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طريقة معتمدة لبرمجة الأعداد الصحيحة والمختلطة لتخطيط مشاركة 
الوحدات في نظام الشبكات الذكية

* ر. قديري اناري، ** م. رشيدي نجاد و *** م.فتوحي

* قسم الهندسة الإلكترونية لشعبة العلوم والدراسات بالجامعة الحرة الإسلامية في طهران.

** قسم الهندسة الإلكترونية في جامعة شهيد باهنر كرمان الإيرانية

*** المركز العالي لرقابة وإدارة نظام القوة للكهرباء بقسم الهندسة الإلكترونية في جامعة صنعتي شريف الإيرانية

خلاصة 
إن أنظمة الطاقة المستقبلية المعروفة بالشبكات الذكية من المتوقع أن تحتوي مستويات أعلى 
من الذكاء وتتعامل مع معلومات وتكنولوجيا اتصالات جديدة في جميع مناحي شبكات الطاقة. 
إستخدامها  يمكن  برنامجين  وناقلات الطاقة تعتبران   (DRR) الإستجابة متطلبات  إن مصاد 
إفتراضية  طاقة  لمحطة  طلب  كموقع   (DRR) إستخدام  يمكن  الذكية.  الشبكات  محيط  في 
(مصدر) لزيادة الأمان والثقة بشبكة الخدمات ولها القابلية لتوفير فوائد كثيرة بتطوير الفعالية 
الإقتصادية في أسواق الكهرباء الإجمالية.ثم إعداد نموذج إقتصادي يتجاوب مع المعطيات 
ومبني علي المرونة في السعر ومتطلبات المستخدمين.وعلي الجانب الأخر يمكن إستخدام 
مركبات طاقة (GV) كمحطات طاقة متنقلة لتحسين الأداء وأمان محطات الطاقة. في هذه 
 (UC) لحل مشاركة الوحدة (MIP) الورقة تم إستخدام برمجة للأعداد الصحيحة والمختلطة
بإستخدام (DRR) و(GV). ثم تعديل المعادلة الموضوعية لتتضمن كلا العاملين السابقين. 
ثم تطبيق هذه الطريقة المقترحة في نظام وحدة ناقلة تحتوي علي عشر وحدات لبيان تأثير 
 (DRR) ومدي الإستفادة من تطبيق (UC) بيئة الشبكة الذكية علي مشكلة مشاركة الوحدة

و(GR) في سوق الكهرباء..
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Abstract
The future of power systems known as smart grids is expected to involve an increasing level of 
intelligence and incorporation of new information and communication technologies in every 
aspect of the power grid. Demand response resources and gridable vehicle are two interesting 
programs which can be utilized in the smart grid environment. Demand response resources can 
be used as a demand side virtual power plant (resource) to enhance the security and reliability 
of utility and have the potential to offer substantial benefits in the form of improved economic 
efficiency in wholesale electricity markets. An economic model of incentive responsive loads 
is modelled based on price elasticity of demand and customers’ benefit function. On the other 
hand, a gridable vehicle can be used as a small portable power plant to improve the reliability 
as well as security of the power system.

This paper formulates a mixed-integer programming approach to solve the unit commitment 
problem with demand response resources and gridable vehicles. The objective function of the 
unit commitment problem has been modified to incorporate demand response resources and 
gridable vehicles. The proposed method is conducted on the conventional 10-unit test system 
to illustrate the impacts of smart grid environment on the unit commitment problem. Moreover 
the benefits of implementing demand response resources and gridable vehicle in electricity 
markets are demonstrated.

 Keywords: Demand response; mixed-integer programming; smart grid; unit 
commitment.
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NOMENCLATURES

()A Incentive of DR programs 
of an hour.

Max
GVP Maximum power obtainable 

from one GV. 

()mAS
Slope of segment m in 
linearized total incentive 
curve.

0 ( )PR Initial electricity price of 
an hour.

( )a , ( )b , ( )c
Fuel cost coefficients of 
a unit. ( )PR Spot electricity price of 

an hour.

