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ABSTRACT 

Ferroresonance is an unexpected, continuous, and undesirable event that causes excessive growth and 

distortion in the voltage and current waveform, whose cause is unknown and suddenly develops in power systems. 

To take precautions against the ferroresonance phenomenon, it is necessary to be able to predict how the distortions 

in the ferroresonance voltage will continue. Today, the ferroresonance problem has not been fully solved yet and 

more scientific studies are still needed. In this study, a new approach of an LSTM network has been developed that 

predicts the irregular and excessively large-amplitude continuing behavioral disturbances of the phase voltage in a 

real electrical power network exposed to ferroresonance. As a result of the study, the ferroresonance-voltage 

continuing in distorted waveform was estimated with an error of 0.0346 according to the Mean Absolute Percent 

Error (MAPE). The training data used in the study is only about 5% of all predicted ferroresonance voltage data. 

The successful estimation of 95% of the Ferreroresonance voltage using only about 5%, proves the success of the 

LSTM model applied with a new approach for the study.  
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INTRODUCTION 

While electrical power systems operate normally under their usual loads, there may be short-term sudden 

interruptions in the power system due to lightning strikes, commissioning of a backup transformer in the power 

system, or other similar reasons. These power outages sometimes cause fluctuating periodic distortions in the grid 

voltage that are inevitable and continue in a harmonic waveform. This phenomenon in power systems is called the 

ferroresonance phenomenon. The reason for the ferroresonance phenomenon may be inductances and capacitances 

in the network as well as switching errors or natural phenomena such as lightning. Therefore, as it is not known 

exactly what causes the ferroresonance event, it is almost impossible to detect it in advance or to detect it instantly. 

These overcurrent and overvoltage spikes and high-level harmonics caused by the ferroresonance phenomenon 

cannot be suppressed by conventional suppression methods. Current and voltage distortions caused by 

ferroresonance in power systems can cause serious malfunctions in the network (Tugai, 2015, Yang et al., 2017a, 

Boutora & Bentarzi, 2018). To reach solutions for protection and delay from over current and voltage caused by 

ferroresonance, it is necessary to recognize the ferroresonance phenomenon quickly (Rezaei, 2017). In a study, the 

smart solid-state stress suppressor method was investigated to return the ferroresonance stress to its stabilized state 

(Heidary & Radmanesh, 2018). Yıldırım et al investigated the frequency properties of disturbances in the voltage 

waveform caused by the ferroresonance phenomenon by Fourier transform (Yildirim et al., 2009). Akinrinde et al. 

examined the effects of ferroresonance phenomena on the characteristics of the wind turbine-driven generator 

(Akinrinde et al., 2019). Bo and Tiecheng analyzed the disturbances in the grid voltage wave subjected to the 

ferroresonance phenomena to assist in the detection of ferroresonance phenomena with wavelet transform (Zhang 
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& Lu, 2009). 

The ferroresonance phenomenon is often confused with transformer switching, capacitor  

switching, and load switching processes. Since a simple switching operation is very similar to 

ferroresonance, studies that distinguish these events from each other are quite common in the literature. In their 

work Mokryani and Haghifam, they used a multilayer perceptron for ferroresonance detection. They achieved 93% 

accuracy in the triple classification they made for capacitor switching, transformer switching, and load switching 

(Mokryani & Haghifam, 2008). In another study, artificial neural networks were used to classify overvoltage 

fluctuations in power transformers during ferroresonance. In the study where different load scenarios were taken 

into consideration, ferroresonance detection was performed with a rate of 98.75% (ElNozahy et al., 2012). In a 

classification study to distinguish between capacitor switching and ferroresonance events, Sharbin et al. proposed a 

prediction model that recognizes 97% ferroresonance event with ANN-based wavelet transform (Sharbain et al., 

2017). In a study conducted with the same purpose, the adequacy of using wavelet transform and ANN together for 

determining ferroresonance was examined and investigated (Mokryani et al., 2007). In another study where ANN 

and wavelet transform were used together, the ferroresonance was detected at a rate of approximately 94% 

(Mokryani et al., 2009). Ferroresonance classification, made with a smart tracking and suppression system based 

on a fuzzy logic algorithm, was made by considering 8 different events and 100% accuracy was achieved (Wang et 

al., 2011). Mokryani et al. determined ferroresonance with an accuracy of 97.5% using the combination of support 

vector machines (SVM) and S-transform (ST) (Mokryani et al., 2010). Uzunoğlu and Uğur proposed Kalman filters 

for analysis and detection of voltage wavelength and amplitude during the chaotic ferroresonance phenomenon 

