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ABSTRACT
  This research focuses on the use of Artificial Neural Network (ANN) for the prediction of the microhardness of 
friction stir processed aluminium based metal matrix composite (AA6061+Al2O3). Different specimens were 
obtained by using rotating speeds of 1100, 1210, 1320 and 1430 rpm and travelling speeds of 36, 48, 60, 72 mm/min. 
The microhardness value (HV) of the processed surface of each of the samples was measured and the data collected 
from the specimens was used as learning data for ANN. Higher rotational speed and lower transversal speeds resulted 
in higher hardness value since processing at higher tool rotational speed causes high material flow and good resistance 
to the tool pin profile. A uniform increase in microhardness was observed up to 1320 RPM and a subsequent decrease 
on any further increments of tool rotational speed. Subsequently, the highest values of microhardness were observed 
with a square mandrel at 1320 RPM and 36 mm/min.  The calculated results were satisfactorily compliant with the 
measured data and the ANN model was successful in predicting the microhardness.

       Keywords: Artificial neural network; Friction stir processing; Hardness; Tool pin profile.

INTRODUCTION
   Friction Stir Processing is a surface modification and fabrication technique which has triumphed over other 
such surface alteration processes due to its solid-state processing. Spearheaded by Mishra et al. (2003), FSP has 
emerged to be more successful  over techniques like stir casting (Sharma et al., 2017), laser surface engineering 
(Pantelis et al., 1995), selective laser melting (Zhou et al., 2018) etc. Over the years, FSP has been used extensively 
to fabricate unique sets of really fine, homogeneous alloys which are not only stronger but also sustainable.

  FSP is commonly used for the processing of metal alloys like those of aluminium and magnesium that are 
lightweight and flexible. FSP renders certain desirable properties to them, compensating for their lack of strength 
and hardness and making them suitable for further processing (Butola et al., 2019). The outcomes of using FSP on 
different Al, Mg and steel alloys were studied by Chaudhary et al. (2018). The distinct characteristics of FSPed 
composites were noted as the process was performed at various angles and speeds. Using B4C nanoparticles as 
reinforcement for the fabrication of the surface composites of AA7075-T6 (Butola, Chandra, et al., 2021; Butola, 
Murtaza, et al., 2020b) and AA6063 (Bector, Singh, et al., 2021) alloys has been examined in recent years.  Butola et 
al. (Butola, Tyagi, et al., 2021) studied the effect of processing, reinforcements and tool rotation speed on the mechanical 
and tribological properties of FSPed AA7075/SiC composite.
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  The introduction of Artificial Neural Networks (ANN), has made the construction of complex prediction 
models possible and also helped to solve problems pertaining to the prediction of alloy properties before 
they are manufactured by considering multiple variables simultaneously (Bector, Tripathi, et al., 2021). 
Shojaeefard et al. (2015) used ANN and FEM to establish the association of the tool parameters (pin and 
shoulder diameter) with the weld region values of HAZ, thermal, and strain.  ANN and RSM were used by 
Jayaraman et al. (2008) for the prediction of the tensile strength of A356 alloy, where ANN was found to 
be more precise. António et al. (2008) considered cutting speed, feed rate, type of insert of the tool, and 
type of  workpiece mater ial  for  developing an evolut ion-learning based ANN for  the turning of 
polyetheretherketone (PEEK) composites and predict complex mechanical and tribological behaviour. 

  Metal matrix composites are an upcoming and promising field in India. Mitra & Mahajan (1995) 
analysed the discontinuously reinforced MMCs and concluded that electronically bonded composites 
having high metal character exhibit stronger interfacial bonding, leading to improved mechanical properties. 
Aluminium alloy is a material choice for marine frames, pipelines, storage tanks and aircraft industry and 
AA6061 is commonly used in these areas. Following the better corrosion resistance and high strength-weight 
ratio, AA6061 is being widely preferred in the industry, especially in aerospace, marine and automotive 
industries. In this study, AA6061 was reinforced with Al2O3 and hardness tests were performed. On that 
basis, an ANN was modelled to aid in the design process, efficiency and cost-effectiveness.

