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ABSRACT 

A precise forecast of contaminant and solute transport has an inevitable role in water resources 
management. In line with this purpose, in this paper, a novel one-dimensional numerical model is proposed for 
the transmission of a decay chain through homogeneous porous media. To develop the suggested model, two 
different schemes of the finite difference method, namely the Lax-Wendroff scheme and the Fourth-Order scheme, 
are used. The verification and validation of the established model are examined by the analytical results of three 
multi-species solute dispersion problems with three- and four-chain members. The total mean square error, L2- 
and L∞-norms are applied to assess the results. Although analyses show that both schemes provided reliable 
results, the numerical results of the Lax-Wendroff scheme are more accurate. 

Keywords: Multi-Species; Solute Transport; Porous Media; Lax Wendroff Finite Difference Method; 
Fourth-Order Finite Difference Method. 

 

INTRODUCTION 

To manage surface- and groundwater resources, estimating the contaminant and solute transport 
phenomenon is significant. Some researchers have conducted experimental studies or developed numerical 
methods for groundwater problems (Kaya and Arisoy 2011; Celı̇ker 2016; Dalkiliç and Gharehbaghi 2021). There 
are benefits in considering the phenomenon of pollutant and solute transport when examining groundwater 
problems. Each year by increasing the contamination of aquifers with substances such as pesticides, chlorinated 
solvents, and petroleum hydrocarbons the investigation of the safety of water resources becomes more significant. 
The transport processes of some solutes and contaminants are usually more complicated than a first-order or 
pseudo-first-order decay. Thus, a single-member transport model cannot predict the transformation process from 
the parent species to the daughter species. So far, most researchers have focused on the analytical and numerical 
models that could describe the phenomenon of single-member transport of various contaminants. (Kumar et al., 
2010; Savovic et al., 2011; Savovic and Djordjevich 2012 & 2013; Singh et al., 2012; Gharehbaghi 2016 & 2017; 
Das et al., 2018; among many). On the other hand, most analytical solutions have limited applications. ''One of 
the points of emphasis for analytical expressions is that application of an analytical solution is strongly affected 
by initial and boundary conditions. Therefore, many difficulties can encounter when dealing with complex 
geometries'' (Gharehbaghi 2017). Three classical methods, including finite difference method (FDM), finite 
element method (FEM), and finite volume method (FVM), are among the most favorite numerical methods. To 
the best of our knowledge, FDM is the most applied numerical technique in engineering. Therefore, this method 
is employed to develop a new numerical model. Reviews of several studies in one-dimensional (1D) form 
regarding this paper are yielded here.  
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Chen-Charpentier et al., (2009) suggested a numerical model for simulating the water flow, the transport 
of a contaminant and nutrients, plus the progress of biofilm-forming microbes and biodegradation microbes in 
porous media for different kinetics. They announced that the governing equation was solved using mixed-finite 
elements and a non-standard method. Natarajan and Kumar (2010) developed an alternative approach to the 
decomposition method with implicit FDM for solving multispecies transport in porous media coupled with first-
order reactions. Ramos et al., (2011) used HYDRUS-1D software and exerted various experimental studies to 
predict soil sodification and salinization possibilities. They solved the equations with Galerkin-type linear FEM. 
Torlapati (2013) proposed a multi-component reactive transport model by using explicit forms of backward 
difference FDM, total variation diminishing schemes, and fully implicit approaches to predict the fate and 
transport of biochemical and geochemical reactive transport problems in a 1D condition. Bagalkot and Kumar 
(2015) introduced a 1D numerical assessment with FDM for multispecies radionuclide transport in a single-
horizontal coupled fracture-matrix system. Sharma et al. (2016) investigated the impact of distance-dependent 
dispersion on multispecies solute transport process with upwind- and central-difference approaches of implicit 
FDM and with constant, linear, and exponential dispersivity functions. Zhang et al., (2018) proposed a 1D model 
for multi-component solute transport in saturated soil based on the modified diffusion and the modified 
competitive Langmuir adsorption equations. They used the FEM-based software COMSOL Multiphysics to assess 
the outcomes. Pathania et al., (2020) recommended a numerical model based on the meshless element-free 
Galerkin method to calculate groundwater flow and multispecies reactive transport coupled with sequential decay 
reactions in unconfined aquifers. They analyzed the outcomes of the recommended model using FDM, FEM, and 
MODFLOW-RT3D. 