(Uzunoglu & Ugur, 2013). In a study carried out to ensure that ferroresonance is extracted from the aforementioned 

phenomena and detected, it has been suggested that the vibration difference of the voltage transformer can be 

utilized. It is thought that differentiating the vibration exhibited by a transformer during ferroresonance and the 

vibration caused by the switching of any equipment can be used in  

determining ferroresonance (Arroyo et al., 2019). In a classification and recognition study based on the 

sparse autoencoder (SAE), ferroresonance was detected at 97% (Chen et al., 2018). In a study conducted to 

understand the causes of ferroresonance and to take precautions, ferroresonance analysis and determination were 

carried out utilizing an algorithm. For this purpose, first of all, some parameters in the power system were thought 

to trigger ferroresonance, and these parameters were eliminated with the iterative elimination algorithm, and 

analysis was performed (Yang et al., 2018).  

After examining the previous studies, it is understood that the ferroresonance phenomenon has not been 

solved in electrical power systems yet, and sufficient precautions cannot be taken and more scientific studies are 

needed on this subject. As far as we have examined, we have yet to come across studies that can predict the voltage 

waveform and its behavior in the first second of the ferroresonance phenomenon, especially in voltage distortions 

during ferroresonance. It is the main purpose and motivation source of this study to eliminate this gap to some extent 

and to present a model that can predict the voltage distortions and amplitudes of the ferroresonance phenomenon at 

the very beginning of the first second. To achieve this goal, multi-step LSTM cells connected with an algorithm 

were designed in this study, and a combined LSTM network was constructed and implemented that predicts the 

future data with very little input. The rest of the study is organized as follows. In the second section, basic 

information about the method used in the study is given. The proposed combined LSTM network is introduced and 

explained in the third section. In the fourth section, obtaining the data set and experimental results are explained. 

The fifth section includes evaluation of results and discussion. In the sixth section, the conclusion of the study is 

presented. 

PROPOSED METHOD 

In this section, we describe our LSTM-based deep learning prediction framework for distortion in grid 

phase voltage during the ferroresonance phenomenon in the power system. It is  

motivated by the combination of eleven LSTM networks, which takes into account the distorted signal of 

the monophase voltage arising during the time interval of the ferroresonance phenomenon. 

Proposed Framework Overview 

The internal structure of the proposed deep neural network is shown in Figure 4 and its algorithm is shown 

in Figure 5. The proposed deep neural network model was created by consecutively connecting 11 LSTM cells. In 

this combined LSTM model, the inputs are the information of the values between the first 0 and 751th samples of 
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the point voltage samples taken during the ferroresonance occurring in the electric power network, and the outputs 

represents the forecasting of the samples from 751 to 17738.  

Unlike ordinary LSTM models, since the ferroresonance moment is only a few seconds, sampling is used 

instead of time on the horizontal axis. In Figure 4, T1 represents both the training data of the whole combined LSTM 

structure and the training data of the LSTM1. T1 also represents the input of the proposed combined LSTM model. 

In Figure 4, all P values from P1 to P11 represent the output of all modules from LSTM1 to LSTM11 respectively, 

as well as the output values obtained as a result of the test process applied to these modules. As can be seen from 

the algorithm in Figure 5, each LSTM module from LSTM1 to LSTM11 is trained with 75% of the data allocated 

for them and tested with 25%. For the combined LSTM model obtained through the algorithm, only about 5% of 

the data is training data, the remaining data is test data or output of the system. The final forecasting is generated 

after a fully-connected layer in the last LSTM module LSTM11. Each of the LSTM modules used in the proposed 

method is used to achieve long-term dependency. Since each LSTM module is connected  consecutively, the inputs 

for each LSTM structure have been reshaped as shown in the algorithm in Figure 5 and in the internal structure of 

the combined model in Figure 4. Figure 3 below shows the common block diagram used separately for each of the 

LSTM modules  

connected in the proposed combined model. The final forecasting is generated after a fully-connected layer 

in the last module (LSTM11). 

 

Figure 3. Common block diagram for an LSTM module 

 

Figure 4. Inner structure of proposed combined LSTM 

Model Assessment Indexes 

Mean Absolute Error (MAE), Mean Absolute Percent Error (MAPE) and Root Mean Square Error (RMSE) 

are used to evaluate the performance of the proposed model. Error measurements are expressed as follows 

(Manowska, A. 2020 & Liu et al., 2018): 
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where n is the size of the training or test samples and �̂�i  and yi  are the predicted value and the actual 

value, respectively. MAE is the mean of absolute errors between forecasting values and actual values. MAPE is the 
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ratio between the error and the actual value. The RMSE gives the sample standard deviation of the differences 

between predicted values and actual observed values. The lower the MAE, MAPE, and RMSE values, the better the 

prediction performance (Liu et al., 2018).  

