
assemble one model of a product. The mixed-model assembly line is applied to more than one similar model of a 
product in an intermixed order. The multimodel line is employed a greater variety of base products. 

 
In a mixed-model assembly line, different kinds of products are assembled. In other words, these are assembly 

lines, in which more than one same product or distinctive models of a product are manufactured simultaneously or 
in a mixed manner. The models in the assembly line may be different from one another according to color or used 
tool because of their natural demands for different tasks, precedence relations, and assignment tasks. Minimization 
of the number of assembly workstations, minimization of cycle time, and line efficiency are different popular 
objectives used in Assembly Line Balancing Problem (ALBP) (Rashid et al., 2011). 

 
With the development of the assembly line concept, the problem of assembly line balancing emerged and this 

issue has attracted and continues to be seen by many scientists. ALBP is a well-known assembly line design problem, 
and it is about assigning tasks to stations to optimize a particular purpose. Because of optimizing critical purposes, 
ALBP also has a critical function particularly in the production lines (Caggiano et al., 2016).  

 
The rest of the article is organized as follows. Firstly, literature review about ALBP is provided. Secondly, 

information about LPP is provided. Thirdly, the LPP formulation for ALBP is detailed. Later, detailed information 
and a numerical example of the proposed LPP-method are provided. Finally, conclusions and future research 
directions are presented. 

 

LITERATURE REVIEW 

The methodologies developed for the solution of ALBP can be grouped into three groups. The paper in the first 
group presents recent heuristic-based studies. Borba et al. (2018) developed an iterative beam search and branch-
bound based hybrid heuristic approach. Aufy and Kassam (2020) proposed a consecutive heuristic algorithm. The 
second group includes studies using metaheuristic approaches: genetic algorithm (Gurevsky et al., 2012; Alavidoost 
et al., 2015; Mura and Dini, 2016; Jusop and Rashid, 2016; Zhang et al., 2020), artificial bee colony algorithm (Tang 
et al., 2016; Zhao et al., 2016; Zhang et al., 2018), ant colony optimization (Zheng et al., 2012; Samouei and 
Dezfoulian, 2017; Huo et al., 2018; Huang et al., 2020), discrete cuckoo search (Li et al., 2018), hybrid genetic 
algorithm (Lin et al., 2009), simulated annealing (Dong et al., 2018; Li et al., 2018), memetic algorithm (Pereira et 
al., 2018), fish school search algorithm (De Albuquerque et al., 2016), migrating birds optimization metaheuristic 
(Janardhanan et al. 2019), and multiobjective evolution strategies (Yoosefelahi et al., 2012; Zacharia &  
Nearchou, 2016).  

 
The studies in the final group use mathematical programming techniques: GAMS-CPLEX algorithm 

(Esmaeilbeigi et al., 2015) and excel (Wei and Chao, 2011). Two recent studies by Make et al. (2017) and 
Eghtesadifard (2020) ensured a comprehensive review of the assembly line balancing literature with their solutions. 
The reader may also refer to Sivasankaran and Shahabudeen (2014) for more studies. Although many objectives are 
taken into account in the methods based on the ALBPs model in the literature, the most important disadvantage of 
these methods is that the decision-maker cannot make his/her options in a physically expressive way while 
considering each objective. In other words, since the decisions made by the decision-maker do not have any tangible 
meaning, the consistency of the criteria weights obtained as a result of the comparisons is very low.  

 
In this study, the Linear Physical Programming (LPP) method is used, which enables the decision-maker to 

define his/her options in a physically expressive way for each of the objectives. Thanks to this proposed method, the 
process of determining exact weights, which causes consistency problems in previously proposed methods and forces 
decision-makers to make subjective decisions and intangible comparisons, has been eliminated. The importance of 
this study is primarily to fill the gap caused by the fact that the LPP method has not been used in ALBP before in the 
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than one similar model of a product in an intermixed order. Despite their widespread use, these lines have received 
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to solve these types of assembly line balancing problems. However, linear physical programming method has never 
been used. In this paper, a linear physical programming model is proposed for balancing a mixed-model assembly 
line. The performance of the proposed model is applied to a numerical example to analyze the usage of the 
methodology. Five objectives are considered in the model, and the outperformance of the methodology is 
demonstrated by comparing it to a different approach. According to the results, it has been seen that the proposed 
linear physical programming model is practical and useful approach for mixed-model assembly line balancing 
problems. 
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INTRODUCTION 

The mechanical production methods that evolved as the development of machine tools and other production 
aspects form the basis of mass production with the vast development of industry in the 18th and 19th centuries. 
Simple one-piece products were manufactured in vast quantities at these centuries. Thus, the initial stage of the mass 
production process is started with the production of one-piece items. Complex units were beginning to be produced 
in the second stage of the mass production process. During this time, mass production was referred to as flow 
production since the product was manufactured employing a flowing manufacturing method and assembly lines 
(Becker and Scholl, 2006). 