0 ( )B
Customer’s income of an 
hour when the demand is 
at nominal value.

( )( )PEN D∆
Total penalty for customers 
who do not curtail load 
according to predetermined 
contract level of an hour.

( )( )DRB D
Customer’s income of an 
hour after implementing 
DRPs.

( )Pen Penalty of an hour.

mb
Slope of segment m in 
linearized fuel cost curve. ( )( )p D∆ Total incentive for customers 

of DRPs of an hour.

( )D Power demand of an hour. ( )mp
Generation of segment 
m in linearized fuel cost 
curve.

( )DRD Power demand of an hour 
after implementing DRPs. ( )m

q
Generation of segment 
m in linearized emission 
curve.

( )E Self and cross elasticity of 
an hour.

,r s
Coefficients to reinforce 
the effect of Penalty and 
award in incentive-based 
programs, respectively.

( )Em Emission function of a 
unit. ( )RDR Ramping down limit of 

a unit.

( )Em Lower limit on the 
emission of a unit. ( )RUR Ramping up limit of a 

unit.

( )m
e Slope of segment m in 

linearized emission curve. ( )( )DRS D Customer’s benefit of 
DRPs of an hour.

( )F Fuel cost function of a 
unit. ( )nSC

Cost of the interval n of 
the stairwise startup cost 
function of unit j.

( )F Lower limit on the fuel 
cost of a unit. ( )SU Start-up cost of a unit.

( )IC Contract level of Incentive-
based programs of an hour. ( )SD Shutdown cost of a unit.

i Denotes a unit. T Number of hours for the 
scheduling period.

( ),

( )

MU

MD
Minimum up/down time 
of a unit. t Hour index.

m
Segment index for 
linearized fuel cost and 
total incentive curve.

(,0),

(,0)

TU

TC

Number of hours a unit has 
been on/off at the beginning 
of the scheduling period.
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N Number of units.
( ),

( )

UT

DT

Number of hours a unit 
need to remain on/off if 
on/off at the beginning of 
the scheduling period.

GVN Number of gridable vehicles. ( )u Unit status indicator where 
1 means on and 0 means off.

Max
GVN Maximum number of 

gridable vehicles. ( )mv
Award of segment m in 
linearized total incentive 
curve.

( )NS
Number of segments for 
the piece-wise linearized 
total incentive curve.

EW
Weight coefficient of 
emission in objective 
function.

( )NSE
Number of segments for 
the piece-wise linearized 
emission curve.

FW
Weight coefficient of 
generation cost in objective 
function.

( )NSF
Number of segments for 
the piece-wise linearized 
fuel cost curve.

( )y Startup indicator.

n Segment index for stair-
wise emission curve. ( )z Shutdown indicator.

( )P Generation of a unit. α ( ) , β ( ) ,δ ( ) Emission coefficients of 
a unit.

( ), ( )P P M i n i m u m / m a x i m u m 
generating capacity. ( )Γ Demand ratio parameter 

of an hour.

GVP Power obtainable from 
one GV. 

η The potential of DR 
programs implementation.

