
Journal	of	Engg.	Research	Vol.	11	No	3	pp.228-237				 	 DOI:10.36909/jer.13567		

	 228	

A Novel Decision Support System Based on Fuzzy 
Multi Criteria Decision Making for Optimizing 
Machining Parameters 
Muhammed Ordu* and Yusuf Fedai* 
* Osmaniye Korkut Ata University, Faculty of Engineering and Natural Sciences, Department of Industrial Engineering, Osmaniye, Turkey 

Corresponding Author: muhammedordu@osmaniye.edu.tr 
 

Submitted	:	12-03-2021	

Revised						:	30-09-2021	

Accepted			:	09-10-2021	

 
 

 
ABSTRACT 

The aim of this study is to develop a novel decision support system to optimize machining parameters. 
We combine three distinct methods: experimental design and analysis, fuzzy data envelopment analysis (DEA), 
and fuzzy analytical hierarchy process (AHP). First, a full factorial experiment, including four factors and three 
levels, was conducted. We considered the cutting speed, feed rate, depth of cut, and number of cutting tool inserts, 
as factors. The following three outputs were selected: material removal rate, machining time, and surface 
roughness. Second, 23 experiments were determined to be efficient decision-making units using fuzzy DEA with 
a super-efficiency method. Finally, a fuzzy AHP approach was employed to rank the efficient experiments. In 
conclusion, the results show that the fuzzy DEA-fuzzy AHP and fuzzy DEA with super-efficiency generate clearly 
different rankings of experiments, and the fuzzy DEA-fuzzy AHP approach outperformed the fuzzy DEA with 
super-efficiency approach. The results highlighted the importance of considering expert opinions in decision-
making processes. 

Keywords: Decision Support System; Experimental Analysis; Fuzzy Analytical Hierarchy Process; 
Fuzzy Data Envelopment Analysis; Fuzzy Multi Criteria Decision Making; Machining. 

 
INTRODUCTION 

AISI 4140 steel is one of the most commonly used alloys in several industries, especially the automotive 
and aerospace industries, because it has a variety of characteristic features such as weldability, good formability, 
excellent corrosion resistance, and high strength. In addition, machinery, parts and apparatus, agricultural vehicles, 
numerous products employed in defense areas, and the petroleum and derivatives industry use AISI 4140 steel. 
Machining operations are performed on the material using different methods because it has a very wide area of 
application (Şahinoğlu and Rafighi (2020), Gürbüz and Gönülaçar (2020), Schwalm et al. (2020), and Lubis et al. 
(2020)). 

Cost, time, and quality are the most important factors that affect manufacturing productivity. To adapt to 
new technologies and survive in competitive markets, the variables affecting these factors must be controlled. 
CNC milling is a traditional machining method frequently used in manufacturing and other industrial sectors. 
Several studies have focused on cutting parameters to improve the quality of machining processes in milling. 
Milling performance mainly depends on the selection of the most appropriate input parameters to optimize various 
objective functions, such as maximizing the material removal rate (MRR) and minimizing the machining time 
(Tm) and surface roughness (Ra) (Kumar and Verma, 2020). Most deformations occurring between tools and 
materials during machining cause certain difficulties in achieving the desired optimization goals because of the 
interaction of many factors. To overcome these problems, researchers have suggested various approaches to 
optimize cause-effect relationships between various factors and targeted product characteristics with multiple 
responses (Al-Refaie et al., 2014). 
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Several studies have been conducted for the optimization of machining parameters. The studies were 
designed according to experimental design methods (i.e., full factorial, Taguchi, etc.), and the main and interaction 
effects were analyzed; for example, Fedai et al. (2018) and Kahraman et al. (2018). In general, single- and multiple-
response optimization studies have been conducted; for example, Ananthakumar et al. (2019), Sharma et al. (2019) 
and Basar et al. (2019). However, fuzzy environment has not been considered. On the other hand, multiple 
replications are performed for each experiment in the studies. Thus, more than one value is generated for each 
output. In this case, the study did not have exact values and had average and standard deviation values. These 
circumstances suggest that future studies should employ a fuzzy-logic approach to overcome this type of 
uncertainty. In several studies, the optimum values of the input parameters were determined either by data 
envelopment analysis or by multi criteria decision-making (MCDM) methods (i.e., TOPSIS, PROMETHEE, or 
analytical hierarchy process (AHP)) using the inputs and outputs obtained from the experimental analysis (Manoj 
et al. (2018); Chakraborty et al. (2019); Phan and Muthuramalingam (2020); Naik et al. (2020); Basar et al. (2020)). 
In other studies, the criterion weights were calculated using the AHP method, and the weights were then embedded 
into other multi criteria decision-making methods, such as those of Singaravel and Selvaraj (2015), Nadda et al. 
(2020), and Kumar and Verma (2020). However, our study differs from the literature in the following ways. 1) A 
total of 81 experiments were conducted using a full factorial experimental analysis. Three replications for surface 
roughness were performed for each experiment and output values were obtained; 2) in our optimization stages, the 
uncertainty and fuzzy environment caused by different output values obtained from the replications were 
considered; and 3) efficient experiments determined by the fuzzy data envelopment analysis (DEA) approach were 
optimized using the fuzzy AHP method, based on expert opinions. No previous study has applied this approach 
for the optimization of machining parameters. This study fills this gap in the literature. 

