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فعالية اإعادة ت�سكيل وطلب برنامج الا�ستجابة

باعتبار ال�سيارة الكهربائية في �سبكات التوزيع الذكية ال�سم�سية

بيني�س �سلطانه، م.و. م�سطفى 

ق�ضم هند�ضة الطاقة الكهربائية، الجامعة التكنلوجية الماليزية، جوهور بارو، ماليزيا

الخـلا�سـة

في  عالِ  اإدراك  انتجت  قد  التح�ضين  وخوارزميات  التكنلوجي  الاآلي  الت�ضغيل  توزيع  في  التطورات 

اإعادة الت�ضكيل واأي�ضاً ان�ضاأت نظام توزيع مرن قابل للتطبيق. هذا البحث يعر�س اقتراح خوارزميه الذئب 

الحل  ال�ضغط.  تحت  يكون  عندما  للنظام  البنية  تكوين  اإعاده  اأف�ضل  لتوليد   )GWO(المثلى الر�ضا�ضي 

اإعاده  مخطط  ويهدف  والفوائد.  التكلفة  �ضعر  نماذج  على  اإعتماداً  الطلب  اإ�ضتجابه  برنامج  في  يُ�ضتخدَم 

الى  الذروه  تخفي�س  ح�ضول  في  النظري  الطلب  ا�ضتجابة  برنامج  دور  ح�ضور  مع  المتكامله  الت�ضكيل 

التخفيف من خ�ضائر الطاقة ل�ضبكة التوزيع.وفي نف�س الوقت، يهدف هذا البحث اإلى تحديد اأف�ضل منفعة 

اختبار  الم�سرفين.ويتم  العملء  قِبَل  من  الذروة  �ضاعات  خلل  الطاقه  �ضبكه  تب�ضيط  ويجب  للعميل  وربح 

هذه التقنية المقترحة على IEEE69( )bus test(  system( على عملء ال�ضكن.وقد اأظهرت النتائج 

الح�ضول  الم�ضتهلك  اأو  للموؤ�ض�ضة  ويمكن  الاقت�ضادية  والمنافع  الطاقة  ٪ في خ�ضائر   56.46 بن�ضبه  انخفا�س 

عليها مع النموذج المقترح.
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ABSTRACT
The developments in distribution automation technologies and optimization algorithms have 

made realization of highly reconfigurable and flexible distribution system viable. This paper 
proposes grey wolf optimization algorithm (GWO) to generate best reconfigured topology of the 
system when grid is under stress condition. The solution is used in demand response program based 
on cost-benefit price models. The reconfiguration scheme integrated with presented game theoretic 
demand response program is intended at getting peak load reductions to mitigate the distribution 
network power losses. Simultaneously, this research is aimed at determining the optimal utility, 
customer profit and load shedding, customers have to do to facilitate power grid on peak hours. 
The proposed technique is tested on IEEE 69 bus test system with residential customers. The 
results show 56.46% reduction in power losses and economic benefits, a utility or a consumer can 
get with the proposed model.

Keywords: Demand response program; distribution system; power loss; reconfiguration.

INTRODUCTION
Distribution systems have evolved to an extent, where the power utilities inevitably need 

automation technologies to operate smoothly.The automated operation, control and protection 
of distribution systems have become possible due to advance microprocessor and high 
speedtelecommunications technologies.

Network reconfiguration is one of the functions of distribution automation thatalters the 
topology of the network by remotely controlling the status of tie (normally open) and sectionalizing 
(normally closed) switches. Thus, an intelligently reconfigured distribution system is able to 
optimize its operation under normal and abnormal grid conditions. Since uncertainty in generation 
(in case of intermittent energy resources)and demand fluctuations at different periods of a day is 
observed, it is possible to run optimal reconfiguration more than once a day. However, frequent 
configuration switching involves additional operational cost and efficient protection schemes 
(Coroama et al., 2013).

Another way to enhance the operation of distribution system is through the demand response 
programs (DRPs), whereby consumers interrupt their electricity usage in specific time periods 
against agreed rewards (Torriti et al., 2010). These programs are offered by electric utilities or 
companies to increase the efficiency and economics of the power systems (Aalami et al., 2010; 
Dashti & Afsharnia, 2011; Kim & Shcherbakova , 2011) and are usually established on incentive-
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based or price-based mechanisms (Aalami et al., 2010; Albadi & El-Saadany, 2008). In this context, 
utilities like Pacific Gas and Electric Company, Southern California Edison, and San Diego Gas & 
Electricoffer a variety of residential and non-residential DRPs. However, load demand flexibility 
is the key element that can implement a successful DRP. Therefore, it is essential to encourage 
consumers to actively participate in such programs by providing attractive financial profit.