INTRODUCTION

Having effect on nearly every aspect of industrial productivity and daily life, the 
power industry – in terms of (a) economic importance and (b) environmental effect – 
is one of the most important sectors in the world. Unit Commitment (UC) involves the 
determination of on/off status of generation units and the value of generators power 
production to meet the forecasted demand for a specified time horizon (Afkousi-
Paqaleh et al., 2010). The optimal schedule should minimize the system production 
costs during the scheduling period, while satisfying load demand, spinning reserve 
requirements as well as physical and operational constraints of each individual unit 
(Cheng et al., 2002; Hosseini et al., 2007; Zhao et al., 2006). Being a non-convex, 
mixed-integer combinatorial optimization problem several mathematical, heuristic and 
hybrid methods have been proposed for solving the UC problem. The mathematical 
approaches include priority list (PL), dynamic programming (DP), integer and mixed-
integer programming (IP/MIP), linear programming (LP), branch and bound (BB) 
(Padhy, 2004; Ouyang & Shahidehpour, 1991; Tseng et al., 2000; Li et al., 1997; 
Ruiwei et al. 2013; Chaoyue et al. 2013). Due to some limitations in application 
and results of the mathematical methods heuristic approaches have been proposed 
(Swarup & Yamashiro, 2003; Kazarlis et al., 1996; Huang, 2001; Mantawy et al., 
2002; Annakkage et al., 1995; Sarjiya et al. 2013). 
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The Smart Grid is a set of software and hardware tools capable of routing power 
more proficiently, and therefore reducing the need for excess capacity and upgrade of 
the existing system. The main difference between the current grid and the smart grid 
is that the last is a transformed electricity and distribution network which uses two-
way communications, advanced intelligent technologies to enhance the efficiency 
and reliability of power supply. Being equipped with ICT-based (Information and 
Communication Technologies) optimization technology, smart grids are capable of 
communicating with demand side loads that offer a variety of options to make the 
grid load and the production more predictable and adaptable (Battaglini et al., 2009). 

In these circumstances, Demand Response Programs (DRPs) are useful tools for the 
Independent System Operator (ISO), which can be activated within a relatively short 
time in case of critical system conditions. Federal Energy Regulatory Commission 
(FERC) reported the results of DR implementations in US utilities and power markets 
in August 2006 (FERC, 2006). DR can be classified according to how load changes are 
brought about. Based on the FERC report, DRPs are divided into two basic categories 
namely; Time-Based Rate (TBR) programs and Incentive-Based Programs (IBP). The 
aim is to make it attractive for customers to use less power during peak load periods 
(FERC, 2008). In DRPs, the customer signs a contract with the ISO or the local utility, 
to reduce its demand as and once requested. The utility benefit is reduction of its peak 
load and thus saving costly generation reserves, restoring quality of service, reducing 
environmental emission and reliability improvement. The customer benefits from 
DRPs are particularly from incentives provided by the local utility or ISO and also 
reduction in electricity bill. More detailed explanations about DRPs are provided is 
section II of this paper. In order to evaluate the impact of DRPs on the UC problem, 
developing of price responsive demand model is necessary. Economic models of price 
responsive loads for DRPs have been addressed in (Bompard et al., 2007; Aalami et 
al., 2008a; Aalami et al., 2008b, Goel et al., 2007; Yu & Yu, 2006; Goel et al., 2006; Su 
& Kirschen, 2009; Pourmousavi & Nehrir, 2014; Zhanle et al., 2013; Ma et al. 2013). 

The focuses of Vehicle-to-Grid (V2G) researchers have mainly been on 
interconnection of energy storage of vehicles and grid (Kempton et al., 2005; Tomic 
& Kempton, 2007; Kempton & Tomic, 2005a; Kempton & Tomic, 2005b; Williams 
& Kurani, 2006). Their aim is to educate about the environmental and economic 
benefits of V2G and improvement of the power market. However, success of V2G 
technology mainly depends on the efficient scheduling of Gridable Vehicles (GVs) 
considered restricted number of parking lots. Ideally speaking, gridable vehicles for 
V2G technology should be charged from renewable sources. A gridable vehicle can 
be considered as a small portable power plant (Saber & Venayagamoorthy, 2010b).

In this paper, UC problem in smart grid environment is investigated. DRPs and 
V2Gs are considered as the main programs of the smart grid. The economic model 
of price responsive loads for DRPs has been extracted by using the concept of “price 
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elasticity of demand” and “customers’ benefit function” as proposed in (Aalami et al., 
2010a; Aalami et al., 2010b).  It is considered that ISO prizes the customers for load 
reduction, but does not penalize their violence. Modeling V2G involves intelligently 
scheduling existing units and large number of gridable vehicles in limited and 
restricted parking lots. 

