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For a bundle of capillary tubes of circular cross section, parameter Fs assumes a value of 2 (Prasad, 2003). By 
combining Equations (2) and (3), the FZI can be estimated using laboratory measurements of permeability and 
effective porosity as follows: 
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In the above notation, k is the absolute permeability in mD, FZI is given in µm, and φe is the effective porosity 

input as a fraction.  
 
As suggested by Prasad (2003), the FZI appears to reflect connectivity between pores. In simple terms, larger 

FZI values imply a high level of connectivity between pores, and hence higher permeability values. This is the case 
for fractured rocks, and for highly sorted rocks with large grains and with little clay content. Growth of authigenic 
clays, compaction, lack of sorting, diagenetic alteration of constituent minerals, and cementation of grains act to 
decrease connectivity. A decrease in connectivity causes a decrease in FZI and, consequently, permeability.  

 
Delineation of carbonate rock types using well log data is generally a complex task, and results are usually 

fraught by significant uncertainty. This is partially due to the high level of heterogeneity associated with carbonate 
rocks. Indeed, heterogeneity of carbonate rocks emanates from the complex micro-structure geometry of the pore 
network. The solid framework of carbonate rocks is composed mainly of particles having biological and non-
biological origin embedded in partially lime-mud matrix, or in a cementing material. The size and shape 
distribution of these particles augmented with micro-fractures, and with the intense diagenesis over time, cause the 
high level of heterogeneity in these rocks.   

 
The objective of this research is to gain insights into variables and transforms that impact the rock flow zone 

indicator. The ability of the NMR log-derived transverse relaxation time (T2) distribution to reflect vividly the 
microstructure geometry of rocks positions the NMR echo transforms as key information tools that may help 
alleviate the difficulty encountered in carbonate rock typing (Coates et al., 1999). Parameter T2, which replicates the 
magnetization rate loss of hydrogen protons in pores, is given as a function of the pore surface to volume ratio 
(S/V) as follows (Coates et al., 1999): 
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In the above notation, 
ρ2  is the surface relaxivity. 
T2bulk  is the bulk fluid transverse relaxation time. 
D   is fluid diffusion coefficient. 
γ  is the gyromagnetic ratio of a hydrogen proton 
G  is magnetic field-strength gradient. 
TE  is the echo spacing, or time between 180o pulses. 
 

The dependence of T2 on the pore surface to volume ratio (S/V) makes it profoundly sensitive to rock texture. 
This fact implicates T2 and its attributes as potentially prominent variables for modeling rock FZI.  

rock typing is fundamental in a number of applications like static and dynamic reservoir modeling, preparing 
production management plans for oil and gas fields, and predicting reservoir rock mechanical properties. The latter 
properties are crucial for hydraulic fracturing design, sand production management, and for horizontal and multi-
lateral well placement. Recently, it has become increasingly evident that mapping of petrophysical and rock 
mechanical properties are reliable only when based on rock type segregation (Michel and Bruno, 2014). A rock 
type is a geologically and petrophysically distinct and homogeneous rock interval featuring unique relationships 
between petrophysical properties. A rock type possesses a well-defined link with lithology, deposition environment, 
and diagenesis. Rock intervals with resembling geological facies and texture properties generally are of the same 
rock type, and therefore, have common petrophysical properties (Prasad, 2003).  

 
Michel and Bruno (2014) give a thorough review of various rock typing methods available in the literature. 