Many works are found in literature investigating distribution system automation on the loss-
minimization problem (Moradzadeh, 2013), where researchers employ reconfiguration approach as 
a viable tool to solve it. Different classical, heuristic and meta-heuristic algorithms are proposed in 
this regard. The disadvantage colligated with classical methods applied in reconfiguration problems 
(Liu et al., 2005; Sarma & Prakasa, 1995; Wagner et al., 1991) is their large computational time 
and chances to generate local optimal solutions. The heuristics methods for reconfiguration are 
employed in Zhenkun et al.(2008); Civanlar et al. (1988); Baran & Wu (1989); Shirmohammadi & 
Hong, 1(989); Gomes et al.(2005); Ababei & Kavasseri (2011 and Ahmadi & Marti (2015). They 
depend both on the initial state of the switches in the network and on their operational sequence. 
Hence, it is not possible to always get the global optimal result. Therefore, a vast body of research 
is applied on meta-heuristic algorithms over the years to effectively resolve the reconfiguration 
problem (Cebrian & Kagan2010; Esmaeilian et al., 2013; Mendoza et al., 2006; Swarnkar et al., 
2011; Imran & Kowsalya, 2014; Sudha et al., 2014; Duan et al., 2015; Nguyen & Viet, 2015; 
Abdelaziz et al., 2010; Shareef et al., 2014; Rao et al., 2013; Chen et al., 2011). Meta-heuristic 
methods such as Gravitational search algorithms, Genetic algorithms, Harmony search method, 
Ant colony, Firefly algorithm, Particle swarm optimization, Bat algorithms, and Cuckoo search 
algorithm are a few to mention which are employed for loss minimization. 

In literature, among demand management strategies, DRPs are generallyadopted to flatten 
the demand curve by avoiding undesirable peaks at some time periods of a day, as proposed 
in Lopez et al.(2015), Palensky & Dietrich (2011) and Logenthiran et al.(2012). In Zareen et 
al. (2015), the author considered supply and demand uncertainties and proposed DRP scheme 
based on reliability dependent cost–benefit price model. Meanwhile in Faria et al.(2011), particle 
swarm optimization (PSO) is used to achieve the optimal scheduling of demand response 
including different energy and generation resources. A few works in literature handled economic 
dispatch problem with DRPs.The work presented in Arif et al.(2014) and Mazidi et al.(2014) are 
considered economic dispatch problem for integrating renewable sources (solar and wind) with 
demand response in a micro grid. 

There is very limited work that considers the reconfiguration and DRP jointly to the author’s 
best knowledge. The proposed paper aims to present a practical framework for minimizing 
distribution system active power losses, by integrating reconfiguration with DRP strategy. In 
addition, a new meta-heuristic algorithm, Grey Wolf optimizer is used to determine the optimal 
reconfigured topology. This optimization method is adopted as it is found to be good in both 
exploration and exploitation searching modes. Comparative analyses are conducted on standard 
network in order to confirm the suitability of the proposed algorithm.The main contributions of 
this paper are as follows: (i) Proposing first application of new optimization method “Grey Wolf 
optimization (GWO) algorithm” to identify optimal system configuration,(ii) modeling utility and 
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customer payoffs using game theory concepts, (iii) validating this proposed synergy on a widely 
used IEEE 69 bus test system.

The rest of this paper is devised as follows. First  formulation of the objective is illustrated 
following discussion on the proposed approach to find the optimal configuration that can efficiently 
minimizes distribution system losses. Next,  detailed information about proposed optimization 
method and cost-benefit price model for the DRP structure is presented. After the simulation 

framework, and discussion on the results  finally conclusions are drawn.