 
Balancing an assembly line has crucial importance to provide effective assembly operations. A feasible balance 

can be accomplished for a line if the variation in idle times among all workstations as well as the needed number of 
workstations is minimized while satisfying all precedence relations (Razif et al., 2017). 

 
Assembly lines can be grouped as multimodel, mixed, and single assembly lines as well as the task times 

stochastic and deterministic (Kriengkorakot and Pianthong, 2007). The single-model assembly line is used only to 

Journal of Engg. Research Vol.10 No. (1A) pp. 316-329 DOI: 10.36909/jer.12711



317Muhammet Enes Akpınar
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taken into account in the methods based on the ALBPs model in the literature, the most important disadvantage of 
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considering each objective. In other words, since the decisions made by the decision-maker do not have any tangible 
meaning, the consistency of the criteria weights obtained as a result of the comparisons is very low.  
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where m is the interval factor, mc  is the numbers of criteria, p is the criteria factor, 𝑟𝑟"31  and 𝑟𝑟"3'  are negative and 
positive weights for the p criteria in interval m, 𝑟𝑟345 is the minimal value of 𝑟𝑟"3'  and 𝑟𝑟"31 , and sp is the function 
included in the interval for p criteria;  𝑠𝑠3 is the changes in sp value against interval m value, 𝑡𝑡"31  and 𝑡𝑡"3'  are the 
negative and positive sides of the pth criterion in the size of sth intervals, and 𝑟𝑟"31  and 𝑟𝑟"3'  are negative and positive 
normalized weights for the pth criterion in interval and convexity factor represented with α  (Messac et al., 1996). 

 
4. Calculate the total score for each alternative. 

 

      
 

Figure 1. Class functions in LPP. 
 
 

literature. Another aim is to analyze whether this method provides an advantage over the previous methods used in 
the literature.  

 

LINEAR PHYSICAL PROGRAMMING METHOD 

In multiple criteria decision-making methodologies such as analytical network process and goal programming, 
the main difficulty for decision-makers is to determine the weights within the benefits function. The LPP overcomes 
this challenge by allowing decision-makers by expressing their preferences for each criterion using 4 class functions. 
Criterion weights are determined by an algorithm specific to LPP according to the preference values for each criterion 
decided by the decision-maker. Thus, the decision-maker is not directly involved in the weight determination process 
(Messac et al., 1996). In LPP, the decision-maker can use one of the 4 class functions presented in Figure 1. This 
figure contains the values (tp) for the criteria evaluated on the horizontal axis. As for the vertical axis, it contains the 
class function (zp), which is desired to be minimized for each of the criteria. The class function is asked to take small 
values, and its ideal value is zero. Preference intervals on the horizontal axis while evaluating any alternative p. It is 
used to categorize the values related to the criteria. These intervals can be expressed as follows for the 1S class: 

•   𝑔𝑔"	   ≥ 𝑡𝑡"&' 	  (Unacceptable interval) 
•   𝑡𝑡"(' ≤ 𝑔𝑔"	   ≤ 𝑡𝑡"&' (Highly undesirable interval) 
•   𝑡𝑡"*' ≤ 𝑔𝑔"	   ≤ 𝑡𝑡"(' (Undesirable interval) 
•   𝑡𝑡"+' ≤ 𝑔𝑔"	   ≤ 𝑡𝑡"*' (Tolerable interval) 
•   𝑡𝑡",' ≤ 𝑔𝑔"	   ≤ 𝑡𝑡"+' (Desirable interval) 
•   𝑔𝑔"	   ≤ 𝑡𝑡",'  (Ideal interval). 