Ideally, rock types account for two fundamental controls which consist of (i) the depositional texture control which 
describes the size and shape of the grains, the grain packing, grain orientation, facies fabric, and sorting 
characteristics and (ii) the diagenesis control which includes dissolution, cementation, dolomitization, fracturing, 
recrystallization, and compaction (Sneider and Erickson, 1997; Riazi, 2018; Mirzaei-Paiaman et al., 2018; 
Soleymanzadeh et al., 2018). Amaefule et al. (1993) and Guo et al. (2007) are among the researchers who made use 
of the flow zone indicator (FZI) to delineate various rock types. A discrete rock type (DRT) is defined using the 
flow zone indicator (FZI), as follows (Guo et al. 2007; Ghadami et al., 2015): 
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The DRT appears to delineate hydraulic flow units featuring similar pore topology, and geological framework 
having similar petrophysical properties (Michel and Bruno, 2014). Rock intervals of equal DRT values, 
presumably, fit in the same hydraulic flow unit (Guo et al., 2007; Gunter et al., 1997; Abedini et al., 2011). The 
rock typing methodology proposed in this study is founded on the measurements of porosity and permeability. This 
methodology circumvents the awkward rock typing techniques that relies on mercury injection capillary pressure 
(MICP) data, as well as thin section observations which are occasionally unavailable (Michel and Bruno, 2014). 
Moreover, MICP derived pore size distributions are plagued by a major inconsistency since they account for only 
the pore volume accessible through the pore throats, at an applied fixed pressure. If for instance, large pore bodies 
are accessible only through small pore throats, the large pore body structure might not be reflected in the final pore 
size distribution.   

 
Amaefule et al. (1993) relate the flow zone indicator to rock texture properties as follows: 
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In the above notation, τ is rock tortuosity, Svgr is the specific surface area per unit grain volume, and Fs is the 

pore shape factor. The latter parameter generalizes the capillary-tube model derived by Kozeny-Carman to a porous 
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For a bundle of capillary tubes of circular cross section, parameter Fs assumes a value of 2 (Prasad, 2003). By 
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Group λ1 given by Equation (7) is denoted as dimensionless FZI.  Group 1Ω   given by Equation (8) is denoted 
as dimensionless resistivity. The transform 1Ω  will be used later for modeling the FZI.  
 

Formulation of a Dimensionless Pore Radius Transform ( 2Ω ) 

Dimensional analysis is applied henceforth to formulate dimensionless transforms that link rock permeability 
(k) to open-hole log measurements. These transforms are formulated by intuitively postulating a generic 
relationship for the permeability as a function of open-hole log measurements and attributes, given by the following 
equation: 

 
( , , , , )b e t pk f t P R rρ= Δ .                                    (9) 

 
In the above equation, rp is a characteristic pore radius estimated using the geometric average 
of the NMR transverse relaxation time distribution (T2lm) and the surface relaxivity (ρ2), as 
follows (Coates et al., 1999): 
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In the above notation, ρ2 is the surface relaxivity in µm/sec and rp is in µm. T2lm is in msec. In 
this analysis, k and rp stand for the non-repeating variables. The parameters Δt, ρb, Pe, and Rt 
stand for the repeating variables. The following two dimensionless groups are formulated, as 
a consequence: 
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The dimensionless group (λ2) is denoted as a dimensionless permeability transform. The dimensionless group 

(Ω 2) is denoted as a dimensionless pore radius transform which is the main outcome of this analysis. The 
transform 2Ω  will be used later for modeling the FZI.  
 

Formulation of an FZI Transform (Tr)  

A reverse engineering approach has been implemented for deriving a transform that captures a significant 
proportion of the FZI variance. The procedure consists of constructing a rock texture parameter ( ) that may be 
regarded as a weighted geometric mean of two characteristic pore radii: one obtained from the NMR transverse 
relaxation time distribution (Equation (10)) and the other obtained from routine core measurements of permeability 
and porosity, expressed as follows (Garrouch, 1999): 

The next section illustrates how the proposed data mining methodology is applied for predicting rock 
FZI using M field data described in Appendix A.  

 

FORMULATION OF PETROPHYSICAL TRANSFORMS 

Formulation of a Dimensionless Resistivity Transform ( 1Ω ) 

The first transform is formulated by intuitively postulating a generic relationship for the FZI as a function of 
the wireline log responses (Garrouch and Al-Sultan, 2019), as follows: 
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In the above notation, 
 Rwa is the apparent water resistivity (ohm-m). 
Pe is the photo-electric absorption (barns/electron). 
ρb is the bulk density (gm/cm3). 
Δt is the compressional sonic wave travel time (µsec/ft). 
Rt is the true resistivity (ohm-m). 