The remainder of the paper is organized as follows. Section 2 describes the proposed decision support 
system and explains the methodologies (i.e., experimental design and analysis, fuzzy data envelopment analysis, 
and fuzzy analytical hierarchy process) in detail. Section 3 discusses the results and Section 4 concludes the paper. 

 
THE PROPOSED DECISION SUPPORT SYSTEM 

In this study, we combined the following three methods to develop a decision support system (refer Figure 
1) to optimize machining parameters: experimental design and analysis, fuzzy data envelopment analysis (DEA), 
and fuzzy analytical hierarchy process (AHP). First, a full-factorial experiment (34 =81) was designed. The 
experimental design consisted of four factors (cutting speed, feed rate, cut depth, and number of cutting tool 
inserts) and three levels. Three output parameters (material removal rate, surface roughness, and machining time) 
were measured. Second, all inputs and generated outputs in the experimental design and analysis were fed into the 
fuzzy data envelopment analysis models. Thus, efficient decision making units (i.e., experiments) were 
determined. Finally, efficient experiments were conducted in terms of a multi criteria decision making problem to 
optimize the multi-response problem and rank alternatives by considering expert opinions. Thus, this decision 
support system can assess and compare machining parameters in a fuzzy environment. The main contribution of 
this study is the development of a decision support system by integrating the three distinct techniques mentioned 
above to determine the optimum parameters for machining all the materials (i.e., steel and nanocomposite 
materials). This novel hybrid approach enabled the specification of the optimum combination of factors and levels 
in all experiments of the full factorial experimental design. 

 

Figure 1. The structure of the proposed decision support system 
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STEP 1: EXPERIMENTAL ANALYSIS PROCESS 

AISI 4140 steel used in the study is a material that is highly resistant to friction, impact, and cracking due 
to the intense carbon in its composition. Because of this feature, it is widely used in automobiles, aircraft, machine 
tools, and several machine parts (i.e., axles made for different purposes, shafts, and gears). 

The material used in the experiments was cut to 260 x 150 x 25 mm using an aqueous saw and made 
suitable for the study. To eliminate the effects of oxides and residues on the surface of the part on the test results, 
the material was primarily subjected to surface milling. Cutting experiments were performed in the CNC vertical 
machining center of a SPINNER MVC1000 (refer Figure 2a). In the milling process, an R 390-11 T308M-PM 
1030 PVD and TiAlN + TiN-coated carbide cutting tool, and an R 390-020B20-11M tool holder from Sandvik 
Inc. were also employed. 

 

Figure 2. a) The experimental setup, b) The portable device for measuring surface roughness 

In the milling experiments, the cutting parameters and levels used in the milling of AISI 4140 steel were 
as follows: cutting speed (175, 250, and 325 m/min), feed rate (0.08, 0.12, and 0.16 mm/rev), depth of cut (0.5, 1, 
and 1.5 mm), and number of cutting tool inserts (1, 2, and 3 units). 

In the experiments, the following were considered as outputs: material removal rate (Eq. 1), machining 
time (Eq. 2), and minimum–maximum values of the surface roughness. The surface roughness was measured using 
a MITUTOYO SJ-400 portable surface roughness tester (Figure 2b). 

𝑀𝑅𝑅 = 𝑤𝑑𝑓'              (1) 

where MRR is material removal rate (mm3/min), w is the width of the cut (mm), d is the depth of the cut 
(mm), and fr is the feed rate (mm/min) (Groover, 2010).  

