with EPOR=1, derived from ′Equation(11)′, i.e., for cotan(890)= 0.017455. This arises from the need to calculate the 

EPOR, but in the physical sense of the word, EPOR=0 indicates the point of instability of the generator. 

EPOR as a measure of SSSG and its proximity to an unstable operating state was analyzed in terms of its 

sensitivity to Uf, P, and Q changes. From ′Equation(11)′ we obtain the following: 

𝜕𝐸𝑃𝑂𝑅

𝜕𝑈𝑓

=
343.8 ∙ 𝑈𝑓  

𝑃 ∙ 𝑋𝑠

 (
1

𝑉
)                                                                         (17) 

𝜕𝐸𝑃𝑂𝑅

𝜕𝑃
= −57.3 ∙

𝑄𝑋𝑆 + 3𝑈𝑓
2

𝑃2 ∙ 𝑋𝑠

 (
1

𝑘𝑊
)                                                              (18) 

𝜕𝐸𝑃𝑂𝑅

𝜕𝑄
=

57.3

𝑃
 (

1

𝑘𝑉𝐴𝑟
)                                                                           (19) 

The EPOR increases, i.e., the load angle decreases with increased Uf, decreased P, and increased Q. For the 

given data (P=8 kW; Q=6 kVAr; Xs=9 ohm/phase; cotanδ=2.97; and Uf=231 V), the following EPOR sensitivity values 

were calculated with respect to Uf, P and Q: 

𝜕𝐸𝑃𝑂𝑅

𝜕𝑈𝑓

= 1.1 (
1

V
) ; 

𝜕𝐸𝑃𝑂𝑅

𝜕𝑃
= −20 (

1

𝑘𝑊
) ; 

𝜕𝐸𝑃𝑂𝑅

𝜕𝑄
= 7.16 (

1

𝑘𝑉𝐴𝑟
)               (20) 

The results obtained indicate a much higher sensitivity of EPOR relative to P than to Uf and Q. Increasing of 

Q decreases the EPOR in the generator leading operating mode (in that case, Q is absorbed from the electric power 

system and has a negative sign). 

CONCLUSION AND DISCUSSION 

A comparison of the calculation of the load angle of a synchronous generator over two trigonometric functions 

is presented: cotanδ and sinδ. It was found that the calculation of the generator load angle via the cotanδ function is 

more accurate than the calculation that uses the sine function of the load angle. The analysis shows that the calculation 

of the generator load angle via the sine function leads to a lower level of the generator load compared to the case of 

the calculation of the load angle via the cotangent function. Thus, the use of the cotangent function to represent the 

load angle allows better utilization of the generator capacity under the same conditions of maintaining the stability of 

the generator. Using the cotangent function avoids the need to know the internal voltage of the generator. It is 

advantageous for two reasons: first, the internal voltage is very difficult to measure, and second, due to the variable 

nature of synchronous reactance, the error of calculating the internal voltage of the generator based on this variable 

reactance propagates to the calculated value of the load angle. Calculation of the load angle via cotangent requires 

three very available variables, P, Q, and the external voltage of the generator Uf. Furthermore, in this paper, SSSG is 

presented through the prism of energy porosity, a dimensionless measure of SSSG. The sensitivities of EPOR for the 

above mentioned three variables offer the complete view of the generator’s operating state regarding its steady-state 

stability. These sensitivities make it possible to predict the effects of disturbances that may occur in the operation of 

the generator. Energy porosity is a new term and concept that enables the power plant operator to operate the generator 

more safely because it can predict exactly with defined sensitivity coefficients whether and how much change in the 

active and reactive power of the generator can lead to instability. 

The accuracy of the proposed methodology was demonstrated on a test system simulated in a real 

environment, with measurements obtained from available hardware rather than through digital simulation. The 
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presented approach gives the best results of estimating the load angle of the generator in relation to those presented in 

the literature, it is the simplest and is not based on complex mathematical models that would require the engagement 

of computer hardware and software. 

The next step on the way to the realization of the calculation of the load angle via the cotangent function is 

the calculation on the generator of higher power. Also, in this context, the economic benefit of calculating the load 

angle according to the cotangent function, and not according to the sine function, will be calculated.  

The load angle expressed through the cotangent function will be applied to the problem of static stability of 

the multi-machine system using one of the approaches such as linearized state equations for system-level models or 

two-machines-infinite bus model system. In this sense, it will be interesting to see new values of the system stiffness 

(MW/Hz) and new eigenvalues and eigenvectors. 
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