 
An MLTQ dimensional analysis, for the dependence of the flow zone indicator on conventional well log 

readings, was performed in order to formulate crucial dimensionless groups. The terms M, L, T, and Q represent the 
fundamental dimensions of mass (M), length (L), time (T), and charge (Q). Table 1 lists the basic dimensions and 
units of all variables used in the dimensional analysis. Given the six variables expressed in Equation (6), and the 
four basic dimensions (MLTQ), Buckingham’s pi theorem allocates two dimensionless numbers (λ1 and Ω 1), given 
as follows (Garrouch and Al-Sultan, 2019):  
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Table 1. Basic dimensions of dependent and independent variables. 
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Group λ1 given by Equation (7) is denoted as dimensionless FZI.  Group 1Ω   given by Equation (8) is denoted 
as dimensionless resistivity. The transform 1Ω  will be used later for modeling the FZI.  
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T 
Bulk density ρb	   gm/cm3 M L

-3
 

Photo-electric absorption Pe barn/e L
2
Q

-1
 

True resistivity Rt mΩ  ML
3
T

-
Q

-2
 

Permeability k mD L2 

Characteristic pore radius rp µm L 

Flow zone indicator FZI µm L 
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Equation (16) is rearranged by substituting the expression of Ψ from equation (14) and the expression of 
tortuosity from equation (15) as follows: 
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A flow zone indicator transform (Tr), equivalent to the FZI expression given by equation (4), is derived from 

Equation (17) as follows: 
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The above transform does not include permeability. Parameter rp is estimated using Equation (10) from NMR 

T2lm data. Therefore, if the transform of Equation (18) captures a significant amount of the FZI variance, it might be 
an important parameter for modeling the FZI. A confirmation would be obtained by plotting the derived transform 
as a function of the FZI. Figure 2 displays a plot of the transform Tr versus FZI, for the carbonate reservoir from the 
M field. The relationship is indeed fraught by some scatter, characterized by an overall positive correlation. The 
power-law relationship between Tr and FZI appears to have a coefficient of determination of approximately 0.67. 
This is a comforting fact since it implies that transform Tr alone is capable of capturing about 67% of the FZI 
variance.  

 
The next section integrates the developed transforms ( 1 2, , rTΩ Ω ) with NMR log attributes to come up with 

a non-linear regression model for predicting the FZI.  
 

 
 

Figure 2. FZI transform versus measured FZI for the carbonate reservoir from the M field.  
 

p
e

2 2 kr
1000

τ
=

φ
.                          (13) 

 
The rock texture parameter (Ψ) is expressed as a function of the geometric mean of the NMR transverse 

relaxation time distribution (T2lm), permeability (k), effective porosity (φe), and tortuosity (τ) as follows: 
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In the above notation, c is a constant given in the nomenclature. The rock tortuosity is approximated as 

follows (Garrouch, 1999): 
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 The rock texture parameter Ψ is plotted versus the derived characteristic pore radius (rp) obtained using 

Equation (10), using the carbonate reservoir data from the M field. Figure 1 depicts a power-law relationship 
between  variable Ψ and rp, with a determination coefficient of approximately 0.99. This power-law relationship 
may be expressed as follows: 
 

 bpa rΨ =                              (16) 
 

 
 

Figure 1. Rock texture parameter (Ψ) versus characteristic pore radius (rp), for the carbonate reservoir 
 from the M field. 
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Pe 
(barn/e) 

3.63 9.96 5.01 5.62 1.38 1.95 

t 
( sec/ft) 47.70 91.63 76.42 73.27 12.19 -0.5 

k 
(mD) 11.0 3480 167.2 458.3 669.2 2.28 

Core  
 0.9 30.4 21.6 18.0 10.0 -0.71 

T2lm 
(msec) 1.01 748.34 280.3 281.37 214.22 0.22 

FFI 0.000 0.263 0.194 0.152 0.098 -0.715 

BVI 0.000 0.211 0.037 0.039 0.024 2.57 

MPHI 0.00 31.97 23.47 19.05 10.78 -0.74 

rp ( m) 0.0061 4.49 1.68 1.69 1.29 0.22 

 
 

Table 3. Regression statistics the M field data. 
 