EXPERIMENTAL PROCEDURE

Materials 

  AA6061 was used as the base metal following its excellent welding characteristics and strength that 
it possesses compared to the high strength aluminium and copper alloys (Coyal et al., 2020). Apart from 
this, it is chosen due to its easy market availability, wide applications and economical efficiency. The 
microhardness of the as-cast material before FSP was 48HV. A 160mm length groove, 2mm wide and 
3.5mm deep (Fig. 1), was made in the workpiece for the incorporation of the reinforcement particles. The 
pin-profiles were manufactured from H13 tool steel (Butola et al. 2020a), which is a hot worked Cr-Mo 
steel. Since it can undergo various cycles of cooling and heating during the hot working of the tool while 
resisting thermal fatigue cracking, it is widely used for cold work and hot work tooling applications.

Design of Experiment

  The experiment was designed according to the need of the ANN model using the Minitab software 
(Lauro et al., 2016). It was found that a minimum of 16 experiments ought to be conducted to ensure a 
reliable prediction. The parameters decided for the processing were tool rotational speed, travelling 
speed and tool pin profile (Salari et al., 2014). Four sets of each of these parameters were considered to 
improve the reliability of the experiments (Table 1). Taguchi was used for the Design of Experiment 
using L16 orthogonal array. A capping pass was done using a pinless tool to conceal

  the grooves of the reinforcement (Butola et al. 2019). After that, the MMC specimens were numbered 
as from 1 to 16. Each specimen was assigned a particular tool pin profile, particular rpm and particular 
travelling speed at which it was FSPed. The tilt angle was fixed +2 degree for processing while during 
metal matrix composite formation, it was fixed to 0 degrees. These values 
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Figure 1: Groove dimensions

have been considered on the basis of the literature review of Butola et al. (2019). 

Table 1. Selection of process parameter using Taguchi L16 Orthogonal Array

Fabrication of Surface Composite

 FSP involves the introduction of a non-consumable tool, which turns at a high rotational speed, slowly onto 
the surface of the workpiece while a constant power is being applied pivotally to ensure the interaction of the shoulder 
of the tool with the substrate for abrasion (Li et al., 2019). It is then moved along the substrate in the desired direction 
of processing. As the tool moves, it plasticizes and heats the material (frictional heat between the interacting 
tool-shoulder and workpiece), forcing it along the processing line and beneath its back-up rim - here, the material 
gets compacted and melded due to the severe deformation, before cooling down. The arrangement of the schematics 
of FSP, along with its apparatus, is illustrated in Fig. 2a and Fig. 2b respectively. Al2O3 was considered as the 
reinforcement material and a different tool pin profile was used for the fabrication of the AMMC using groove-method 
(Butola et al., 2019). Srivastava et al. (2019)

determined the optimum

Figure 2. a) Schematic diagram of Friction stir processing b) FSP set up

Processing Parameter

Tool Pin Profile

Tool Rotational Speed

Tool Traverse Speed

Unit

-

Rpm

mm/min

Level 1

Triangular

1100

36

Level 2

Hexagonal

1210

48

Level 3

Square

1320

60

Level 4

Cylindrical

1430

72
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values of FSP parameters in the fabrication of AA6063/SiC surface composite using Taguchi. They inferred that 
the values of microhardness of the composite increased directly in proportion to the tool rotational speed; whereas, 
an increase in tool traverse speed resulted in an initial increase and subsequent reduction of microhardness