The preferences for the pth criterion are expressed by specifying the physical values of the quantities 𝑡𝑡",'   
through	  𝑡𝑡"&' . Assume that a decision-maker collects the following values in order to determine the cost parameter 
from 𝑡𝑡",'   to 𝑡𝑡"&'  in pounds: (7000, 5000, 3500, 2500, 1500). With these values, the cost of the £1000 alternative will 
be included in the ideal interval, while the cost of the £4000 alternative will be included in the undesirable interval, 
and so on until the determination of interval procedure is completed. The LPP steps are as follows: 

 
1. For each criterion used in evaluating alternatives, the decision-maker selects one of the class functions 

provided in Figure 1. 
2. For each criterion, the decision-maker establishes distinct intervals (target values) of attraction degrees. As 

seen in the horizontal axes of the functions given in Figure 1, there are five intervals in class 1S, five intervals 
in class 2S, nine intervals in class 3S, and ten intervals in class 4S. 

3. The LPP weight algorithm is used to calculate the weights as given below: 

 
a.   begin: α = 2.2; 𝑟𝑟",' = 0, 𝑟𝑟",1 = 0, 𝑠𝑠+ = small affirmative value (say, 0.02) 
p = 0; m = 1, mc=is criteria number 
b.   set p = p + 1,  
c.   set m = m + 1 evaluate the sequence: 
𝑠𝑠3, 𝑡𝑡"3' , 𝑡𝑡"31 , 𝑟𝑟"3' , 𝑟𝑟"31 , 𝑟𝑟"3' , 𝑟𝑟"31 , 𝑟𝑟345  if the pre-determined small positive number (say, 0.002) is greater than 

𝑟𝑟345, increase α then go to ii. 
d.   if m ≠ 5, go to step c. 
e.   if  p ≠ mc, go to step b. 
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where m is the interval factor, mc  is the numbers of criteria, p is the criteria factor, 𝑟𝑟"31  and 𝑟𝑟"3'  are negative and 
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𝑌𝑌>3 −	   𝑈𝑈45. 𝐴𝐴4> ≤ 0,	  	  	  	  	  	  	  	  	  𝑠𝑠 = 1, … , 𝑆𝑆,	  	  	  	  	  	  	  𝑚𝑚 = 1, … . 𝑃𝑃
O

4<,

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	   (8) 

𝑋𝑋> ≤ 𝑊𝑊𝑆𝑆,	  	  	  	  	  	  	  	  𝑠𝑠 = 1, … , 𝑆𝑆
?

><,

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	   (9) 

𝑋𝑋> +	  𝑑𝑑W>1 − 𝑑𝑑W>' = 𝑊𝑊𝑆𝑆,	  	  	  	  	  	  	  	  	  𝑠𝑠 = 1, … , 𝑆𝑆	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
?

><,

 (10) 

𝑡𝑡45. 𝐴𝐴4> ≤ 𝐶𝐶5,	  	  	  	  	  	  	  	  	  𝑠𝑠 = 1, … , 𝑆𝑆,	  	  	  	  	  	  	  𝑚𝑚 = 1, … . 𝑃𝑃	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
O

4<,

 (11) 

𝑡𝑡45. 𝐴𝐴4> + 	  ℎ>51 + 𝑃𝑃>5 = 𝐶𝐶5,	  	  	  	  	  	  	  	  	  𝑠𝑠 = 1, … , 𝑆𝑆,	  	  	  	  	  	  	  𝑚𝑚 = 1, … . 𝑃𝑃
O

4<,

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	   (12) 

𝑃𝑃>5 ≤ 1 − 𝑌𝑌>5 ∗ 𝑁𝑁, 𝑠𝑠 = 1, … , 𝑆𝑆,	  	  	  	  	  	  	  𝑚𝑚 = 1, … . 𝑃𝑃	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	   (13) 

	  ℎ>51 − 	  ℎ>5',1 − 1 − 𝑌𝑌>5 ∗ 𝐶𝐶5 ≤ 	  𝛼𝛼, 𝑠𝑠 = 1, … , 𝑆𝑆,	  	  	  	  	  	  	  𝑚𝑚 = 1, … . 𝑃𝑃 − 1	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	   (14) 

PROBLEM DESCRIPTION AND FORMULATION 

In this section, the applicability of the proposed LPP-based method in a home appliances industry is discussed. 
One of the most difficult stages in a decision-making process for the decision-maker is defining a weight process. 
This process is not an effective way to gather the exact preferences because of subjectivity. In LPP, assignment of 
exact physically meaningless weights to goals does not require, instead of this, LPP permit to decision-maker defining 
their choices by considering physically expressive preference intervals for each objective. Thus, the data collection 
process is being much more facilitated. Furthermore, the uncertainness of each objective is intentionally regarded by 
allowing the decision-maker to define her/his options as intervals in place of exact scores.  