PROBLEM FORMULATION

Objective function

The reconfiguration problem with demand management strategy is formulated as a single 
objective function to reduce active power losses in the distribution system at peak loads.Figure 1 
depicts an N-bus radial distribution network, where each bus contains a load. The symbols shown 
in the figure are given below:

 : admittanceof branch between buses iand i+1

 : current flowing through branch between buses i  and i+1

 : resistance and reactance of branch between buses i and i+1

 : active and reactive load power at bus i

The magnitudes and phase angles of the system’s bus voltages can be determined by solving 
the mismatch Equations (1) and (2) (Baghzouz & Ertem1990) by using the Newton-Raphson 
power flow method.

 , i=1,2,3,……N                         (1)

 ,  i=1,2,3,……N                         (2)

Therefore, the active power loss in the branch between two adjacent buses i and i + 1 can be 
calculated by:

                                                              (3)

The total active power loss reduction problem in terms of current can be modeled as:

                                    (4)

Let “to” be the peak load time,then Ri,i+1 and Ii,i+1 are the branch resistance and current between 
buses i and i+1 at “to” hour respectively, and nb is the total number of branches in the distribution 
system.
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Constraints
It is worth to note that network reconfiguration is subjected to constraints, the violation of which 

may lead to an unfeasible solution.  Usually during reconfiguration, the following constraints are 
satisfied:

System bus voltage limit: The normal operation of electric power systems requires that the 
voltage magnitude is to be kept within an allowed limit. Thus, voltage drop limit is the range within 
which power system can operate safely (Prada & Souza,1998).

                                                                    (5)

Where Vmin and Vmax are the minimum and maximum voltage limit set to 0.9 p.u and 1.0 p.u of 
the ith  bus respectively, while Vi  is the ith  bus voltage magnitude.

Branch current limit: Every conductor used in power system has an associated current limit 
known as thermal capacity. This current carrying capacity is limited by the conductor’s maximum 
design temperature, which determines the maximum sag of the conductor and the rate of annealing 
(Aman, 2014). Thermal capacity is deterministically determined by assuming specific values of 
ambient conditions and the method of laying (Wan et al., 1999).

                                                                                    (6)

Where Ij is the magnitude of jth branch and  is the maximum current capacity of jth branch.

Radial topology of the network: Distribution systems generally operate in radial topology 
because of simple protection and coordination schemes and reduced short circuit current (Lavorato 
et al., 2012). In radial topology, each consumer has a single source of supply. Thus, during 
reconfiguration after changing the status of switches, it is necessary that every candidate solution 
should preserve the radial nature of the system. If bus number 1 is a slack bus (main electric 
source) and all other buses are load buses then,

                                    (7a)

                                                                                           (7b)

where N is the number of system buses and swc
j  refers to jth switch in candidate network topology 

after reconfiguration. It is important that the buses are energized. So, Equation (7b) co-occurs with 
Equation (7a), wherein the status of the jth switch  , which supplies power to the ith bus, 
depends on the status of its adjacent switch ,. This adjacent switch is the switch which is connected 
towards the source sideand delivers power to the i-1th bus. Hence, if their status is equal to 1, it 
means that all of the N buses are being supplied with power by a unique path. The conditions in 
Equations (7a) and (7b) ensure radiality.
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Fig.1. Single line diagram of a Radial distribution system

PROPOSED APPROACH
In the proposed approach, the optimal network reconfiguration technique together with the 

demand reduction strategy is adopted to lower the power losses and enhance the demand flexibility.

The day is partitioned into 24 hours time period. For the purpose to validate the demand 
flexibility, a load pattern of the system is considered as shown in Figure 2. The peak load, which 
is maximum at three periods t (that is, h = 9, 11 and 19 hours) is reduced and shifted at period 
t+k(h = 22, 23 and 24 hours). The presented methodology consists of these steps:

i) Considering a typical hourly load profile of the distribution system.

ii) Determining an optimal network configuration at peak load of the system by using GWO 
algorithm, as depicted in Figure 4. 

iii) Identifying the set of nodes at which potential customers agree to curtail their load demand.

iv) Calculating the amount of load that is to be shed by agreed customers .

v) Making adjustments to the demand according to proposed DRP model without altering the 
optimal configuration. 

Fig.2. A typical hourly load profile for 69 bus test system



Beenish Sultana & Mohd. Wazir Mustafa 146

GREY WOLF OPTIMIZATION

Overview of GWO
 Grey Wolf optimizer (GWO) is a meta-heuristic method proposed by Mirjalili et al. (2014). 