This paper presents the implementation and results of a novel numerical model to predict the multi-
species solute transport phenomenon in 1D form with the Advection-Dispersion Equation (ADE). The proposed 
model used two robust FDM schemes, including Lax Wendroff Finite Difference Method (LWFDM) and Fourth 
Order Finite Difference Method (FOFDM). Finally, three analytical solutions from two separate studies of Bauer 
et al., (2001) and Pérez Guerrero et al., (2009) are applied to evaluate the performance of the proposed model. 

 

Transport model 

Sequential chemical intermediates or radionuclides, coupled with first-order decay processes, form a 
decay chain. The general pattern of sequential multi-species solute transport in porous media can be described 
using the following equation. (Bauer et al. 2001; Pérez Guerrero et al. 2009).  

𝑅"
#$%
#&

= 𝐷 #)$%
#*)

− 𝑣 #$%
#*

− 𝑅"𝜆"𝑐" + 𝑅"01𝜆"01𝑐"01; 						𝑚 = 1,… . ,𝑀;		𝜆: = 0; 			0 <

𝑥 < ∞; 			𝑡 > 0;          (1) 

where cm, Rm, D, v, λm, x, and t are the concentration of the mth member of the decay chain formed by M 
species, the retardation coefficient for the mth species, the dispersion coefficient, the constant pore water velocity, 
the first-order decay constant for the mth species, the longitudinal axis, and time, respectively. The phrase ‘𝑅"𝜆"’ 
is replaced by the indication of km for simplification.  

 

Numerical solution 

As noted previously, two schemes of FDM (i.e., LWFDM and FOFDM) are employed to solve the multi-
species solute transport in porous media. For a start, by replacing the value of m as one in Eq. (1) (i.e., m=1), the 
required equation for the first member is given as follows: 

𝑅1
#$C
#&
= 𝐷 #)$C

#*)
− 𝑣 #$C

#*
− 𝑘1𝐶1					0 < 𝑥 < ∞,								𝑡 > 0						 	 	 	 	 (2)	

In this step, the numerical solution of LWFDM is provided for the first-member. Consider the following 
approximations of the derivatives for the first- and second-order. 
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#*)

= $CGKC
H 0L$CG

HM$CGIC
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#$C
#&
= $CG

HKC0$CG
H

O&
                                 (5) 

And the solution domain of the problem is divided by a mesh of grid lines as follows: 

𝑥P = 𝑖𝛥𝑥								𝑖 = 0,1,2, … , 𝑁*                                    (6) 

𝑡U = 𝑠𝛥𝑡								𝑠 = 0,1,2, … , 𝑁&                                    (7) 

By employing Eqs. (3–5), the solution of the first-member (i.e., Eq. (2)) for LWFDM is written as follows: 

𝑅1
$CG
HKC0$CG

H

∆&
= 𝐷 $CGKC

H 0L$CG
HM$CGIC

H

∆*)
− 𝑣 1 − ∅ $CG

H0$CGIC
H

J*
+ ∅ $CGKC

H 0$CG
H

J*
− 𝑘1𝐶1P

&        (8) 

where the value of ∅ is equal to ∅ =
(1 − 𝑣 J&

J*
)
2 =

1
L
− 𝑣 J&

LJ*
 (Appadu, 2013).	By some manipulation, Eq. (8) 

can rearrange as follows: 

𝐶1P
&M1 = 𝐶1P01

& ∆&Y
ZC∆*)

+ [∆& 10∅
ZCJ*

+ 𝐶1P
& 0L∆&Y
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− [∆& 10∅

ZCJ*
+ [∆&∅

ZCJ*
− 𝑘1

∆&
ZC
+ 1 + 𝐶1PM1

& ∆&Y
ZC∆*)

− [∆&∅
ZCJ*

           

                    (9) 

To calculate the LWFDM more easily, two coefficients, which we call mm and nm coefficients, are presented in 

total. 