 
A LPP methodology for mixed-model assembly line balancing problem is improved in this study by considering 

Samouei and Ashayeri (2019), Choi (2009), Fathi et al. (2018), Gokcen and Erel (1997) mathematical models. The 
decision variables are as follows: 

 
D the total number of tasks  

S the total number of workstations 

P the total number of product kinds 

tin Process time for ith task of nth model i = 1, ... , D; n = 1, ... , P 

Cn nth model cycle time, n = 1, ... , P 

Ais 1 if ith task is assigned to sth workstation, 0 otherwise,  s = 1, ... , S; i = 1, ... , D  

Ysn 1 if nth model is assigned to sth workstation, 0 otherwise,  n = 1, … , P; s = 1, … , S  

Xs 1 if sth workstation is used for all models, 0 otherwise,  s = 1, … , S 

Uin 1 if ith task is needed for nth model, 0 otherwise,  n = 1, … , P; i = 1, … , D 
 
The LPP-based methodology assumptions are as follows: 
On a one-sided straight assembly line, different models of the same basic product with identical production 

features are built. The assembly line is a fast-moving line that produces a mixed-model product. Priority restrictions 
link the assembly tasks together. A task that requires assembly cannot be distributed among numerous workstations. 
At any given time, only one task can be completed at a workstation. The amount of time it takes to complete a task 
is independent of the workstation to which it is assigned. Work-in process, set-up times, and parallel workstations 
are negligible. Any workstation can be used to complete a task. Each assembly task's processing time is known and 
deterministic. 

 

MATHEMATICAL MODEL 

The mathematical formulations of the proposed ALBP model are improved by considering five objectives. 
Objective first (equation-1) is to minimize cycle time for all models. The second objective (2) minimizes the number 
of used workstations. The third objective (3) minimizes the different models' slack time differences, while the fourth 
objective (4) minimizes the total idle time. The final objective (5) aim is to maximize the line efficiency of the line. 
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𝑂𝑂, = 𝑚𝑚𝑚𝑚𝑚𝑚 𝐶𝐶5

;

5<,

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	   (1) 

𝑂𝑂+ = 	  𝑚𝑚𝑚𝑚𝑚𝑚 𝐴𝐴4>

?

><,

= 1	  	  	  	  	  ∀𝑚𝑚 = 1,2, … , 𝐷𝐷	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	   (2) 

𝑂𝑂* = 𝑚𝑚𝑚𝑚𝑚𝑚 𝛼𝛼
;

5<,

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	   (3) 

𝑂𝑂( = 𝑚𝑚𝑚𝑚𝑚𝑚 ℎ>5	  1 	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
;

5<,

?

><,

 (4) 

𝑂𝑂& = 𝑚𝑚𝑚𝑚𝑚𝑚 𝑡𝑡45. 𝐴𝐴4>/(𝐶𝐶5. 𝑆𝑆)	  	  	  	  	  	  𝑚𝑚 = 1, … . 𝑃𝑃	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
O

4<,

?

><,

 (5) 

𝑈𝑈45. 𝐴𝐴4> − 𝑈𝑈45. 𝑌𝑌>3 ≤ 0,	  	  	  	  	  	  	  	  	  𝑠𝑠 = 1, … , 𝑆𝑆,	  	  	  	  	  	  	  𝑚𝑚 = 1, … . 𝑃𝑃	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
O

4<,

	  	   (6) 

𝑌𝑌>5 − 𝑃𝑃. 𝑋𝑋> = 0	  	  	  	  	  	  	  	  𝑠𝑠 = 1, … , 𝑆𝑆
;

5<,

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	   (7) 

𝑌𝑌>3 −	   𝑈𝑈45. 𝐴𝐴4> ≤ 0,	  	  	  	  	  	  	  	  	  𝑠𝑠 = 1, … , 𝑆𝑆,	  	  	  	  	  	  	  𝑚𝑚 = 1, … . 𝑃𝑃
O

4<,

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	   (8) 

𝑋𝑋> ≤ 𝑊𝑊𝑆𝑆,	  	  	  	  	  	  	  	  𝑠𝑠 = 1, … , 𝑆𝑆
?