𝑇) = *+,
-.

              (2) 

where Tm is the machining time (min), L is the cut length (mm), and A is the approach distance (mm) (Groover, 

2010).  
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STEP 2: DATA ENVELOPMENT ANALYSIS PROCESS 

The second step was to determine the most efficient among all experiments using data envelopment 
analysis (DEA) method. The DEA method is effective in comparing decision making units in terms of relative 
effectiveness (Wen and Li, 2009). Liu and Chuang (2009) state that several situations in the use of the DEA method 
cause complexity and difficulty. For example, it is difficult to measure, or imprecise, the number of inputs or 
outputs. To obtain reliable DEA results, the exact values of the inputs and outputs should be obtained. However, 
obtaining exact numbers or values from numerous systems, processes, and experiments may be difficult. In this 
case, fuzzy environmental conditions become effective. We used the fuzzy DEA method because the output (i.e., 
surface roughness) had fuzzy numbers owing to the replication of the experiments. The efficiency scores of all 
experiments are listed in Table 1. 

 

 

Table 1. Efficiency scores: E: Experiment 

Experiments Efficiency Scores 
(%) Experiments Efficiency Scores 

(%) Experiments Efficiency Scores 
(%) 

E1 100.00 E66 99.87 E41 87.95 
E2 100.00 E69 99.83 E14 87.03 

E21 100.00 E51 99.65 E9 86.82 
E27 100.00 E48 99.51 E33 86.63 
E28 100.00 E43 99.49 E13 86.61 
E32 100.00 E77 99.07 E42 86.46 
E37 100.00 E74 99.06 E6 86.24 
E54 100.00 E59 96.20 E30 85.38 
E55 100.00 E35 96.04 E68 84.99 
E56 100.00 E25 95.73 E15 84.86 
E57 100.00 E4 95.47 E5 84.84 
E58 100.00 E10 94.68 E38 84.68 
E60 100.00 E67 94.39 E36 84.55 
E61 100.00 E40 94.24 E46 84.36 
E62 100.00 E16 92.04 E71 84.32 
E63 100.00 E20 91.84 E52 83.71 
E64 100.00 E3 91.31 E18 83.35 
E70 100.00 E39 90.47 E53 82.73 
E73 100.00 E12 90.16 E8 82.09 
E75 100.00 E19 90.11 E49 80.92 
E78 100.00 E11 89.98 E17 80.38 
E79 100.00 E47 89.64 E34 79.87 
E81 100.00 E29 89.60 E50 79.77 
E72 99.99 E23 89.49 E26 79.20 
E80 99.99 E7 89.45 E65 77.96 
E24 99.95 E45 89.32 E31 76.08 
E76 99.95 E22 88.20 E44 73.37 

 

STEP 3: MULTI CRITERIA DECISION MAKING PROCESS 

Step 3 includes the application of the expert opinion-based multi criteria decision making process, as 
shown in Figure 3. In this step, a fuzzy analytical hierarchy process was conducted to rank the efficient 
experiments, which were calculated in the previous step based on the opinions of a number of experts, consisting 
of mechanical and industrial engineers. The fuzzy AHP method is an extension of the AHP method developed by 
Saaty (1980). It combines the AHP method and fuzzy set theory (Duran and Aguilo, 2008). In the first stage, a 
hierarchy was constructed to solve the problem. The structure of this hierarchy is illustrated in Figure 3. In the 
second stage, a fuzzy comparison matrix is developed, and a fuzzy weight vector is established. Ayag and Ozdemir 
(2006) used triangular fuzzy numbers to develop a matrix. 
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Figure 3. The structure of the MCDM problem 

 

The fuzzy pairwise comparison matrix, fuzzy weights and normalized weights for the main criteria are 
listed in Table 2. Fedai et al. (2018) stated that the surface roughness is an important factor affecting the 
machinability of a material. This is a common problem encountered on surfaces after machining and it affects 
material quality. The material removal rate and machining time were the other factors affecting the quality that 
were considered in this study. From Eqs. (1) and (2), it is evident that the material removal rate and machining 
time are inversely proportional. However, surface roughness is more important than these two criteria in 
manufacturing materials with the desired quality. For these reasons, the criteria were weighted, as shown in Table 
2. We also prepared a fuzzy pairwise comparison matrix for all criteria. 