𝑚" = ∆&Y
Z%.∆*)

                                 (10)  

𝑛" = ∆&[
Z%.J*

                                           (11)        

By replacing the m1 and n1 coefficients in Eq. (9), the final form of solution for the first-member for LWFDM is 

given as follows:  

𝐶1P
&M1 = 𝐶1P01

& 𝑚1 + 𝑛1 1 − ∅ + 𝐶1P
& −2𝑚1 − 𝑛1 1 − ∅ + 𝑛1∅ − 𝑘1

∆&
ZC
+ 1 + 𝐶1PM1

& 𝑚1 − 𝑛1∅         

                                    (12)        

By applying the similar solution steps, the final form of the solution for the second-, third- and fourth-species for 

LWFDM are extracted as follows: 

𝐶LP
&M1 = 𝐶LP01

& 𝑚L + 𝑛L 1 − ∅ + 𝐶LP
& −2𝑚L − 𝑛L 1 − ∅ + 𝑛L∅ − 𝑘L

∆&
Z)
+ 1 + 𝐶LPM1

& 𝑚L − 𝑛L∅ +

𝑘1
∆&
Z)
𝐶1P

&                              (13)         



Amin GHAREHBAGHI 

	

	
	

157	

𝐶]P
&M1 = 𝐶]P01

& 𝑚] + 𝑛] 1 − ∅ + 𝐶]P
& −2𝑚] − 𝑛] 1 − ∅ + 𝑛]∅ − 𝑘]

∆&
Z^
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𝑘L
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&                              (14)        

𝐶_P
&M1 = 𝐶_P01

& 𝑚_ + 𝑛_ 1 − ∅ + 𝐶_P
& −2𝑚_ − 𝑛_ 1 − ∅ + 𝑛_∅ −

O&
Z`
𝑘_ + 1 + 𝐶_PM1

& 𝑚_ − 𝑛_∅ +

𝑘]
O&
Z`
𝐶]

P

&
                                   (15)    

In this step to solve Eq. (2) in EFOFDM form, for each time and space step, the derivatives of the first- and 

second-order are expressed as follows (Kaya and Gharehbaghi, 2014, Gharehbaghi et al., 2017): 

#$C
#&
= aGI)0baGICMbaGKC0aGK)

1L∆*
                             (16)  

#)$C
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1L∆*)

                      (17) 

#$C
#*

= $CG
HKC0$CG

H

∆&
                                     (18) 

To initiate the discretization, Eqs. (16-18) are replaced in Eq. (2). 

𝑅1
$CG
HKC0$CG

H

∆&
= 𝐷

0$CGI)
H M1c$CGIC

H
0]:$CG

HM1c$CGKC
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H

1L∆*
− 𝑘1𝐶1P

&            (19) 

Eqs. (6-7) have been used to generate the grid line. With some manipulation, the final form of the solution for the 

first-member is acquired as follows: 

𝐶1P
&M1 = 𝐶1P0L

& − ∆&Y
1L∆*)ZC
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                    (20) 

Similar to the solution of LWFDM, two coefficients, which we call kam and kbm coefficients, are introduced to 

solve FOFDM more easily. 