Coefficient/field Model given by Equation (21) Model given by Equation (22) 

a0 11.78808 3.01422 

a1 3.56129 -1.55547 

a2 -0.05618 -0.421952 

a3 -0.10178 -3.05071 

a4 -0.01627 -0.0455548 

a5 4.890191 0.0 

a6 -2.71828 0.0 

R2 0.81 0.83 

Number of observations 140 140 

REGRESSION MODELING THE FLOW ZONE INDICATOR 

Intuitively, any mathematical expression of FZI has to depend on variables that reflect rock texture (Lucia, 
2007). The previously introduced transforms ( 1 2, , rTΩ Ω ) and the effective porosity (φe) are among these 
variables. Additional texture dependent parameters are obtained from the NMR attributes like FFI and BVI. A 
generic expression between FZI and texture dependent variables may, therefore, be generalized as follows: 
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A linear regression model between FZI and the remaining variables of Equation (19) gives a determination 

coefficient equal to 0.42. As evidenced by the values of the coefficients of skewness (Table 2), FZI of the carbonate 
reservoir from the M field, parameters φe, rp, and T2lm, FFI, and the BVI appear to have a coefficient of skewness 
different from zero. Thus, these variables may be represented by log-normal distributions. As a consequence, 
another generic implicit expression for FZI is proposed as follows: 
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A regression model between log (FZI) and the variables to the right-hand-side (RHS) of Equation (20), for the 

carbonate reservoir from the M field, gives the following empirical model: 
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The regression coefficients a0, a1, a2, a3, a4, a5, and a6, are given in Table 3. The determination coefficient of M 

field reservoir measurements equals 0.81. Figure 3 displays a plot of estimated FZI versus core-measured FZI 
values for the carbonate reservoir from the M field. The FZI values were estimated using the regression model 
given by Equation (21). The average absolute relative error on FZI obtained using the model given by equation (21) 
is approximately 65%.   
 

Table 2.  Summary statistics of the carbonate reservoir from the M field. 
 

Variable Minimum Maximum Median Mean Standard 
deviation Skewness 

FZI ( m) 0.58 379.12 5.64 30.77 62.12 2.99 

Rwa 
(ohm-m) 0.0005 7.791 0.091 0.892 1.418 2.119 

Rt 
(ohm-m) 0.51 1950 14.4 40.4 168.1 10.8 

b 
(gm/cm3) 2.16 2.93 2.33 2.41 0.20 0.84 
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In the above notation, 
NXRD   is dimensionless deep resistivity. 
NXRHO   is dimensionless bulk density measurement. 
NXGR  is dimensionless gamma ray measurement. 
NXSP  is dimensionless spontaneous potential measurement. 
NXDT  is dimensionless sonic travel time. 
NXNPH is normalized neutron porosity measurement. 
 
 

 
 

Figure 4. Estimated FZI versus measured FZI for the carbonate reservoir of the M field, using Equation (22). 
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where 
 
χ  is a log measurement at an arbitrary depth, 

minχ  is the minimum measurement value of χ , and  

maxχ  is the maximum measurement value of χ . 
  

Figure 5 compares the estimated FZI values, using Guo et al. (2007) model, with measured FZI values. Guo et 
al. model (2007) was not able to match the actual FZI span, giving FZI estimates within two orders of magnitude 
variation of the measured FZI values. The average absolute relative error on FZI using Guo et al. (2007) model was 
approximately 520%.  
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the variables given in Equation (20). An automated heuristic technique for data fitting is applied by use of a random 
iterated search algorithm in an ample search of approximately 360 basic power, exponential, and logarithmic 
functions. Final relationship between dependent and independent variables with the least amount of error between 
actual and predicted target variables is reported. The algorithm stops its search when the coefficient of 
determination value reaches its maximum. The following implicit relationship for FZI is obtained with a 
determination coefficient equal to 0.83: 
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The coefficients a0, a1, a2, a3, and a4 of Equation (22) are given in Table 3. Figure 4 shows a comparison between 
the estimated FZI values using Equation (22), and measured FZI values. The average absolute relative error on 
FZI using Equation (22) is approximately 52%. This is an improvement of approximately 13% reduction in the 
relative error obtained using Equation (21). Nevertheless, Equations (21) and (22) affirm a highly non-linear 
relationship between FZI, the derived transforms, and the NMR log attributes. This is contrary to the linear 
relationship reported by Guo et al. (2007) between FZI and normalized conventional log responses, given as 
follows: 
 