><,

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	   (9) 

𝑋𝑋> +	  𝑑𝑑W>1 − 𝑑𝑑W>' = 𝑊𝑊𝑆𝑆,	  	  	  	  	  	  	  	  	  𝑠𝑠 = 1, … , 𝑆𝑆	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
?

><,

 (10) 

𝑡𝑡45. 𝐴𝐴4> ≤ 𝐶𝐶5,	  	  	  	  	  	  	  	  	  𝑠𝑠 = 1, … , 𝑆𝑆,	  	  	  	  	  	  	  𝑚𝑚 = 1, … . 𝑃𝑃	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
O

4<,

 (11) 

𝑡𝑡45. 𝐴𝐴4> + 	  ℎ>51 + 𝑃𝑃>5 = 𝐶𝐶5,	  	  	  	  	  	  	  	  	  𝑠𝑠 = 1, … , 𝑆𝑆,	  	  	  	  	  	  	  𝑚𝑚 = 1, … . 𝑃𝑃
O

4<,

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	   (12) 

𝑃𝑃>5 ≤ 1 − 𝑌𝑌>5 ∗ 𝑁𝑁, 𝑠𝑠 = 1, … , 𝑆𝑆,	  	  	  	  	  	  	  𝑚𝑚 = 1, … . 𝑃𝑃	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	   (13) 

	  ℎ>51 − 	  ℎ>5',1 − 1 − 𝑌𝑌>5 ∗ 𝐶𝐶5 ≤ 	  𝛼𝛼, 𝑠𝑠 = 1, … , 𝑆𝑆,	  	  	  	  	  	  	  𝑚𝑚 = 1, … . 𝑃𝑃 − 1	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	   (14) 

PROBLEM DESCRIPTION AND FORMULATION 

In this section, the applicability of the proposed LPP-based method in a home appliances industry is discussed. 
One of the most difficult stages in a decision-making process for the decision-maker is defining a weight process. 
This process is not an effective way to gather the exact preferences because of subjectivity. In LPP, assignment of 
exact physically meaningless weights to goals does not require, instead of this, LPP permit to decision-maker defining 
their choices by considering physically expressive preference intervals for each objective. Thus, the data collection 
process is being much more facilitated. Furthermore, the uncertainness of each objective is intentionally regarded by 
allowing the decision-maker to define her/his options as intervals in place of exact scores.  

 
A LPP methodology for mixed-model assembly line balancing problem is improved in this study by considering 

Samouei and Ashayeri (2019), Choi (2009), Fathi et al. (2018), Gokcen and Erel (1997) mathematical models. The 
decision variables are as follows: 

 
D the total number of tasks  

S the total number of workstations 

P the total number of product kinds 

tin Process time for ith task of nth model i = 1, ... , D; n = 1, ... , P 

Cn nth model cycle time, n = 1, ... , P 

Ais 1 if ith task is assigned to sth workstation, 0 otherwise,  s = 1, ... , S; i = 1, ... , D  

Ysn 1 if nth model is assigned to sth workstation, 0 otherwise,  n = 1, … , P; s = 1, … , S  

Xs 1 if sth workstation is used for all models, 0 otherwise,  s = 1, … , S 

Uin 1 if ith task is needed for nth model, 0 otherwise,  n = 1, … , P; i = 1, … , D 
 
The LPP-based methodology assumptions are as follows: 
On a one-sided straight assembly line, different models of the same basic product with identical production 

features are built. The assembly line is a fast-moving line that produces a mixed-model product. Priority restrictions 
link the assembly tasks together. A task that requires assembly cannot be distributed among numerous workstations. 
At any given time, only one task can be completed at a workstation. The amount of time it takes to complete a task 
is independent of the workstation to which it is assigned. Work-in process, set-up times, and parallel workstations 
are negligible. Any workstation can be used to complete a task. Each assembly task's processing time is known and 
deterministic. 

 

MATHEMATICAL MODEL 

The mathematical formulations of the proposed ALBP model are improved by considering five objectives. 
Objective first (equation-1) is to minimize cycle time for all models. The second objective (2) minimizes the number 
of used workstations. The third objective (3) minimizes the different models' slack time differences, while the fourth 
objective (4) minimizes the total idle time. The final objective (5) aim is to maximize the line efficiency of the line. 
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Figure 2. Precedence relation graph for washing machine. 
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Figure 3. Precedence relation graph for tumble dryer. 