 

 

Figure 5. Operation of the proposed combined LSTM 

EXPERIMENTS AND RESULTS 

The proposed model was applied to predict the voltage distortion during a real-world ferroresonance event. 

In this section, experiments are explained in detail and the results obtained from the proposed combined LSTM 

model are presented. 

Definition of Data Set 

In this study, the data set is obtained by using one-to-one modeling of an electricity network. As shown in 

Figure 6, the 380 kV Electric Power System network Seyitömer-Isıklar in Turkey modeling it was performed using 

the actual parameters in MATLAB Simulink environment. 

 

Figure 6. Seyitomer-Isıklar electric power network 

In Figure 7, the MATLAB Simulink model of the Seyitomer-Isıklar electrical power distribution network 

built according to the real parameters in Table 1 is shown. A realistic ferroresonance phenomenon can be generated 

by sudden power cuts.
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With the Simulink model, the expansion of the voltage and the ferroresonance were achieved by using 

breakers to create a realistic ferroresonance phenomenon. 

 

Figure 7. Seyitomer-Isıklar Matlab-Simulink model 

In the modeling, the required high voltage and the load fed by the medium transmission line are used to 

represent a realistic ferroresonance phenomenon. The graph of the phase R measured in the network, which is 

exposed to the ferroresonance phenomenon suddenly while working stably, is shown in Figure 8 . The graph in 

Figure 7 is obtained for a 4.5-second interval before and after ferroresonance. 

Table 1. Parameters in Seyitomer-Isıklar power network 

Components Parameters 

Transformers 362 MVA, 1.75 kV/380kV 

Generators 362 MVA, 1.75 kV, 50 Hz 

Line Length 284.341 km 

Load 361 MW,  6 MVAr 

 

 

                                        (a)                                  (b) 

Figure 8. Voltage variation for R phase (a) whole wave form, (b) ferrorezonance phenomena 

Figure 8 (b) shows the graph of the R phase voltage used in our study during the ferroresonance 

phenomenon. Using this graph, the sample numbers in the training and test data set shown in Table 2 were 

determined for each LSTM module in accordance with the algorithm in Figure  

5. The sample numbers and input data voltage graphs determined for each module in Table 2 are given in 

Figure 9. 
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Table 2. Training and testing data summary for all LSTM modules 

Modu

les 

Training data Testing data To

tal 

Num

ber 

Nomencla

ture 

Num

ber 

Nomencla

ture 

LSTM

1 

750 T1            

250 

V1 10

00 

LSTM

2 

1000 T2 333 V2 13

33 

LSTM

3 

1333 T3 444 V3 17

77 

LSTM

4 

1777 T4 592 V4 23

69 

LSTM

5 

2369 T5 789 V5 31

58 

LSTM

6 

3158 T6 1052 V6 42

10 

LSTM

7 

4210 T7 1403 V7 56

13 

LSTM

8 

5613 T8 1871 V8 74

84 

LSTM

9 

7484 T9 2494 V9 99

78 

LSTM

10 

9978 T10 3326 V10 13

304 

LSTM

11 

1330

4 

T11 4434 V11 17

738 

Combi

ned 

750 T12 1698

8 

V12 17

738 

 

Experimental Results and Analysis 

In power systems, the ferroresonance phenomenon, which causes distortions in phase voltage and 

subsequent damage to many equipment, can start and end in a very short time such as 5 seconds. Therefore, as 

soon as the ferroresonance phenomenon begins, it is an important requirement to predict the behavior of the grid 

phase voltage during the phenomenon and take precautions in a very short time. In this study, an combined LSTM 

model was designed and applied by using 17,438 samples of the R phase voltage during the ferroresonance 

phenomenon. Using only the first 750 of these samples the remaining samples (instantaneous voltage values) were 

estimated. In other words, the training was performed with approximately 5% of all data and the test was performed 

with the remaining approximately 95% data, unlike normal. The remaining 16,988 data were estimated by taking 

750 data samples. For this purpose, 11 LSTM modules are connected in a chain. Output values forecasted with 

each module are added as an input to the next module. Test results obtained from each module are given in Figure 

10 with error graphs. The success and performance of each model according to the MAE, MAPE, and RMSE 

values, which we accept as the evaluation index, can be observed in Table 3. 
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Table 3. Experimental results in terms of evaluation indexes 

Modules RMSE ( x 

104) 

MAPE MAE 

(x 103) 