0 1 2 3 4 5 6FZI NXRD NXRHO NXGR NXSP NXDT NXNPHIλ λ λ λ λ λ λ= + + + + + +            (23) 
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Training and Testing of the GRNN Paradigm 

A total of 140 vectors, for the carbonate reservoir of the M field, with six input variables and one output 
variable, have been uploaded into NeuroShell software input file (Al-Dousari et al., 2016). NeuroShell divides 
the input file into a training data set composed of 90% of the data, and a blind-test data-set composed of the 
remaining 10% of the data. Figure 7 displays the network FZI versus the actual FZI for the training data set. A 
coefficient of determination of 0.99 is obtained. The average absolute relative error on FZI for the training set is 
approximately 3.1%.  

 

 
 

Figure 7 . FZI estimated from GRNN compared to measured actual FZI values for the training data set. Data 
belong to the carbonate reservoir from the M field. 

 
This indicates that the network has established a relationship between the input and output variables. However, 

to make sure that network memorizing is not taking place, a test with a blind data set has to be performed. Figure 8 
displays the network FZI versus the actual FZI for the blind testing data set. A coefficient of determination of 
approximately 0.97 is obtained for the blind test data set. The average absolute relative error on FZI for the blind 
testing set is approximately 22.0 %. It appears that the GRNN is able to generalize the model developed to a data 
set not seen by the network during training.   

 

 
 

Figure 8. FZI estimated from GRNN compared to measured actual FZI values for the testing data set. Data 
belong to well the carbonate reservoir from the M field. 

 

 
 

Figure 5. FZI estimated using Guo et al. model (2007) versus measured FZI for the carbonate reservoir  
of the M field. 

 
NEURAL NETWORK MODELING OF THE FLOW ZONE INDICATOR. 

Neural Network Paradigm. 

Since the data used for developing the FZI model are relatively small (140 cored depths), a general regression 
neural network (GRNN) is constructed for the purpose of modeling the FZI as a function of the variables, expressed 
in Equation (20). The GRNN is suitable for performing non-linear regression for continuous target variables. This 
type of network has been used in the past for building models when variables are related by complex non-linear 
relationships (Al-Dousari et al., 2016). A GRNN features a connectionist parallel structure where learning does not 
involve any iteration. GRNN establishes an empirical joint distribution function using the available non-parametric 
estimators (Specht, 1991).  X in this research analysis stands for the set of input parameters log(Tr), log( 1Ω ), 
log( 2Ω ), log(FFI/BVI), log(T2lm), and log(φe). The target output variable Y stands for the log(FZI). The joint 
probability density function (pdf) and the algorithm for evaluating the conditional mean of the target output 
variable have been detailed by Al-Dousari et al. (2016). The GRNN algorithm has been realized in a GRNN 
structure shown in Figure 6. The GRNN structure consists of an input layer, a hidden layer, a summation layer, and 
an output layer. 

 
 

Figure 6. A schematic of the GRNN architecture used. 
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Rock type 2: Marl: Consisting of carbonate minerals ranging from 42% to 59% with calcite being the 
dominant mineral. Shale content varies from 15 to 30%. Quartz content varies from 4 to 25%. The highest 
dolomite content is 3%. Whereas, siderite content gets as high as 17%.  

 
Rock type 3: Argillaceous limestone: Consisting of limestones mixed with approximately 22% shale 

content dominated by the presence of moderately crystallized kaolinite. Dolomite constitutes about 5% of the 
composition, whereas pyrite constitutes about 7%.  