The GWO is established on the leadership hierarchy and hunting mechanism of grey wolves in 
nature. It employs four types of grey wolves such as alpha, beta, delta, and omega for simulating 
the leadership hierarchy. Alphas are the leaders and are responsible for making all decisions that 
have to be followed by the pack. In addition, alphas are the only wolves that are allowed to mate 
in the pack. The next highest level in the hierarchy of grey wolves is beta. Betas are subordinate 
wolves and advise the alpha in decision making. Furthermore, they act as discipliner for the pack. 
On the other hand, Delta wolves only dominate the omegas. They play the role as scouts, sentinels, 
elders, hunters, and caretakers in the pack. Meanwhile, Omegas are the lowest ranked grey wolves 
that are allowed to eatin the last. However, their presence is important to avoid any internal fights 
and problems.

Mathematical model
The GWO involves these steps:         

Social hierarchy: Alphas are accepted as the fittest solution. Betas and deltas are the second 
and third best solutions respectively. The remaining possible solutions are considered to be omega. 
In the GWO algorithm, optimization is achieved by alpha, beta and delta wolves. 

Encircling prey: Grey wolves encircle their prey during the hunt. This encircling behavior is 
mathematically modeled as:

                                                                 (8)

 

                                                                           (9)

Where t shows the current iteration, pX   represents the position vector of the prey, X shows 

the position vector of a grey wolf and A and B are coefficient vectors that are calculated using 

Equations (10) and (11).

                                                                                               (10)

                            (11)

Where r1 and r2 are random numbers in [0 1] and components of vector d linearly decrease from 
2 to 0 over the course of iterations.

Hunting: It is assumed that alpha, beta and delta have better knowledge about the possible location 
of prey. Therefore excluding them, the other search agents update their positions according to the 
position of the best search agent. Based on the formulae developed in Mirjalili et al. (2014), the new 
positions of search agents are determined from Equations(12-14). It is illustrated in Figure 3.
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                            (12)

       (13)

                                                    (14)

Attacking prey: The grey wolves attack the prey when it stops moving. The lower the value of  
d , the nearer the wolves move towards the prey.

Search for prey: The search for prey begins by generating random population of grey wolves 
(candidate solutions) that first diverge from each other and then converge to attack prey. Over the 
course of iterations, the first three groups of wolves estimate the possible position of the prey. Each 
grey wolf updates its distance from the prey.  If 1>A , it indicates that grey wolves are diverging 
from the prey and if 1<A  it shows that wolves are converging towards the prey.

Fig.3. Position updating of wolves in GWO (Mirjalili et al., 2014)

Application of GWO algorithm to distribution system reconfiguration
To implement the GWO algorithm on the proposed multi-objective problem, the following 

steps are executed. The flow chart shown in Figure 4 explains the algorithm.
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Fig.4.Flow chart of GWO algorithm

Step 1: Input the number of search agents, dimension of solution vector, maximum number of 
iterations and boundaries of the problem.

Step 2: Generate an initial population randomly and initialize α, β and δ wolves positions. 

Step 3: Run power flow and check the constraint for radial structure of the network. In case of 
violation discard that agent and check for next agent. If constraint satisfies go to step 4.
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Step 4: Calculate the objective function for search agents that satisfies the constraints.

Step 5: Update the position of α, β and δ wolves.

Step 6: Determine the new positions of the search agent. 

Step 7: If the current iteration count reaches the predetermined maximum iteration number, the   
search procedure should stop, otherwise it continues and goes to Step 3.

Step 8: The last achieved alpha position is the solution of the problem.

LOAD REDUCTION BASED ON “COST-BENEFIT PRICE MODEL”

Proposed DRP structure

Fig.5. A generalized architecture of proposed DRP scheme

In the present study, the price response control option for DRP, based on time of use tariffs 
(TOU) is envisaged by considering electric utility/retailer as resource agent and the sets of 
customers allocated at distribution system nodes as demand agents. The nodes classification for 
different types of customer (residential, commercial or industrial) for this system can be found in 
Baghipour & Hosseini (2014). Each node is equipped with an aggregator that is connected with the 
demand agent’s home energy management system (HEMS) and the utility. The HEMS withinthe 
household will adjust energy usageaccording to customer’s choices, which are based on their 
degree of comfort. In the proposed approach, resource agent is informed about the customer type 
“C” (discussed in later section) and issues incentive that will not influence its profit. Customers are 
motivated to participate in DRPs and are attracted by incentives. This structure along with network 
reconfiguration technique leads to better distribution system planning and energy management. A 
generalized architecture of proposed DRP structure is depicted in Figure5.
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Model formulation
The marginal cost- benefit relation is assumed to be linear as assumed in Fahrioglu & Alvarado 