𝑘𝑎" = ∆&Y
1L∆*)Z%

                           (21) 𝑘𝑏" =

∆&[
1L∆*Z%

                        (22) 

 And the final form of discretization with FOFDM is rearranged as follows: 

𝐶1P
&M1 = 𝐶1P0L

& −𝑘𝑎1 − 𝑘𝑏1 + 𝐶1P01
& 16𝑘𝑎1 + 8𝑘𝑏1 + 𝐶1P

& −30𝑘𝑎1 −
∆&dC
ZC

+ 1 + 𝐶1PM1
& 16𝑘𝑎1 − 8𝑘𝑏1 +

𝐶1PML
& −𝑘𝑎1 + 𝑘𝑏1                  (23)     

By applying a similar solution process, the ultimate form of the solution for second-, third- and fourth-species for 

FOFDM are extracted as follows: 
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𝐶LP
&M1 = 𝐶LP0L
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& −𝑘𝑎_ − 𝑘𝑏_ + 𝐶_P01
& 16𝑘𝑎_ + 8𝑘𝑏_ + 𝐶_P
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It is worth noting that both methods described here are solved explicitly. Consequently, these methods 
must be able to satisfy the stability condition. In this study, the authors employed the Courant number for testing 
the stability condition. Moreover, the suggested model has no limitation on the number of multi-species. However, 
the analytical solutions implemented here have used up to four species. Therefore, solutions for the four species 
are presented here. 

 

Results and discussions 

In the current research, to investigate the multi-species solute transport in porous media a numerical 
model is developed. The analytical results of three multi-species solute transport problems introduced by Pérez 
Guerrero et al., (2009) and Bauer et al., (2001) were employed to analyze the accuracy and efficiency of the 
presented numerical model with LWFDM and FOFDM. MATLAB was employed to build the suggested model. 

The first two case studies used analytical outcomes of dimensionless concentration for a three-species 
nitrification chain (𝑁𝐻_M → 𝑁𝑂L0 →𝑁𝑂]0). In the first case, the distance and duration of the problem were 
selected as 220cm and 200h, respectively. Also, in the second case, the distance and duration of the problem were 
applied as 110cm and 50h (much less time), respectively. The linear interpolation method is employed to calculate 
the essential interval values for analytical results. More details about these two case studies, for instance, decay 
coefficient (𝜆"), retardation coefficient (Rm), initial and boundary conditions, are presented in Table (1). It is 
important to note that in all tables and figures below, the first two case studies are referred to as the analytical 
results of dimensionless concentration for the three-species nitrification chain (𝑁𝐻_M → 𝑁𝑂L0 →𝑁𝑂]0) 
introduced by Pérez Guerrero et al., (2009) for 220cm, 200h and 110cm, 50h, respectively. Furthermore, case 
three is the analytical result of a four-member decay chain solute transport problem derived from the Bauer et al., 
(2001) study. Moreover, in all of the figures and tables below related to the two first cases, the x, c, curve_1, 
curve_2, and curve_3, are the abbreviations of distance (cm), concentration (mM), outcomes of analytical 
expressions introduced by Pérez Guerrero et al., (2009) for 𝑁𝐻_M, outcomes of analytical expressions introduced 
by Pérez Guerrero et al., (2009) for 𝑁𝑂L0, and outcomes of analytical expressions introduced by Pérez Guerrero 
et al., (2009) for 𝑁𝑂]0, respectively. Also, LWFDM_C1, LWFDM _C2, LWFDM _C3, FOFDM_C1, 
FOFDM_C2, and FOFDM_C3 are the abbreviations of calculated dimensionless concentration with a suggested 
model for LWFDM for 𝑁𝐻_M, calculated dimensionless concentration with a suggested model for LWFDM for 
𝑁𝑂L0, calculated dimensionless concentration with a suggested model for LWFDM for 𝑁𝑂]0, calculated 
dimensionless concentration with suggested model for FOFDM for 𝑁𝐻_M, calculated dimensionless concentration 
with suggested model for FOFDM for 𝑁𝑂L0, and calculated dimensionless concentration with suggested model 
for FOFDM for 𝑁𝑂]0,  respectively. 