A mixed-integer programming (MIP) framework is proposed in this study that 
formulates the unit commitment problem with DRRs and V2G. There is mathematical 
proof that the mixed-integer linear programming can render the optimum solution 
(Li & Shahidehpour, 2005). However, since there is a need for linearization of the 
offered cost curves, reaching the optimum solution of the original problem might 
not be feasible. A mixed-integer representation of IBPs and GVs has been modeled. 
The proposed model is used to determine loads provided by DRRs and schedule 
commitment status of generating units. The obtained results demonstrate that operation 
cost can be significantly reduced in the presence of DRPs and GVs with proper and 
intelligent optimization. The proposed approach is carried out on the conventional 
10-unit test system to illustrate the influences of smart grid on the UC problem and 
electricity market. 

SMART GRIDS

In this section DR and V2G programs as two of the main segments of the smart grids 
are discussed.

DEMAND RESPONSE PROGRAMS

Exploration of DRPs was assigned to the United States of America by strategic plan 
of International Energy Agency (IEA) (IEA, 2010). In the FERC report, DR is divided 
into two basic categories namely; TBR programs and IBPs. Each of these categories 
is composed of several programs as indicated in Fig.1. In TBR programs, Time of Use 
(TOU), Real Time Pricing (RTP) and Critical Peak Pricing (CPP), the electricity price 
changes for different periods according to the electricity supply cost. 
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Fig. 1.  Categories of demand response programs

In these programs there isn’t any incentive or penalty for customer response. IBPs 
include, DLC, EDRP, Capacity Market Program (CAP), Interruptible/Curtailable 
(I/C) service, Demand Bidding (DB) and Ancillary Service (A/S) programs. The 
aforementioned programs can be classified into three main subgroups namely; 
voluntary, mandatory and market clearing programs. DLC and EDRP are voluntary 
programs and if customers do not curtail consumption, they are not penalized. I/C and 
CAP are mandatory programs and enrolled customers are subject to penalties if they 
do not curtail when directed. DB and A/S are market clearing programs, where large 
customers are encouraged to offer or to provide load reductions at a price at which 
they are willing to be curtailed and to identify how much load they would be willing 
to curtail at the posted prices. A/S programs allow customers to bid load curtailments 
in electricity markets as operating reserves. More detailed explanations of DRPs can 
be found in (FERC, 2006).

Vehicle-to-Grid

Plug-in Hybrid Electric Vehicles (PHEVs) are hybrid electric vehicles that can draw 
and store energy from an electric grid to supply propulsive energy for the vehicle energy 
consumption. This simple functional change enables a PHEV to displace energy from 
petroleum with multi-source electric energy (Quinn et al., 2010). This has important 
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and generally beneficial influence on petroleum consumption, pollution, as well as on 
the performance and makeup of the electric grid. Because of these characteristics and 
their near-term availability, PHEVs are seen as one of the most promising means to 
enhance the sustainability of the energy sectors (Bradley & Frank, 2009).

Generally, PHEVs have many economic benefits and have a short payback period 
to the owners (Baha et. al. 2013a), they help improve the light duty vehicles fleets’ 
fuel economy and decrease petroleum consumption considerably (Baha et. al. 2014) 
and are expected to have high penetration rate in the near future (Baha et. al. 2013b).

A widespread adoption of electric vehicles will need to be taken into account in all 
activities within power systems. However, some activities will more likely be subject 
to more severe modifications, in technical as well as in operational terms, than others. 
This can easily be understood since the vehicles will be connected to lower network 
levels and hence entities active on these levels will be affected more (Galus et al., 
2010). Among which UC problem is one of activities that is considerably influenced 
by the PHEVs. 

PROPOSED MATHEMATICAL FRAMEWORK

Conventional Unit Commitment Formulation

UC involves determining generating outputs of all units from an initial hour to satisfy 
load demands associated with start-up and shut-down schedule over a time horizon. 
The objective function is to find the optimal schedule such that the total operating 
costs are minimized while satisfying the load demand, spinning reserve requirements, 
emission allowance limit as well as other operational constraints.