 The physical changes occurring at various points of the tool-substrate interface during the traversal due 
to the different tool profiles are crucial and need to be considered (Bauri et al., 2011). The dimensions and the 
shape of the tool pin considerably impact the quanta of heat engendered, in addition to the material flow during 
FSP. Frictional heat is generated at the points where the rotating tool shoulder interacts the workpiece, where it 
plasticizes the metal at positions immediately adjacent to the pin (in addition to the shoulder generated heat) 
(McNelley et al., 2008) and pushes it downwards. A wider shoulder diameter leads to more localization of the 
frictional heat. This movement of the softened metal around the pin results in the weld seam getting joined. 
Consequently, the second phase particles are better refined, leading to a more stable microstructure. Meshram et al. 
(2016) observed the impact of threaded tool pin profile and tool rotational speed for the production of a FSW of 
AA 2014-T6 plate that is free of defects. Because of the relatively larger frictional area, higher levels of heat 
generation are obtained. The pin profile, hence, is a crucial parameter and is primarily responsible for the regulation 
of the temperature being generated at the shoulder-substrate interface. A conical pin has been found to result in 
the least rise in temperature.  Butola et al. (2019) investigated three distinct pin profiles and studied their impact 
on AA7075/SiC, RHA and B4C-reinforced composites. They established a square mandrel resulted in the most 
homogenous dispersion of particles in the stir zone (which was also observed to be smaller). That is the reason 
for the consideration of different pin profiles

in our study (Fig. 3).

Figure 3. Different tool pin profiles - (a) Hexagonal (b) Square (c) Triangular (d) Cylindrical
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Microhardness Testing
  The Fischer scope HM2000S tester was used for the measurement of the HV value of a sample according 
to ASTM:E8/E8M-011.  The specimen was fixed on the indentation lens and a Vickers (DPH) diamond indenter 
was pushed into the surface of the material with a penetrator and standard application for hardness was chosen. 
Then the force was increased to 500mN from 300mN along with the creep time being 5 seconds and operating tie 
being 40 seconds and from the properties taskbar, the HV property was selected for the specimen hardness. The 
zero point was identified by the machine in a while and then force increases from 0 to 500mN for 20 seconds. A 
creep time for 5 seconds was observed and then the force decreased 500mN to 0N in the next 20 seconds. Then a 
graph along with tabular data was displayed on the screen with variable values of ‘n’, where ‘n’ is the number of 
readings for that particular specimen. Similarly, 3 to 4 readings for each specimen were recorded and the 
specimen was changed. In tandem with the study by Tyagi et al. (2020), the microhardness improved as the tool 
RPM was increased.

Artificial Neural Network
  A neural system comprises a systematically interwoven cluster of artificial neurons (or nodes) and it forms 
relationships using the data through a connectivistic approach for calculation. Neural systems are akin to biological 
systems of neurons - all tasks are performed collectively and simultaneously by the nodes, as opposed to there being 
a demarcation of subtasks to distinct units. The fundamental component of an ANN is a neuron. Neurons are 
associated with one another by links termed synapses, and a weight factor is assigned to every synapse. ANNs have 
three basic layers, namely, input, hidden and output layers. All input factors are present in the input layer. The input 
datapoints are computed over at least one hidden layer and the final response vector is processed in the last layer. A 
common learning algorithm is the back propagation algorithm and it is utilized with an ANN which has an input 
layer with minimum two neurons. A central task in the study of ANNs is the selection of the optimum ANN structure, 
the activation function and the number of neurons in the hidden layer (through tentation).

  MATLAB was utilized to construct a multi-layer feed forward ANN model (Okuyucu et al., 2007).  As a direct 
relationship of the response parameters with the input parameters is not known, target parameters are constructed on 
a three-layer NN by utilizing information collected from mechanical experiments. The output layer has the number 
of neurons corresponding to the number of desired response functions (one). The hidden layer neurons ought to be 
chosen so that the quantity of network unknowns, the weights and biases, doesn't surpass a specific number (here, 
192). Pin profile, tool rotational speed and tool traveling speed were taken as the three inputs and the microhardness 
(HV) values were considered as the output (Fig. 4). Since the tool pin profile is a categorical variable (Bartholomew, 
2013), one-hot encoding was done. An ANN, with one hidden layer of 10 neurons, was trained with the Leven-
berg-Marquardt optimization algorithm (Ahmad et al., 2020). The L-M network training function, the hyperbolic 
tangent sigmoid as the transfer function for hidden and output layers. and the Mean Square Error (MSE) as the 
network error function were considered in the model.
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Figure 4. Model of the ANN architecture used

RESULTS AND DISCUSSION
Microhardness

  The experimental values of microhardness are given in Table 2. It was observed that there was a uniform 
increase in microhardness across specimens until 1320 RPM. A subsequent increase in RPM led to a decrease in the 
Vickers microhardness value because of FSP tool wear (Butola et al., 2020). Fig. 5 shows the trend of the experimental 
values of HV.