 

 



Amin GHAREHBAGHI 

	

	
	

159	

Table 1. Parameter values for the nitrification chain problem 

Description 𝑁𝐻_M (m=1) 𝑁𝑂L0 (m=2) 𝑁𝑂]0 (m=3) 

Retardation coefficient (Rm) 2 1 1 

Decay coefficient, 𝜆"  0 0.1 0 

First case→𝐶 𝑥, 1  0 0 0 

First case→𝐶 1, 𝑡  0.9982064510 0.001731801827 0.00006174718691 

First case→𝐶 𝑁, 𝑡  1.199389159E-89 1.255589051E-12 0.0002545665546 

Second case→𝐶 𝑥, 1  0 0 0 

Second case→𝐶 1, 𝑡  0.9982064510 0.001731801827 0.00006174718691 

Second case→𝐶 𝑁, 𝑡  5.1438380E-177 1.622019705E-50 2.260630087E-48 

Pore velocity=1 cmh-1 Dispersion  coefficient D=0.18cm2h-1 

 

The outcomes of numerical investigations for the first two case studies are illustrated in Figures (1) and 
(2) and Tables (2-4). The above-mentioned case studies are simulated with two space and time intervals. The first 
case is simulated in space (Nx) and time (Nt) with the (Nx=331, Nt= 800001) and (Nx=441, Nt=200001) number 
of nodes. Similarly, the second case is employed (Nx=221, Nt=250001), and (Nx=441, Nt=600001) numbers of 
nodes in space (Nx) and time (Nt) to solve the problem. The numerical results of the first case at a distance and 
time equal to 220cm and 200h for all the nitrogen species are illustrated in Figure (1). Besides, the numerical 
results of the second case at a distance and time equal to 110cm and 50h for all the nitrogen species are illustrated 
in Figure (2). Based on the numerical outcomes demonstrated in the figures, it can easily be seen that both 
LWFDM and FOFDM have calculated close results. Therefore, for benchmark purposes, the total mean square 
error (TMSE), L2-, and L∞-norms are determined by the following relations. The outcomes of the comparisons are 
illustrated in Tables (2-4).   

𝑇𝑀𝑆𝐸 =
aop%qrGstu	vwupHGwx0atxtuyHGstu	rqvpuHv

)

z
          (27) 

𝑥
L
= 𝑥1L + 𝑥LL + ⋯+ 𝑥z01L + 𝑥zL                   (28) 

𝑥
|
= 𝑚𝑎𝑥 𝑥1 , 𝑥L , … , 𝑥z            (29)   

The numerical solutions for decay chain transport in porous media are extensively applicable. ''Although 
only radioactive decay is a true first-order process, also chemical and biological transformations can be often 
described approximately in terms of first-order decay'' (Bauer et al., 2001). As mentioned earlier, based on the 
numerical results demonstrated in the tables below, it can be seen that both the LWFDM and FOFDM schemes 
can illustrate good agreements with the results of analytical values. To achieve a deeper focus on the applied 
schemes, the comparison of numerical results, one by one, is presented here. Regarding the first case study, the 
numerical results yielded in Table (2) show that the FOFDM in the first- (𝑁𝐻_M) and second-member (𝑁𝑂L0) 
determined slightly better results than LWFDM. Nevertheless, the numerical outcomes of L2- and L∞-norms in 
Tables (3-4) demonstrate that LWFDM provides more accurate results. In the second case, generally, LWFDM 
obtains more precise results than FOFDM. 
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Fig. 1. Illustration of results of first case for 1D transient concentration distribution for all the nitrogen 
species (220cm and 200h) and (Nx=331, Nt=800001). 

 

 

Fig. 2. Illustration of results of second case for 1D transient concentration distribution for all the 
nitrogen species (110cm and 50h) and (Nx=441, Nt=60001). 