Table 2. Pairwise comparison matrix of the criteria 
Response MRR Tm Ra Fuzzy Weights Normalized Weights 

MRR 1 1 812 0.089 0.093 0.097 0.100 
Tm 112 1 812 0.089 0.093 0.097 0.100 
Ra 8 8 1 0.681 0.745 0.805 0.800 

 

In Table 3, the geometric means for all experiments after establishing the fuzzy comparison matrix, are 
presented. Subsequently, the fuzzy weights for each alternative are determined, and the fuzzy weights are averaged. 
Finally, a normalization procedure is performed. We applied the fuzzy AHP procedure to all criteria (i.e., MRR, 
Tm, and Ra). 

 

Table 3. Geometric mean, fuzzy weights, and normalized weights for the first criterion (i.e., material removal rate) 

Experiments Geometric Mean Fuzzy Weights Average Normalized 
Weights 

E75 1.269 1.882 2.295 24.311 52.501 92.488 56.433 0.061134 
E64 0.426 0.602 0.918 8.155 16.788 37.007 20.650 0.022370 
E58 0.554 0.800 1.439 10.610 22.309 57.995 30.305 0.032829 
E79 1.231 1.882 2.437 23.589 52.501 98.234 58.108 0.062948 
E73 0.554 0.800 1.439 10.610 22.309 57.995 30.305 0.032829 
E56 0.554 0.800 1.439 10.610 22.309 57.995 30.305 0.032829 
E28 0.230 0.291 0.382 4.402 8.126 15.376 9.301 0.010076 
E1 0.176 0.206 0.283 3.371 5.741 11.418 6.843 0.007413 
E2 0.306 0.394 0.531 5.853 10.988 21.403 12.748 0.013810 

E63 1.269 1.882 2.589 24.311 52.501 104.337 60.383 0.065413 
E57 0.741 1.106 1.798 14.197 30.849 72.467 39.171 0.042433 
E61 0.719 1.106 1.745 13.775 30.849 70.316 38.313 0.041504 
E21 0.777 1.140 1.594 14.891 31.793 64.237 36.974 0.040053 
E55 0.289 0.383 0.557 5.536 10.691 22.450 12.892 0.013966 



Muhammed Ordu and Yusuf Fedai 

 
	

	 233	

E27 1.308 1.882 2.668 25.055 52.501 107.529 61.695 0.066834 
E37 0.344 0.439 0.623 6.594 12.238 25.125 14.652 0.015872 
E32 0.754 1.140 1.798 14.449 31.793 72.467 39.570 0.042865 
E70 1.072 1.746 2.133 20.531 48.703 85.949 51.728 0.056036 
E62 1.231 1.882 2.512 23.589 52.501 101.240 59.110 0.064033 
E60 1.231 1.882 2.512 23.589 52.501 101.240 59.110 0.064033 
E54 1.324 1.826 2.750 25.370 50.943 110.819 62.377 0.067573 
E78 1.365 1.826 2.834 26.146 50.943 114.210 63.766 0.069078 
E81 1.432 1.999 3.025 27.426 55.763 121.928 68.372 0.074067 

Total 19.157 27.895 40.302    923.112 1.000000 
Inverse 0.052 0.036 0.025      

Increasing Order 0.025 0.036 0.052      

 

In the fuzzy AHP methodology, consistency ratio of the matrix is calculated to control the results of the 
study and ensure that the comparison is acceptable, by using Eqs. (3) and (4) (Duran and Aguilo, 2008). 

𝐶𝐼 = 567819
912

                    (3) 

where CI means consistency index and n represents the number of alternatives. 

𝐶𝑅 = 𝐶𝐼
𝑅𝐼                      (4) 

where CR is the consistency ratio and RI is the random consistency index developed by Saaty (1980). 
Table 4 lists the consistency ratios of all fuzzy comparison matrices used in this study; all matrices are acceptable 
because the consistency ratios are less than 0.10. 

Table 4. Consistency Ratios 
Fuzzy Comparison 
Matrix 𝝀𝒎𝒂𝒙 Consistency Index 

(CI) 
Random Consistency 

Index (RI) 
Consistency Ratio 

(CR) 
Main Criteria 3.000 0.0000 0.5800 0.0000 
For MRR 23.304 0.0138 1.6526 0.0084 
For Tm 23.312 0.0142 1.6526 0.0086 
For Ra 23.333 0.0151 1.6526 0.0092 

 

In the third step, ranking all alternatives and selection of the best alternative is performed. Table 5 presents 
the results of fuzzy DEA – fuzzy AHP along with the results from the fuzzy DEA with super efficiency. 