The objective function for unit commitment problem comprises the start-up costs, 
shut-down costs of de-committed units, the fuel costs as well as the emission level of 
generating units which can be presented as:

       1 1

,[ ( ) ( , )

( ) ( , )(1 ( , 1))
( ) ( , 1)(1 ( , ))]

= =

+ − −
+ − −

∑∑
N T

i t

iMin F t u i t

SU i u i t u i t

SD i u i t u i t

                         (1)

Responsive Load Economic Model

In order to evaluate the impact of participation of customers in DR programs on 
load profile characteristics, development of responsive load economic models are 
necessary. Schweppe and his co-workers formalized and developed the concept of 
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spot pricing of electricity in 1989. They envisaged a system where customers would 
adjust their demand up/down depending on the spot price (Schweppe et al., 1989). 
Kirschen showed how this model could be taken into consideration when scheduling 
generation and setting the price of electricity in a pool based electricity market 
(Kirschen et al., 2000). In the author’s previous studies (Aalami et al., 2010a; Aalami 
et al., 2010b), economic model of responsive load by consideration of penalty and 
award has been presented. In this paper, the above models are developed which 
include variable penalties and awards based on the level of demand for customers in 
case of no responding and responding to load reduction respectively.

1) Price Elasticity of Demand

Elasticity is defined as the demand sensitivity with respect to the price (Kirschen & 
Strbac, 2005):

       
( ) ( )( , )
( ) ( )

P t D t
E t t

D t P t
∂

=
∂                              (2)

According to (2), the price elasticity of the t-th period versus j-th period can be 
defined as (Kirschen & Strbac, 2005):

        ( ) ( )( , )
( ) ( )

P j D t
E t j

D t P j
∂

=
∂

                            (3)

2) Modeling of Single Period Elastic Loads

Suppose that the customer changes his demand from D(t) (initial value) to DDR(t), 
based on the value which is considered for the incentive and the penalty mentioned 
in the contract.

         ( ) ( ) ( )∆ = −DRD t D t D t                             (4)

If A(t) $ is paid as incentive to the customer in t-th hour for each MWh load 
reduction, the total incentive for participating in incentive-based programs will be as:

       ( ( )) ( )[ ( ) ( )]DRp D t A t D t D t∆ = −           (5)

If the customer who has been enrolled in the mentioned DR programs does not 
commit to his obligations according to the contract, he will be faced with penalty. The 
total penalty, will be accounted as following:

     ( )∆ =PEN( )  pen(t).{IC (t)-[D(t)-D (t)]}DRD t           (6)
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The flexible strategy of appropriating award and penalty in IBPs has been 
considered based on the level of demand. It means that the “demand ratio parameter” 
like Γ(t) can be defined to classify the level of award and penalty for each hour of 
scheduling period as following:

       
( )( ) {1,2... ... }

{ ( )}
τ

τ
Γ = ∈

D t
t t T

Max D
          (7)

Therefore, (8) and (9) can be modified as the following:

      ( ( )) ( ) ( )[ ( ) ( )]s
DRp D t t A t D t D t t∆ = Γ − ∀              (8)

    ( ) ( )PEN( ) pen(t).{IC (t)-[D(t)-D (t)]}r
DRD t t t∆ = Γ ∀      (9)

The customer’s benefit, for the t-th hour will be as:

   = − + ∆ − ∆( ( )) ( ( )) ( ) ( ) ( ( )) ( ( ) )S D t B D t D t PR t p D t PEN D t           (10)

According to the classical optimization rules, to maximize the customer’s benefit, 
∂S/∂D(t) should be equal to zero; therefore,

     ∂ ∂ ∂ ∂
= − + − =

∂ ∂ ∂ ∂
( ( )) ( ( ))

( ) 0
( ) ( ) ( ) ( )

S D t B D t p PEN
PR t

D t D t D t D t
      (11)

         ( ( )) ( ) ( ) ( )
( )

∂
= +Γ +Γ

∂
(t)pen(t)s rB D t

PR t t A t
D t

                   (12)

The benefit function, most often used, is the quadratic benefit function (Schweppe 
et al., 1989):

       [ ]0 0
( ) ( )( ( )) ( ) ( ) ( ) ( ) 1

2 ( ) ( )
⎧ ⎫−

= + − +⎨ ⎬
⎩ ⎭

DR
DR

D t D t
B D t B t PR t D t D t

E t D t
         (13)