(1999) for ademand agent with type C sheddinglamount of load. This allows us to formulate a 
quadratic cost function, which is expanded using Taylor’s series and is shown in Equation (15). 
It is important to note that customer type “C” plays a significant role in designing the cost model, 
as for different customer, different price rates are applied. This parameter is used to distinguish 
among various demand agents based on their willingness to curtail load. It is normalized in the 
range between 0 and 1. A demand agent with C=1 means this is the most eager customer to curbits 
householdload and C=0 implies that this customer is least ready to participate in DRP. Thus, 
different demand agents signify different interrupted load amount “l”(Fahrioglu & Alvarado, 
2002). The cost function is convex and is simplified similarly as in Fahrioglu & Alvarado (2002). 
Refer Equation (16),where K1 and K2 are cost coefficients and the term “-K2lC” classifies the 
demand agents. Details about these coefficients calibration can be studied from Fahrioglu & 
Alvarado (2002) and Fahrioglu & Alvarado (2000).

                           (15)

                                                   (16)

                                                                                (17)

In a liberalized market, profit maximization is considered as a global goal for both utility and 
customer to get involved in the DRPs. The utility and the customers make decisions on the amount 
of load a customer may curtail or othercustomer may requestagainst an incentive offered to them 
by the utility. The strategy in this work is treated as an agenda setting game, where both utility 
and customers act as  agenda setters as well as legislators. The utility proposes an incentive to the 
customer. The customer observes the proposal “x” and selects the amount of load it can shed on 
compromising its comfort level. Suppose lo is the load that demand agent 1 has to curtail at time 
“t” hour as their participation in DRPs and ld is that load which any other user (demand agent 2) 
mayask the utility at time “t+k” hours. Existing electricity rate is changed and a new price“ kt

d
+t  

”for demand agent 2 and “
t
ot ” for demand agent 1 is set. The incentive depends upon the parameter 

“r”. It is a continuous random variable fixed by utility keeping two points into consideration, which 
are (i) reward paid to consumers by utility should be less than or equal to utility budget and (ii) The 
range of parameter is defined as  .

Demand agents manipulate the price and decide to participate in DRPs. Hence, it is obvious 
that cost-benefit functions for both agents are considered as a function of dynamic TOU price and 
interrupted amount of load. The proposal is logically feasible to both the utility and customer, if 
and only if they see some monetary benefit in it, that is  >0 and    >0. The proposal 
is not feasible if there is no participation of demand agent 1 in the game.The utility and customer 
payoffs are modeled as dynamic games of complete information with pure strategy set S={0,1}.
Here, S=0 is a pure strategy when probability of the player to win the game is 0 and S=1 is the 
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strategy, when probability of the player to win the game is 1.This is mathematically shown in 
Equations (19) and (23) subject to the condition that demand agent is not allowed to sell and buy 
electricity on the same time.

Utility benefit function

Since reduction in demand yields reduction in generation units, the net benefit that electric 
companies and utilities can make will also include generation cost savings. If reward paid to ith 
demand agent1 for curbing lo is o

t
io l,t  and profit obtained from ith demand agent 2 for consuming ld 

power more than its actual demand is d
kt
id l+
,t then, the utility benefit model is depicted in Equation 

(18). However, it is not necessary that demand agent 2 is always present. These customers are 
part of utility benefit model only when they require power in exigency situation, for instance in 
charging Electrical vehicles.

 (18a)

In the absence of demand agent 2:

                            (18b)

Where cl and cg are power loss and generation costs (International Energy Agency Report, 
2015), Nd1 and Nd2 are numbers of demand agent1 and demand agent 2 involved in DRPs.

     

                                             (19)

 

Customer benefit function

A customer benefit function is the difference of incentive I and outage cost.