RESULTS AND DISCUSSION 

The cutting speed (m/min), feed rate (mm/rev), depth of cut (mm), and cutting tool inserts (units) were 
considered as factors. We selected the following three outputs that are widely preferred in the literature: surface 
roughness (µm), material removal rate (mm3/min), and machining time (min). 

In the second step, all 81 experiments were optimized using the fuzzy data envelopment analysis method 
based on the input–output relationship. Among them, 23 experiments (28%) were determined to be efficient, and 
all efficiency scores were between 73.37 and 100%. Using the super-efficiency method, these efficient experiments 
were ranked, and the super-efficiency scores were found to be between 100 and 130.88%. The parameters of the 
most efficient experiment are cutting speed - 325 m/min, feed rate - 0.16 mm/rev, depth of cut - 0.5 mm, and 
cutting tool inserts - 3 units. The cutting speed of the first six efficient experiments was 325 m/min, whereas the 
number of cutting tool inserts in two of the three experiments was one unit. The number of cutting tool inserts in 
the four experiments with the lowest efficiency score was three (refer Table 5). 
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Table 5. Comparison of the results from fuzzy DEA with super efficiency & fuzzy DEA-fuzzy AHP. A: cutting 
speed, B: feed rate, C: depth of cut, and D: cutting tool inserts 

Fuzzy DEA with super efficiency Fuzzy DEA – Fuzzy AHP 
Combinations Scores Rank Combinations Scores Rank 

(E75) A3B3C2D3 130.88% 1 (E64) A3B2C1D1 6.28% 1 
(E64) A3B2C1D1 129.09% 2 (E73) A3B3C1D1 6.24% 2 
(E58) A3B1C2D1 123.08% 3 (E58) A3B1C2D1 6.15% 3 
(E79) A3B3C3D1 122.47% 4 (E61) A3B1C3D1 6.12% 4 
(E73) A3B3C1D1 117.45% 5 (E28) A2B1C1D1 5.88% 5 
(E56) A3B1C1D2 117.17% 6 (E55) A3B1C1D1 5.84% 6 
(E28) A2B1C1D1 113.31% 7 (E56) A3B1C1D2 5.79% 7 
(E1) A1B1C1D1 112.01% 8 (E79) A3B3C3D1 5.76% 8 
(E2) A1B1C1D2 110.86% 9 (E70) A3B2C3D1 5.58% 9 

(E63) A3B1C3D3 110.23% 10 (E37) A2B2C1D1 5.44% 10 
(E57) A3B1C1D3 108.53% 11 (E32) A2B1C1D2 5.20% 11 
(E61) A3B1C3D1 108.43% 12 (E62) A3B1C3D2 5.03% 12 
(E21) A1B3C1D3 105.70% 13 (E1) A1B1C1D1 4.84% 13 
(E55) A3B1C1D1 105.67% 14 (E2) A1B1C1D2 4.62% 14 
(E27) A1B3C3D3 104.26% 15 (E63) A3B1C3D3 3.01% 15 
(E37) A2B2C1D1 102.61% 16 (E60) A3B1C2D3 3.01% 16 
(E32) A2B1C1D2 101.84% 17 (E57) A3B1C1D3 2.72% 17 
(E70) A3B2C3D1 101.03% 18 (E81) A3B3C3D3 2.18% 18 
(E62) A3B1C3D2 100.93% 19 (E78) A3B3C1D3 2.17% 19 
(E60) A3B1C2D3 100.76% 20 (E54) A2B3C3D3 2.15% 20 
(E54) A2B3C3D3 100.10% 21 (E75) A3B3C2D3 2.12% 21 
(E78) A3B3C1D3 100.00% 22 (E27) A1B3C3D3 2.01% 22 
(E81) A3B3C3D3 100.00% 23 (E21) A1B3C1D3 1.86% 23 

 

In the third step, these 23 efficient experiments were optimized using the fuzzy analytical hierarchy 
process method. The most important advantage of this step is the establishment of fuzzy comparison matrices by 
an expert team, analyzing and interpreting the experimental results. Therefore, efficient experiments were 
compared in a fuzzy environment, based on expert opinions. The parameters of the most optimal experiment are 
as follows: cutting speed - 325 m/min, feed rate - 0.12 mm/rev, depth of cut - 0.5 mm and cutting tool inserts - 1 
unit. The parameters of the last experiment are: cutting speed - 175 m/min, feed rate - 0.16 mm/rev, depth of cut - 
0.5 mm, and cutting tool inserts - 3 units. One unit of the cutting tool insert was used, and the cutting speed was 
325 m/min in eight of the first nine experiments. Number of cutting tool inserts for the last eight experiments is 3 
units whereas the feed rate of the last six experiments is 0.16 mm/rev (refer Table 5). 