By differentiating the above equation and solving for ∂B/∂D(t)  and substituting 
the result in (12) we will have:

    
0

( ) ( )
( ) ( ) ( ) (t)pen(t) ( ) 1

( ) ( )
s r DRD t D t

PR t t A t PR t
E t D t

⎧ ⎫−
+Γ + Γ = +⎨ ⎬

⎩ ⎭
         (14)

Therefore, customer’s consumption will be as following:

    0

0

( ) ( ) ( ) ( )
( ) ( ) 1 ( , )

( )
(t)pen(t)s r

DR

PR t PR t t A t
D t D t E t t

PR t

⎧ ⎫⎡ ⎤− +Γ + Γ⎪ ⎪⎣ ⎦= +⎨ ⎬
⎪ ⎪⎩ ⎭

         (15)
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3) Modeling of Multi Period Elastic Loads

According to the definition of the cross elasticity in (3) with the linearity assumption 
we have:

                      ∂
∂

( )
( )

D t
PR j

 : Constant for t,      j=1, 2…24                            (16)

Implying the linear relationship between prices and demands:

            
24

0

1 0

[ ( ) ( ) ( ) ( ) ( ) ]( ) ( ) 1 ( , ).
( )

pen( )s r

DR
j
j t

PR j PR j j A j j j
D t D t E t j

PR j=
≠

⎧ ⎫
− + Γ + Γ⎪ ⎪= +⎨ ⎬

⎪ ⎪⎩ ⎭
∑     (17)

4) Load Economic Model

By combining (16) and (17), we will have the responsive load economic model as 
following:

   

0

0

24
0

1 0

[ ( ) ( ) ( ) ( ) ]1 ( , )
( )

( ) ( ) [ ( ) ( ) ( ) ( )( , )
( )

(t)pen(t)

(j)pen( ) ]

s r

s rDR

j
j t

PR t PR t t A t
E t t

PR t
D t D t PR j PR j j A j j

E t j
PR j

η

=
≠

⎧ ⎫− + Γ +Γ
+⎪ ⎪

⎪ ⎪
= ⎨ ⎬− +Γ +Γ⎪ ⎪+

⎪ ⎪
⎩ ⎭
∑

       (18)

Gridable Vehicles Model

Only predefined registered/forecasted GVs are considered for determining the 
optimum solution (scheduling) in the UC problem. Total number of registered GVs 
is considered to be fixed and it is assumed that they were charged from renewable 
sources and not from the grids. All the vehicles will discharge to the grid during the 
scheduling period (Saber & Venayagamoorthy, 2010b).

         
1

( )
=

=∑
T

Max
GV GV

t

N t N                                   (19)

Vehicles are assumed to be charged from renewable sources and discharge to 
the grid. Multiple charging–discharging facilities of GVs may be available however 
since it is very dependent on life time and type of batteries. In this study, for sake of 
simplicity, charging–discharging frequency is one per scheduling horizon.

MIP-Based Unit Commitment with Demand Response 
and Gridable Vehicles

In this paper, we have focused on voluntary programs of DR. Hence, we assume 
“A” $/MWh and zero $/MWh as the value of incentive and penalty, respectively. In 
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other words, in these programs it is considered that ISO prizes the customers for load 
reduction, but does not penalize their violence.

p(∆D(t)) is a quadratic function of incentive which can be concluded from (5) 
and (17). Hence, the objective function is a nonlinear mixed-integer optimization 
problem that is difficult to solve by standard nonlinear programming methods. Next, 
we describe an alternative mixed-integer linear formulation, MILP-UC, suitable for 
available MILP software (Li & Shahidehpour, 2005; Carrión & Arroyo, 2006).