                                   (20)

                                    (21)

substituting  Equation (21) in Equation (20) we will get Equation (22):

                                                                           (22)
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                                                            (23)

Due to the concavity of the customer cost-benefit function, the classical optimization rule is used 
to maximize the benefit function. Therefore,   , the corresponding amount of load shed 
at time “t” hours can be achieved as:

                                                                               (24)

Similarly, we can calculate the amount of load at time “t+k” hours requested by demand agent 2 as:

                     (25)

According to proposed model kt
o
+t <

t
ot , hence lo at “t” hours>ld at “t+k” hours, it can be 

observed that (i) distribution system’s daily load demand is reducedand (ii)load from “t” hour is 

shifted at“t+k” hours. This further reduces active power loss of the system since .

SIMULATIONFRAMEWORK
The execution of proposed methodology needs upgrade of distribution system, as well as 

customer household infrastructure. It meansthat they are equipped with latest technologies. 

 The IEEE 69-bus test system is considered for validating the proposed methodology. Since 
MATLAB has an object-oriented environment, it is therefore preferred for simulation purposes 
of the proposed work. The value of parameters used in the presented paper is given in Table 1and 
Table 2.

Table 1. Parameters used for simulating demand response program

cl

$/MWh
cg $/MWh1 C

r
%

αi

kW
ith household Peak demand

kW
50 61 0.5 1 12 18

Table 2. Parameters of proposed and implemented algorithm for reconfiguration purpose

Algorithm parameters Search agents
Maximum 
iteration

C1 C2 α G0

GWO 30 100 - - - -
GSA 30 100 - - 20 100
PSO 30 100 1.4 1.0 - -
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Selection of demand agents
Let “αi” be the decision variable which describes a threshold value for energy usage of ith 

customer at Nth node, below which a customer cannot compromise on its comfort level. The user 
sets “αi” on the basis of its daily schedule of using appliances. This is customer’s private information 
that is not shared with the utility. The demand agent 1 agrees to shed its loads if   .

   As mentioned in Shengnan et al. (2011), for any residential household; water heaters, air 
conditioners, washing machines, electrical vehicles, clothes dryers and microwaves are regarded as 
controllable loads. All other loads, for example lightning loads, refrigerators, laptops, televisions and 
other 110/120V loads, are termed as critical or uncontrolled loads. In case of commercial constructions, 
HVAC is the only controllable load, while the rest are critical loads. If nf and nc represents the 
number of controllable and critical load appliances in a house, denotes power consumption of each 
appliance at time slot t; then, the value of α can be evaluated from Equation (26):

      (26)

Fig.6. Single line diagram for 69-bus test system

In the considered test system, the number of residential customers at specified nodes (N) 
is determined by dividing total node load with average residential demand. For the purpose of 
analysis, it is supposed that at least one customer from N=7, 8, 10, 11 and 12 is participating in 
DRP as a demand agent 1 at t= t hours and one customer at N=6, 13, 26, 27 and 67 are the demand 
agent 2 at t= t+k hours.
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RESULTS AND DISCUSSIONS
Minimization of power losses due to network reconfiguration technique

The single line diagram of this network is depicted in Figure 6. Data related to bus, branch 
and tie lines is given in Tables 3 and 4. The power loss for base configuration is 225kW, which 
is reduced to 56.17% after reconfiguration using GWO algorithm. To validate the effectiveness 
of GWO, it has been compared with other algorithms such as particle swarm optimization (PSO) 
and gravitational search algorithm (GSA).  The results are illustrated in Table 5. From this table, 
it can be inferred that the proposed method yields better outcome with respect to PSO and GSA 
approaches. The convergence graph of all these algorithms regarding losses is shown in Figure 7, 
where it demonstrates that PSO converges faster than GWO. However, since distribution system 
planning problem is simulated during steady state, computational time does not affect algorithm’s 
performance (Sultana et al., 2016). 

Table 3. Branch and bus data for the 69-bus test system

Branch 
no. From bus To Bus R (p.u) X (p.u) To bus 

power (MW)