 

𝑠𝑠. 𝐴𝐴4> − 	   𝑠𝑠. 𝐴𝐴Z> ≤ 0,
?

><,

	  	  	  	  	  	  	  ∀𝑖𝑖 ≤ 𝑗𝑗, 𝑖𝑖 = 1, … . , 𝐷𝐷	  	  	  	  	  	  	  	  	  𝑗𝑗 = 1, … , 𝐷𝐷	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
?

><,

 (15) 

𝐴𝐴4> = 1,
?

><,

	  	  	  	  	  	  	  ∀𝑖𝑖 = 1, … . , 𝐷𝐷	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	   (16) 

𝑋𝑋>, 𝐴𝐴4>, 𝑌𝑌>5, 𝑈𝑈45 ∶ 0 − 1	  integer	  value	    

 
Constraints (6)–(8) guarantee that if an unassigned task is assigned to a new workstation, a new workstation 

must be allocated. A new workstation will be allocated for whole assembly line models only when the workstation is 
allocated just for at least one assembly line model. Allocated workstations for each assembly line model will be 
included a task from different assembly line models. Constraint (9) handles to restrict the opened number of 
workstations. Constraint (10) ensures the necessary deviation factors. Constraint (11) is for the calculation of cycle 
time and with the task, assignment operations are ended for all assembly models the total time of tasks assigned to a 
workstation must less or equal to cycle time. Constraints (12) and (13) guarantee that ℎ>51  will not take a value, and 
Psn factor takes value only when the workstation s is not used for model n. Constraint (14) evaluates that a predefined 
α value can limit the difference of ℎ>51  deviation factors. By using this limitation idle time differences among the 
workstations will not be greater than α. Constraint (15) preserves the precedence relations during the assignment of 
tasks to the workstations. Constraint (16) ensures that each assembly model's task assignment is limited to one 
workstation. 

 

APPLICATION OF THE LPP METHOD 

This study considers the design of an assembly line for the assembly of machines. Two different product types 
are considered: washing machine and tumble dryer (dryer machine). Precedence relations and processing times of 
products are illustrated in Table 1. Precedence relations graphs for washing machine and tumble dryer are presented 
in Figures 2 and 3, respectively. Figure 4 represents an integrated precedence graph. 

 
All five goals described in the LPP formulation section were modeled by considering Class 2S LPP functions. 

Table 2 presents the payoff table for upper and lower values of one objective, and the limitation of Class 2 LPP 
functions was decided by regarding these values. LPP limitation values are given in Table 3. LPP weight algorithm 
is used to decide LPP weights. The proposed LPP based assembly line balancing methodology weights are provided 
in  
Table 4. 

Abd El-Wahed and Lee (2006) comparison procedure is used to compare the performance of the proposed LPP 
to Fuzzy Goal Programming (FGP) performance. The numerical example model was solved by using Lingo 12.0. 
Table 5 presents the workstations times and task assignments of each model. Table 6 presents the outcomes of LPP 
and concerning results; the first objective (O1) function values are 35s and 45s for model 1 and model 2, respectively. 
The difference is 10s, and this value is considered for comparison. The second objective (O2) function minimizes the 
summation of workstations, and the deviation from the predetermined workstation number (4) is 1 workstation since 
the summation of workstations to be allocated was stated as 5. The third objective (O3) function value is 7s, and this 
objective minimizes the slack time differences between assembly models in a workstation. To minimize the solution 
of the fourth objective (O4) function, there is a 29s total idle time. The fifth and the final objective (O5) function takes 
the value of 0.923 as maximized line efficiency value. 



323Muhammet Enes Akpınar

1

3

6

4

8

5

2

7

9

12

13

16

17

18
Start Assembly 

completed

	  

Figure 2. Precedence relation graph for washing machine. 
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Figure 3. Precedence relation graph for tumble dryer. 
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Table 4. LPP weights. 
 

 𝑟𝑟"&1  𝑟𝑟"(1  𝑟𝑟"*1  𝑟𝑟"+1  

O1 33.561 0.823 0.352 0.052 

O2 138.600 11.300 1.100 0.102 

O3 6.866 3.560 0.250 0.051 

O4 9.356 0.510 0.110 0.014 

O5 60.450 9.690 0.420 0.112 
 
Table 6 represents the best value of ideal solution for a definite objective function considering Table 2 payoff 

values. As shown in Table 6, for A values, the LPP method puts forward quite promising performance compared to 
FGP (Abd El-Wahed and Lee, 2006). All these outcomes represent that, to solve ALBP, the LPP method is an 
encouraging solution approach. 
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Table 1. Precedences and processing times for washing machine and tumble dryer. 
 