 

Table 2. Table of TMSE for the first and second cases 

Description Nx(Δx); Nt(Δt) 𝑁𝐻_M (m=1) 𝑁𝑂L0 (m=2) 𝑁𝑂]0 (m=3) Execution time(s) 

First case→ LWFDM 331(0.6667);800001(0.00025) 2.92685E-05 1.11154E-06 8.06441E-05 2.92685E-05 

First case→EFOFDM  2.55927E-05 1.03669E-06 8.21961E-05 512.807369 

First case→ LWFDM 441(0.5);200001(0.001) 2.9121E-05 1.11681E-06 8.08962E-05 46.771354 

First case→EFOFDM  2.65833E-05 1.06039E-06 8.19144E-05 145.763324 

Second case→LWFDM 221(0.5);250001 (0.0002) 0.000138592 2.46814E-06 1.06738E-05 38.282872 

Second case→EFOFDM  0.0001587 2.48433E-06 1.13168E-05 100.173238 

Second case→LWFDM 441(0.25);600001(0.000083333) 0.000148592 2.52067E-06 1.08812E-05 226.570315 

Second case→EFOFDM  0.000155325 2.51632E-06 1.11242E-05 437.070194 
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Table 3. Table of L2-norms for the first and second cases 

L2- Description Nx(Δx); Nt(Δt) 𝑁𝐻_M (m=1) 𝑁𝑂L0 (m=2) 𝑁𝑂]0 (m=3) 

 Analytical results of equal interval node distribution 331(0.6667);800001(0.00025) 8.031114327 0.74391006 6.615388059 

 LWFDM  7.95209243 0.760873 6.776044 

 EFOFDM  7.960036905 0.76095 6.776169 

First case Analytical results of equal interval node distribution 441(0.5);200001(0.001) 9.264546037 0.85901057 7.638814144 

 LWFDM  9.17326893 0.878634 7.824448 

 EFOFDM  9.179941339 0.878695 7.824534 

 Analytical results of equal interval node distribution 221(0.5);250001 (0.0002) 6.104308005 0.449497 0.912087457 

 LWFDM  6.135397889 0.470967 0.958306 

 EFOFDM  6.146293889 0.47112 0.958493 

Second case Analytical results of equal interval node distribution 441(0.25);600001(0.000083333) 8.603468 0.635614 1.289799 

 LWFDM  8.649479357 0.666281 1.355536 

 EFOFDM  8.656191449 0.66634 1.355607 

 

Table 4. Table of L∞-norms for the first and second cases 

L∞- Description Nx(Δx); Nt(Δt) 𝑁𝐻_M (m=1) 𝑁𝑂L0 (m=2) 𝑁𝑂]0 (m=3) 

 Analytical results of equal interval node distribution 331(0.6667);800001(0.00025) 0.991726725 0.077019 0.586836973 

 LWFDM  0.991382 0.07902 0.598951 

 EFOFDM  0.992145 0.079031 0.599018 

First case Analytical results of equal interval node distribution 441(0.5);200001(0.001) 0.993346656 0.077057 0.587139464 

 LWFDM  0.993083 0.079027 0.598982 

 EFOFDM  0.993638 0.079035 0.599027 

 Analytical results of equal interval node distribution 221(0.5);250001 (0.0002) 0.993347 0.074712 0.146364487 

 LWFDM  0.993083 0.077032 0.15312 

 EFOFDM  0.993638 0.076832 0.153216 

Second case Analytical results of equal interval node distribution 441(0.25);600001(0.000083333) 0.995777 0.074712 0.146364 

 LWFDM  0.995641 0.076886 0.153235 

 EFOFDM  0.995895 0.07684 0.153253 

 

In the final case study, an arbitrary decay chain containing four species in a complex porous medium at 
3000 m and 3000 days is used. Application of these distance and time values reveals that the introduced model 
can suitably solve problems in the semi-infinite domain and long duration of time. The details of the problem for 
the third case study are illustrated in Table (5).  