LSTM1 5.8279  0.0117 1.1804  

LSTM2 6.1444  0.0063 11.719  

LSTM3 4.2043  0.0162 3.9655  

LSTM4 5.2282  0.0387 4.2162  

LSTM5 4.9726 0.0287 2.2312  

LSTM6 6.8244 0.0441 1.7191  

LSTM7 3.7345 0.0118 3.6269  

LSTM8 4.8548 0.0203 4.2413  

LSTM9 7.9320 0.0406 0.6960 

LSTM10 8.4313 0.0359 6.7913  

LSTM11 8.5389 0.0484 2.8575  

Combined 

LSTM 

7.2411 0.0346 1.8723 

 

The error and estimation graphs obtained at the output of each model are presented separately in Figure 

10. The successful result of the study depends on the success of each module. As shown in Table 3, as a result of 

the successful performance of each module, the results produced by the combined LSTM model are also given in 

the bottom column of Table 3. Unlike normal LSTM models, with a new strategy, using only 750 of 17738 data 

as training data, 16988 voltage values were successfully estimated as shown in Figure 11. MAE and MAPE values 

were added to the algorithm later. According to Table 2, the MAE value in LSTM2 is seen as the highest due to 

the high voltage points reaching their maximum level, while the MAPE value is also the lowest. As the number of 

modules progresses from 1 to 11, the number of data used increases. Therefore, quite different performance values 

can be obtained in each module. In this sense, the error values are different from each other, although they are all 

within the desired limits. RMSE values range from the lowest 3.7x104  to the highest 8.5x104, with no apparent 

deviation. Considering the MAPE values, it ranges between the lowest 0.006 and the highest 0.05. Similarly, there 

was no significant difference in MAPE values, and results supporting the operation of the combined system were 

obtained. 
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Figure 10 Testing results and errors; (1): results of LSTM1; (2): results of LSTM2, (3): results of LSTM3,; (4): 

results of LSTM4 ; (5): results of LSTM5 ; (6): results of LSTM6; (7): results of LSTM7; (8): results of LSTM8; 

(9): results of LSTM9; (10): results of LSTM10; (11): results of LSTM11. 

The MAE value is also more successful than some LSTM modules as 1.8 x 103 supporting other 

evaluation criteria. The results obtained from the sub LSTM modules also confirm the results obtained from the 

combined model. These new results achieved by LSTM (combined) with the new strategy are extremely important 

and original, considering the test and training rates (approximately 5% training data and 95% test data). 

 

        (a)                                                         (b) 

Figure 11. Resultss for combined LSTM (a) testing and error (b) forecasting results 

DISCUSSION 

Each of the 11 LSTM modules used in the combined LSTM model applied in the study was trained with 

75% of the data allocated for it and tested with 25% test data included later. Results from these LSTM modules 

confirm the results from the combined LSTM model. A disadvantage in the combined LSTM model is that test 

data for each LSTM module is entered externally. This can also lead to the difficulty of finding suitable test data. 

Detecting the ferroresonance phenomenon in the first moments of the first second and determining the voltage 

behavior is a great advantage for power systems. The reliability of the study can be proven in two ways. First, the 

results of the 11 LSTM modules used in the combined LSTM model and the results of the combined LSTM model 
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support each other. This situation proves the accuracy and reliability of the study. Second, all LSTM modules are 

combined using the  

backpropagation learning algorithm shown in figure 5. In this algorithm, if the RMSE ratio is above the 

desired level, the model is tested again. Therefore, the test can sometimes be repeated over and over again. As a 

result of this process, the test result may never be at the desired level and the system can continue forever in a 

continuous circle. The operation of the system and the desired result and reaching the last step are also a guarantee 

of accuracy and reliability for this model. On the other hand, this situation can be shown as another disadvantage 

of this system. In the future, this algorithm can be further developed, and advanced combined-hybrid systems 

combined with convolutional neural network (CNN) can be developed and implemented. 

CONCLUSION 

This study presents a multi-step deep learning framework that can predict changes in the behavior of 

phase voltage during ferroresonance phenomena in power systems from the very beginning. This deep learning 

framework is based on the principle of using LSTM modules in a combined way by connecting them through an 

algorithm. Each LSTM module used in the study was trained with 75% of the data set and tested with 25%. If the 

test results obtained from each LSTM module are at the desired level, they are added to the input of the next LSTM 

module. The test results from each LSTM module support the results obtained from the combined model presented. 

The combined model was trained with only 750 samples of the whole data set consisting of 17738 samples and 

was tested with a data set with a much larger number of samples, 16988. Although the rate of the test sample is 

much higher than that of the training sample, both the successful application of the combined system and the 

presence of the backpropagation learning algorithm resulted in extremely successful estimation results presented 

in Figure 10 and Figure 11. 
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