In the literature, studies that focused on the optimization of machining parameters (i.e., Basar et al. (2018), 
Fedai et al. (2018), and Sarikaya et al. (2015)) stated that the minimum surface roughness value was obtained in 
experiments in which the cutting speed was the highest and the number of cutting tool inserts was one. The fuzzy 
DEA with the super-efficiency approach developed in the second step and the fuzzy DEA-fuzzy AHP approach 
that we proposed in the third step also produced results parallel to those in the literature. 

In addition, the fuzzy DEA-fuzzy AHP approach provided a more efficient ranking than the fuzzy DEA 
with a super-efficiency approach. Based on the first ten experiments in Table 5, it was determined that the cutting 
speed was the highest in 70% of the experiments using the FDEA approach and in 80% of the experiments using 
the FDEA-FAHP approach. In addition, it was observed that the number of cutting tool inserts was one in 60% of 
the experiments using the FDEA approach and 90% of the experiments using the FDEA-FAHP approach. 
Moreover, the combination of experiments with both the highest cutting speed and one cutting tool insert was 
determined to be 40% of the experiments in the FDEA approach and 70% in the FDEA-FAHP approach. These 
results verify that the FDEA-FAHP approach proposed in this study produces a better ranking. 

From Table 5, it can be observed that the results of the fuzzy DEA-fuzzy AHP approach and fuzzy DEA 
with super-efficiency clearly differ. The fuzzy DEA with super-efficiency determines efficiency within the 
framework of the input-output relationship and does not consider any expert opinion. In addition, none of the 
criteria had different weights. These situations can lead to failure in making robust and reliable decisions toward 
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solving the problems examined. The problem that we analyzed was evaluated using criteria with different 
priorities. Based on expert opinions, surface roughness is more important in this problem because it affects the 
quality of the material (Fedai et al., 2018). Under these circumstances, assigning equal importance to all criteria 
will generate misleading results. 

 

CONCLUSION 

In this study, we developed a novel decision support system for optimizing machining parameters. To 
achieve this end, we integrate three distinct techniques: experimental design and analysis, fuzzy DEA, and fuzzy 
AHP. We also compared the results of the fuzzy DEA with those of super-efficiency and fuzzy DEA-fuzzy AHP. 
The results of the two approaches are clearly different based on the weights considered for the outputs, and the 
fuzzy DEA-fuzzy AHP approach outperforms the fuzzy DEA with the super-efficiency approach. Therefore, this 
study revealed the importance of expert opinion-based decision-making processes.  

Numerous users, such as researchers studying machining, managerial teams, engineers working in 
industries, and decision-makers in research and development activities in this field, can employ this approach as a 
helpful decision support tool to determine optimum input parameters in their experimental studies. In addition, a 
more complex multi-response optimization can be performed by simultaneously considering more input 
parameters and levels. Thus, related decision makers allow managerial teams to obtain and facilitate a more 
efficient design of manufacturing processes, thus avoiding possible manufacturing defects. Moreover, the 
machinability of related materials can be improved by increasing the surface quality and reducing the cost and 
time. The results obtained in this study will provide industrialists processing AISI 4140 steel with more effective 
decision-making support for the selection of input and output parameters. 

One of the limitations of this study is that only the fuzzy AHP methodology was used as an expert opinion-
based MCDM technique and was combined with the fuzzy DEA approach. However, the AHP method has been 
integrated with other MCDM techniques (i.e., TOPSIS and PROMETHEE) in several studies to generate more 
accurate and reliable results. Another limitation is that the experiments were designed using only four factors and 
three levels, although many factors and levels have been used in the literature. Future work could include more 
factors and levels in the experimental analysis process (i.e., Step 1). A future research direction is to compare this 
approach with other MCDM techniques instead of using the AHP method. The criteria and alternatives were 
weighted using only the AHP method. Weighting can also be conducted using other methods such as entropy. 
Simultaneously, different output parameters such as the cutting tool temperature and cutting force can be 
considered. 
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