To bus 
power 

(MVAR)
1 1 2 0.0003 0.0007 0.0000 0.0000
2 2 3 0.0003 0.0007 0.0000 0.0000
3 3 4 0.0009 0.0022 0.0000 0.0000
4 4 5 0.0157 0.0183 0.0000 0.0000
5 5 6 0.2284 0.1163 0.0026 0.0022
6 6 7 0.2378 0.1211 0.0404 0.0300
7 7 8 0.0575 0.0293 0.0750 0.0540
8 8 9 0.0308 0.0157 0.0300 0.0220
9 9 10 0.5110 0.1689 0.0280 0.0190
10 10 11 0.1168 0.0386 0.1450 0.1040
11 11 12 0.4438 0.1467 0.1450 0.1040
12 12 13 0.6426 0.2121 0.0080 0.0055
13 13 14 0.6514 0.2152 0.0080 0.0055
14 14 15 0.6601 0.2181 0.0000 0.0000
15 15 16 0.1227 0.0406 0.0455 0.0300
16 16 17 0.2336 0.0772 0.0600 0.0350
17 17 18 0.0029 0.0010 0.0600 0.0350
18 18 19 0.2044 0.0676 0.0000 0.0000
19 19 20 0.1314 0.0434 0.0010 0.0006
20 20 21 0.2131 0.0704 0.1140 0.0810
21 21 22 0.0087 0.0029 0.0053 0.0035
22 22 23 0.0993 0.0328 0.0000 0.0000
23 23 24 0.2161 0.0714 0.0280 0.0200
24 24 25 0.4672 0.1544 0.0000 0.0000
25 25 26 0.1927 0.0637 0.0140 0.0100
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26 26 27 0.1081 0.0357 0.0140 0.0100
27 3 28 0.0027 0.0067 0.0260 0.0185
28 28 29 0.0399 0.0976 0.0260 0.0185
29 29 30 0.2482 0.0820 0.0000 0.0000
30 30 31 0.0438 0.0145 0.0000 0.0000
31 31 32 0.2190 0.0724 0.0000 0.0000
32 32 33 0.5235 0.1757 0.0140 0.0100
33 33 34 1.0656 0.3523 0.0195 0.0140
34 34 35 0.9196 0.3040 0.0060 0.0040
35 3 36 0.0027 0.0067 0.0260 0.0186
36 36 37 0.0399 0.0976 0.0260 0.0186
37 37 38 0.0657 0.0767 0.0000 0.0000
38 38 39 0.0190 0.0221 0.0240 0.0170
39 39 40 0.0011 0.0013 0.0240 0.0170
40 40 41 0.4544 0.5309 0.0012 0.0010
41 41 42 0.1934 0.2260 0.0000 0.0000
42 42 43 0.0256 0.0298 0.0060 0.0043
43 43 44 0.0057 0.0072 0.0000 0.0000
44 44 45 0.0679 0.0857 0.0392 0.0263
45 45 46 0.0006 0.0007 0.0392 0.0263
46 4 47 0.0021 0.0052 0.0000 0.0000
47 47 48 0.0531 0.1300 0.0790 0.0564
48 48 49 0.1808 0.4424 0.3847 0.2745
49 49 50 0.0513 0.1255 0.3847 0.2745
50 8 51 0.0579 0.0295 0.0405 0.0283
51 51 52 0.2071 0.0695 0.0036 0.0027
52 9 53 0.1086 0.0553 0.0043 0.0035
53 53 54 0.1267 0.0645 0.0264 0.0190
54 54 55 0.1773 0.0903 0.0240 0.0172
55 55 56 0.1755 0.0894 0.0000 0.0000
56 56 57 0.9920 0.3330 0.0000 0.0000
57 57 58 0.4890 0.1641 0.0000 0.0000
58 58 59 0.1898 0.0628 0.1000 0.0720
59 59 60 0.2409 0.0731 0.0000 0.0000
60 60 61 0.3166 0.1613 1.2440 0.8880
61 61 62 0.0608 0.0309 0.0320 0.0230
62 62 63 0.0905 0.0460 0.0000 0.0000
63 63 64 0.4433 0.2258 0.2270 0.1620
64 64 65 0.6495 0.3308 0.0590 0.0420
65 11 66 0.1255 0.0381 0.0180 0.0130
66 66 67 0.0029 0.0009 0.0180 0.0130
67 12 68 0.4613 0.1525 0.0280 0.0200
68 68 69 0.0029 0.0010 0.0280 0.0200
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Table 4. Tie line data for 69-bus test system

Branch no. From bus To Bus R (p.u) X (p.u)
69 11 43 0.3121 0.3121
70 13 21 0.3121 0.3121
71 15 46 0.6242 0.3121
72 50 59 1.2484 0.6242
73 27 65 0.6242 0.3121