Figure 5. Experimental values of microhardness
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Table 2 All the parameters along with their tested and predicted microhardness (HV)

Sample

No.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

Tool pin

profile

Triangular

Triangular

Triangular

Triangular

Hexagonal

Hexagonal

Hexagonal

Hexagonal

Square

Square

Square

Square

Cylindrical

Cylindrical

Cylindrical

Cylindrical

Tool rotational

speed

1100

1210

1320

1430

1100

1210

1320

1430

1100

1210

1320

1430

1100

1210

1320

1430

Travelling

speed

36

48

60

72

48

36

72

60

60

72

36

48

72

60

48

36

Hardness (HV)

85

89

74

70

90

93

81

84

87

78

98

94

68

74

80

83

Predicted HV

85

89

74.02

70

90

93

79.75

84

87

78.03

98

94

68

74

80.001

83
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Artificial neural network

Figure 6. Training plots of ANN for microhardness a) Error histogram plot b) Best validation graph c) Training state 
graph d) Regression plots

Figure 7. Comparison of experimental and predicted microhardness values for specimens 1-16

  The regression plots for the trained model are shown below with their explanations. The Error histogram (Fig. 6a) shows 
the binned representation of the range of error obtained during various stages of the modelling, viz. Training, testing 
and validation, with respect to the zero-error line. Training and testing were done to ensure that an optimum model is 
obtained while avoiding over fitting of the data. Best Validation Graph (Fig. 6b) shows the plot of the Mean Squared 
Error (MSE) about the three epochs of training done and outlines how the error has changed with subsequent epochs 
of running the model. MSE is the main parameter that helps us to judge the performance of our model during the 
training period, as it is a helpful parameter to determine the difference between the predicted and real values, and 
hence helps to revise the weights and biases matrices of the neural network. Training state data graph (Fig. 6c) shows 
mu - control parameter for the training algorithm of the ANN. The choice of mu is directly consequential for the 
convergence of error. In case of the Levenberg-Marquardt optimization, mu depends on the maximum eigenvalue of 
the correlation matrix of the input. It is involved in the weight update expression and avoids the issue of attaining a 
local minimum. Often, the NN assumes that the minimum error value obtained by it is the global minimum and a 
further reduction in the value of error may not be feasible. The predictions obtained using the ANN model were 
found to be very accurate as is visible in the Regression plots (Fig. 6d). These graphs show how a best fit line could 
be plotted with respect to the data points to help us visually perceive the performance of the ANN model. An overall 
R-value of 0.9998 was obtained and the predicted HV values are shown in Table 2. Fig. 7 compares the experimentally 
obtained and the ANN-predicted values of microhardness.
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CONCLUSION

To determine the impact of tool pin profile, tool traversal speed and tool rotational speed on FSPed composites, the material 
behaviour was studied by measuring the microhardness profiles in the cross-sections.

 •  The AA6061+Al2O3 was successfully fabricated using Friction Stir Processing and its microhardness was determined 
for different Tool Pin Profiles and values of Tool rotational speed and Tool traversal speed. 

 •  Increasing the tool rotational speed and lowering the traversal speed resulted in an increment in the specimens’ hardness 
in all examined scenarios. The increase in hardness may be explained via the improvement in material flow and the resulting 
increase in resistance against the tool pin profile which leads to FSP tool wear and the subsequent drop in hardness after 1320 
RPM. It was further noted that Friction stir processing was the most efficacious in the case of a square pin profile, as the 
highest values of microhardness were observed here. An RPM of 1320 and a tool traversal speed of 36 mm/min proved to be 
the best combination and yielded the highest microhardness value. 

 •  An Artificial Neural Network was successfully constructed for the modeling of the microhardness of the specimen with 
respect to the processing parameters and the R-value of 0.9998 was found to be well within the acceptable error limits.
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