Moreover, in all of the figures and tables below related to the third case, the x is the abbreviation of 
distance (cm), c is the abbreviation of concentration (mM),  C1, C2, C3, and C4, are the abbreviations of outcomes 
of analytical expressions for the concentration introduced by Bauer et al., (2001) for four species, LWFDM_C1, 
LWFDM _C2, LWFDM _C3, and LWFDM _C4, are the abbreviations of numerical results of the concentration 
with the suggested model for LWFDM for four species, and FOFDM_C1, FOFDM_C2, FOFDM_C3, and 
FOFDM_C4 are the abbreviations of numerical results of the concentration with the suggested model for FOFDM 
for four species, respectively. In case three, we carried out four numerical experiments to investigate the developed 
model more deeply, including Nx=1001, Nt=15001; Nx=1501, Nt=30001; Nx=2001, Nt=40001; and Nx=2001, 
Nt=60001. Parallel to the two first cases, the TMSE, L2- and L∞-norms are calculated. The numerical results are 
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presented in Tables (6-8). The numerical outcomes of concentration distributions for the four-member decay chain 
for Nx=1001, and Nt=15001 in case three are demonstrated in Figure (3). The numerical results given in Table (6) 
show that in the third case, LWFDM calculates more reliable TMSE results than FOFDM. Numerical outcomes 
in Table (7) clarify that except the third-member, the results of LWFDM are more accurate, and numerical 
outcomes of Table (8) elucidate that except for third- and fourth-members, the results of LWFDM are more 
accurate. In conclusion, it can easily say that the numerical results of LWFDM for all cases are more accurate and 
reliable. Even in cases where FOFDM achieves better results, the differences are negligible. One of the main 
points behind the better performance of LWFDM in all case studies is related to the boundary conditions. As is 
evident to all, boundary conditions have a significant impact on the accuracy of numerical methods. FOFDM 
needs to consider more ghost node points than LWFDM. This fact affects, first of all, the accuracy of numerical 
results, and secondly, it makes the process of developing a model cumbersome. The last but not least point is that 
in all case studies, the required execution time for LWFDM is much shorter than the FOFDM. 

 

Fig. 3. 1D transient concentration distribution for constant boundary condition (3000m and 3000day) in 
(Nx=1001, Nt=15001). 

 

Table 5. Parameter values for the third case 

Description C1 (m=1) C2 (m=2) C3 (m=3) C4 (m=4) 

Retardation coefficient (Rm) 5.3 1.9 1.2 1.3 

Decay coefficient, 𝜆"×100_ (day-1) 7 5 4.5 3.8 

Third case→𝐶 𝑥, 1  (mM) 0 0 0 0 

Third case →𝐶 1, 𝑡  (mM) 100 0 0 0 

Third case→𝐶 𝑁, 𝑡  (mM) 0 0 0 0 

Pore velocity=1 mday-1 Dispersion  coefficient D=10m2day-1  
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Table 6. Table of TMSE for the third case 

Description Nx(Δx); Nt(Δt) C1 (m=1) C2 (m=2) C3 (m=3) C4 (m=4) Execution time(s) 

Third case→ LWFDM 1001(3);15001(0.2) 0.00341617 0.006046303 0.001608776 0.001715191 7.508856 

Third case→EFOFDM  0.004821301 0.008065866 0.001719605 0.001823453 26.554933 

Third case→ LWFDM 1501(2);30001(0.1) 0.003486966 0.006025762 0.001668566 0.00176801 21.480427 

Third case→EFOFDM  0.00431609 0.00723868 0.001711212 0.001815357 88.527707 

Third case→ LWFDM 2001(1.5);40001(0.075) 0.003565671 0.005966808 0.001686528 0.001782023 55.981296 

Third case→EFOFDM  0.004144471 0.00682945 0.001717049 0.001818372 152.220120 

Third case→ LWFDM 2001(1.5);60001(0.05) 0.003561612 0.005933962 0.001706274 0.001796552 57.247254 

Third case→EFOFDM  0.004145105 0.006812481 0.001713147 0.001812118 202.831910 

 