Table 5. Active power loss for 69-bus test system

Algorithms Control vector of the solution Power loss, kW

Sw1 Sw2 Sw3 Sw4 Sw5
Duan et al. 2015 15 59 62 71 70   99.62
Rao et al. 2013 15 56 62 71 70   99.35
Chen et al. 2011 14 56 62 71 70   99.62
PSO 14 55 10 61 70 104.28
GSA 13 58 69 61 70    99.60
GWO 14  55 69 61 70    98.61

Fig.7. Reduction in losses 
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In addition, GWO addresses both exploitation and exploration searching modes. It does not 
give pre-mature solution. Therefore, by using GWO algorithm an optimal configuration of the 
distribution system is foundthat also satisfies the operational constraints.

Nevertheless, there is no unique acceptance regarding, which is the most appropriate method 
to handle network reconfiguration problem (Tomoiaga et al., 2013). The most crucial point is how 
to use the specific knowledge of the problem domain and how it is modeled and implemented 
(Tomoiaga et al., 2013). Besides, any heuristic or meta-heuristic method that gives better result 
can be applied to perform system reconfiguration. The novelty of the proposed work isthejoint 
implementation of reconfiguration and DRP methodologies.

Minimization of power losses due to demand response program
To illustrate the performance of the proposed method, two DRP scenarios are discussed in this 

work. In the first DRP strategy, the resource agent, demand agent 1 and demand agent 2 participate.
In this case, it is illustrated that in addition to total active power loss reduction, load has shifted 
from peak hours to off peak period. In the second DRP strategy,only demand agent 1along with 
resource agent participates. Hereby only distribution system power loss minimization is achieved. 
This is demonstrated in Figure 8.The considered time horizon is a single day partitioned into 24 hours. 
For different periods of day, different TOU rates are given as tabulated in Table 6. In aderegulated 
electricity market, both agents obtain profit, when the cost–benefit price and amount of load to be 
curtailed is evaluatedaccording to the proposed model, as shown in Figure 9. It is evident that the 
monetary benefit is dependent on variable loads as adjusted by customers in response to price signals. 
At the maximum load limit, utility benefit is the least. This is because the price paid to the customers 
is more, as compared to the capital saved on conserving energy. 

Fig.8. Peak demand reduction with (out) demand response strategies.
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It can be clearly observed from the simulation results that the voltage profile is improved. 
The system’s minimum voltage in case of original network is 0.9092 p.u. that after applying 
proposed approach has improved to 0.9495 (~0.95 p.u). Figure10 shows voltage profile for 
randomly selected buses. This can enhance system reliability and thus the system will be less 
vulnerable to voltage collapse. 

Fig.9.Cost-benefit curves for utility and residential customer during on peak hours

Fig.10. Demand agent’s voltage profile with (out) strategies
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The presented work has efficiently minimized the power losses up to 56.46% during peak 
hours by employing the combination of reconfiguration technique and the demandmanagement 
approach. This synergy can reduce the oversized capacity of distribution lines and so can cut 
down the maintenance cost of distribution system. Furthermore, if the percentage of demand agent 
participation is increased, it can increase the stability of the grid.

Table 6. TOU rates
Patterns Periods Rates (cents/kWh)

Residential Customers
On Peak 7 a.m-9 a.m 12.936

5 a.m-8 p.m
Shoulder 9 a.m -5 p.m 6.2480

8 p.m-10 p.m

Off peak 10 p.m-7 a.m 2.8270

Non Residential; weekends are off peak times and for weekdays as:

On Peak 7a.m -5 p.m 18.3810
Shoulder 5 p.m-10 p.m 9.0200
Off peak 10 p.m-7 a.m 3.7290

CONCLUSIONS
In this paper, the combination of reconfigurationand DRP scheme are implemented to solve 

loss minimization problem. A best configuration of distribution system is determined by using 
GWO algorithm.The dynamic cost-benefit models for utility and customers to establish a demand 
response scheme are also presented. The proposed model is based on the economic game theory, 
where the benefit uncertainties are associated with customer type and interrupted load quantity, 
when the grid is under stress. A correlation between the variableload and financial profit gained by 
both agents under specific incentive structure is illustrated.The maximization of demand reduction 
during on-peak hours and minimization of system power losses is obtained. This innovative idea 
merges two different strategies to facilitate utilities in improving the grid condition and stimulating 
consumers to participate in DRPs, by offering better incentives.
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