 
Rock type 4: Slightly argillaceous dolostone: Consisting of approximately 70% dolomite along with 15% 

of calcite in its bulk volume. Shale content is as high as approximately 11% with about 4% pyrite content. 
 
Rock type 5: Slightly argillaceous limestone: Consisting of 90% or more limestone with shale content 

less than 10%, with pyrite concentration ranging from 1.1 to 3.3%.  
 
Rock Type 6: Limestone: Consisting of dominant calcite component (CaCO3) ranging from 91% to 

100%. Dolomite fills the rest of the lithology makeup. This rock type is marked by coarse grains which are 
loosely spaced, connected by isopachous bladed cement. 
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The precision of the GRNN model estimates, using the test data set, appears to be remarkable. It is concluded 
that the network is able to develop a non-linear model relating the logarithm of FZI to open-hole log transforms, 
and the NMR attributes.  

 

CONCLUSION 

The prediction of flow zone indicator (FZI) of rocks is essential for the crisp identification of rock types. 
Delineation of rock types is an essential key element for adequate reservoir characterization. Relationships between 
the FZI and conventional log measurements and NMR log attributes have been difficult to establish for carbonate 
rocks, in the past. This is partially due to the haphazard procedure applied in selecting the log measurements for 
modeling the FZI. This is also largely due to the high level of heterogeneity associated with carbonate rocks. This 
study provides insights on variables and transforms that impact the rock flow zone indicator.  

 
Dimensional analysis and non-linear regression have been applied to derive transforms that appear to reflect 

the carbonate rock texture. When these transforms were integrated with NMR log attributes, a significant amount of 
the flow zone indicator variance appears to have been captured. A general regression neural network has proven to 
be capable of giving reasonably precise predictions of the rock FZI when the rock texture transforms and NMR log 
attributes are used as input. The GRNN model consists of building a conditional joint distribution from the training 
data set. Estimates of the output are performed by calculating the expected value of the conditional target variable, 
for a known set of input variables. The target estimates converge to actual values only when sufficient input 
variables that control the behavior of the target variable are used. The introduced relationship between the FZI and 
NMR attributes and conventional log measurements may be considered a significant leap toward the accurate 
prediction of FZI for highly complex and heterogeneous carbonate reservoirs.  

 

APPENDIX A 

Description of Carbonate Reservoir Data From the M Field 

Summary statistics of the M field data are given in Table 2. The data belong to a Lower Cretaceous carbonate 
reservoir within an elongated onshore domal trap.  Open-hole log data consist of SP, GR, SP, resistivity logs, 
porosity from neutron log, ρb, Δt, and Pe. NMR log data consist of FFI, BVI, and T2lm. Core data consist of helium 
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  Lithology of the preserved Lower Cretaceous strata consists mainly of clean limestone, and occasional bands 

of slightly argillaceous limestone rock with up to 5% neomorphic dolomite, and 5-30% of clay minerals. The 
clay minerals consist of kaolinite, illite, and chlorite in order of abundance. The deposition of this formation 
appears to have taken place on a shallow low angle platform with minor sea level fluctuations during 
transgressive regressive cycles. Typically, the oolite reservoir has a segregated fluid distribution vertically. The oil 
column (gravity = 40o API) has a thickness of 400 ft, and is supported by an active aquifer zone. Peloidal and 
skeletal grainstone and packstone dominate with approximately 3-30 % porosity and 0.052 mD to 2150 mD 
permeability. X-Ray Diffractometric studies on 34 Lower Cretaceous samples show the presence of the following 
lithofacies: 

 
Rock type 1: Calcareous mudstone: Consists of about 26% shale, 47.3% quartz, 21.1% dolomite, 2% 

calcite, a small amount of pyrite (1.4%), and a minor potassium-feldspar content of 2.2%. Pyrite exists as pore-
filling and appears to have been produced diagenetically during biodegradation of organic matters. The small 
amount of calcite occurs mostly as carbonate cement.  
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