 

Table 7. Table of L2-norms for the third case 

L2- Description Nx(Δx); Nt(Δt) C1 (m=1) C2 (m=2) C3 (m=3) C4 (m=4) 

 Analytical results of equal interval node distribution 1001(3);15001(0.2) 677.3394 909.7015 566.1908 180.1968 

 LWFDM  678.2099 909.6674 565.8571 179.7832 

 EFOFDM  678.7518 909.7855 565.8606 179.7525 

Third 

case 

Analytical results of equal interval node distribution 1501(2);30001(0.1) 

828.0354 1114.147 693.4388 220.6947 

 LWFDM  829.0513 1114.154 693.005 220.1615 

 EFOFDM  829.4979 1114.226 693.007 220.1427 

 Analytical results of equal interval node distribution 2001(1.5);40001(0.075) 955.2477 1286.505 800.7144 254.8364 

 LWFDM  956.4115 1286.528 799.0596 252.4782 

 EFOFDM  956.7907 1286.589 799.0635 252.4662 

 Analytical results of equal interval node distribution 2001(1.5);60001(0.05) 955.2477 1286.505 800.7144 254.8364 

 LWFDM  956.3931 1286.538 799.0523 252.4712 

 EFOFDM  956.7896 1286.58 799.0548 252.4627 
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Table 8. Table of L∞-norms for the third case 

L∞- Description Nx(Δx); Nt(Δt) C1 (m=1) C2 (m=2) C3 (m=3) C4 (m=4) 

 Analytical results of equal interval node distribution 1001(3);15001(0.2) 98.22275 60.78184 31.70163 10.485 

 LWFDM  98.93161 60.77521835 31.67349 10.4398 

 EFOFDM  99.01777 60.79262064 31.67862 10.44122 

Third case Analytical results of equal interval node distribution 1501(2);30001(0.1) 98.45076 60.78459 31.70348 10.485 

 LWFDM  99.28634 60.78333125 31.67441 10.43943 

 EFOFDM  99.34206 60.79199843 31.67697 10.44015 

 Analytical results of equal interval node distribution 2001(1.5);40001(0.075) 98.56202 60.78432 31.70441 10.485 

 LWFDM  99.46425 60.78531858 31.67464 10.43935 

 EFOFDM  99.50531 60.79180174 31.67656 10.43989 

 Analytical results of equal interval node distribution 2001(1.5);60001(0.05) 98.56202 60.78432 31.70441 10.485 

 LWFDM  99.46423 60.78724772 31.67486 10.43927 

 EFOFDM  99.50531 60.79155971 31.67614 10.43962 

 

 

CONCLUSION	

This paper documented the development of a new numerical model based on the two different schemes 
of FDM (i.e., LWFDM and FOFDM) that solved the multi-species solute transport phenomenon in porous media. 
Although there is no limitation on the number of multi-species, the analytical results of three different well-
established problems (i.e., three-species (𝑁𝐻_M → 𝑁𝑂L0 →𝑁𝑂]0) and four-species problems) were applied to 
evaluate the proposed model. TMSE, L2- and L∞ norms were used to analyze the numerical results accurately. 
Regarding the numerical results yielded in this paper, both the LWFDM and FOFDM have calculated acceptable 
results. The numerical experiments for all of the case studies were carried out with at least two various numbers 
of space- and time intervals. In the first case study, the numerical outcomes express that the FOFDM in the first- 
(𝑁𝐻_M) and second-member (𝑁𝑂L0) were determined slightly better results than LWFDM. On the other hand, 
the LWFDM was determined more accurate results for L2- and L∞-norms. In the last two cases, in general, 
LWFDM results are found to be more accurate than FOFDM. As a final point, it can be stated that in all case 
studies, the required execution time for LWFDM was much shorter than FOFDM. In conclusion, it can easily be 
said that the LWFDM is a more accurate and reliable method than the FOFDM.  
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