Task 
Number 

Part 
Name 

Process time 
(WM) (s) 

Process time 
(TD) (s) 

Precedence 
relationships 

1 Drum support rollers 8 12 - 
2 Drum 20 30 1 
3 Drain pump 15 - 2 
4 Filter 10 - 3 
5 Drain hose 5 - 4 
6 Motor 35 30 2 
7 Drive Belt 20 25 6 
8 Heater 15 15 6 
9 Outer cover 45 40 7,8 

10 Thermostats - 10 8 
11 Vent - 15 8 
12 Power supply 3 3 6 
13 Water supply hoses 6 - 2 
14 Blower - 20 6 
15 Exhaust duct - 10 6 
16 Door 15 20 9 
17 Control panel 10 15 9 
18 Detergent drawer 10 - 9 

 
Table 2. Payoff values. 

 
 Z1 Z2 Z3 Z4 Z5 

O1 0 5 18 113 0.908 
O2 46 0 7 49 0.863 
O3 66 2 1 186 0.856 

O4 18 3 5 33 0.924 
O5 0.923 0.838 0.889 0.917 0.819 

 
Table 3. LPP limit values. 

 
 𝑡𝑡"&1  𝑡𝑡"(1  𝑡𝑡"*1  𝑡𝑡"+1  𝑡𝑡",1  

O1 56.5 45 20 15 0 
O2 8 6 3 2 0 
O3 20 15 5 3 0 
O4 186 65 42 34 25 
O5 0.969 0.919 0.881 0.851 0.818 
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The proposed approach can provide the following managerial insights: 
•   Deterministic or stochastic process times could be seen in the assembly operations. While balancing 

mixed-model assembly lines, the proposed approach allows decision makers to consider deterministic 
issues. 

•   The LPP technique gives decision-makers the option of employing interval ranges. 
 
The limitations of the study are as follows: 
•   In real-life problems, processing times can be stochastic. However, stochastic processing times were not 

taken into account in this study. 
•   The number of components considered in the proposed method is reasonable. More complex models or 

components can take a long time to solve. 
 
The proposed LPP-based method should be enhanced by considering stochastic process times by using 

simulation optimization methodology. Although the proposed approach is applied to mixed-model ALBP, it could 
also be tested by applying to different ALBPs for further research. 
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Table 5. Assigned tasks to allocated workstations. 
 

  Model 1 (Washing Machine) Model 2 (Tumble Dryer) 

Stations Tasks Tasks Station Time Tasks Station Time 

1 1,2,3,4,7 1,2,3 43 1,2 42 

2 5,6,8,10 4,5,6 50 6,7 55 

3 9,12,14 7,8 35 8,9 55 

4 11,13,16 9,12 48 10,11,12,14 48 

5 15,17,18 13,16,17,18 41 15,16,17 45 
 

Table 6. LPP-based methodology and FGP results comparison. 
 

 Linear Physical Programming Fuzzy Goal Programming 

O1 10 15.568 

O2 1 3 

O3 7 5.458 

O4 29 32.454 

O5 0.923 0.912 

A1 0.915613547 0.915658650 

A2 0.536914523 0.556845390 

A3 0.514858586 0.524958400 

A4 0.335894752 0.345589420 

A∞	 0.241070500 0.246080600 

 

CONCLUSION 

Mixed-model assembly line balancing research is crucial to consider for adaptability and productivity because 
it has a direct impact on the production system's efficiency. Mixed-model assembly lines are preferred over single-
model assembly lines in the current market, which is characterized by a growing pattern for a bigger product or item 
variation.  To meet open market demand, more and more businesses, such as the home appliances industry, are 
transitioning from traditional and manual methods to semi- and fully automated systems. In this study, an assembly 
line balancing approach based on LPP was developed for white good products. The LPP-based method was 
implemented to balance a machine assembly line including mixed-model assembly lines. Five different objective 
functions are considered, and the value for (O1) is 10, (O2) 1, (O3) 7s, (O4) 0.29s, and (O5) 0.923.These results show 
that the LPP-based assembly line balancing approach provides quite promising result.  
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