The MILP-based model of objective function for unit commitment problem with 
DR and GV can be formulated as:

       

( )

11 1

( )

11

( )[ ( ) [ ( ) ( )

( , )( ) ( , )( , ) ( )

( , ) ( )}]]

== =

==

+

⎡ ⎤−+ −+ ⎢ ⎥⎣ ⎦
−

∑∑ ∑

∑∑

NS iT N

m m i
mt i

NSF i k

nm m
nm

v tMin AS t u tF i

SC u i ti u i t np i t b i

z i t iSD

                    (20)

More explanation about each parameter of (18) is outlined in the following.

Fuel Cost

The quadratic fuel cost function typically used in scheduling problems can be 
formulated as:

      2( , ) ( ) ( ) ( , ) ( ) ( , )= + +F i t a i b i P i t c i P i t                    (21)

The cost function in (21) can be accurately approximated by a set of piecewise 
blocks (Li & Shahidehpour, 2005). For practical purposes, the piecewise linear 
function is indistinguishable from the nonlinear model if enough segments are used. 
The analytic representation of this linear approximation is

      
( )

1

( ) ( ) ( , ) ( )
=

+ ∑
NSF i

i m m
m

u tF i p i t b i                                      (22)

Start-up Cost

Since the time span has been discretized into hourly periods, the startup cost is also 
a discrete function. The discrete startup cost can be asymptotically approximated by 
a stair-wise function, which is more accurate as the number of intervals increases 
(Carrión & Arroyo, 2006). A mixed-integer linear formulation for the stair wise 
startup cost was proposed in (Carrión & Arroyo, 2006).
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        ( ) 0 ,≥ ∀ ∀SU i i t                                   (24)

Note that (23) and (24) only depend on the binary variables associated with the on/
off status of generating units.

Shut-down Cost

Shut-down cost is constant for each unit and is modeled by using a shut-down indicator 
as presented in (18).

Total Incentive for Participation in DR Programs

As shown in Fig. 2, p(∆D(t)) is a quadratic function of incentive (25), which can be 
represented as a piecewise linear model (26):
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Fig. 2.  Piecewise linear total incentive curve for an hour.

The objective function is subject to the following constraints.

Power supplied from committed units, GVs and DR resources must satisfy the 
load demand.
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Unit output limit
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Ramping up/down constraints

         + − ≤ ∀ ∀( 1) ( ) ,i i iP t P t RUR i t                    (29)

         − + ≤ ∀ ∀( ) ( 1) ,i i iP t P t RDR i t               (30)

Once a unit is committed, it must remain “on” for a minimum number of hours 
given in (31). Formulation of minimum on/off time constraints is given as (Li & 
Shahidehpour, 2005): 
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        [ ]{ }0 0 0= −( ) , , ( ) ( , ) ( , )UT i Max Min T MU i TU i u i            (31c)

Accordingly, if a unit is shutdown, it must remain “off” for a minimum number of 
hours given as (Li & Shahidehpour, 2005):
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    [ ]{ }( ) 0, , ( ) ( ,0)(1 ( ,0))= − −DT i Max Min T MD i TC i u i               (32c)

The relationship between startup and shutdown indicators and unit status is (Li & 
Shahidehpour, 2005):

    ( , 1) ( , 1) ( , 1) ( , ), ,+ − + = + − ∀ ∀y i t z i t u i t u i t i t               (33)

The hourly relationship among unit status, startup, and shutdown indicators is 
enforced by (33). A unit may not be started up and shut down at a given hour, therefore 
(Li & Shahidehpour, 2005):
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                   (34)

Spinning reserve (SR) must be sufficient enough to maintain the desired reliability 
of a power system. SR is usually a pre-specified amount that is either equal to the 
largest unit or a given percentage of the forecasted load which can be given by the 
following equation:
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State of charge

This constraint express that each vehicle should have a desired departure state of 
charge level.

Number of discharging vehicles constraint

All the vehicles cannot be discharged at the same time because of power transfer, 
current limit. For reliable operation and control of GV, only a limited number of 
vehicles are assumed to be able to discharge at a time. 

          ( )( ) < Max
GV GV tN t N                     (36)
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Efficiency

Charging and inverter efficiencies should be considered.

SIMULATION RESULTS AND DISCUSSION

In this study, the conventional 10-unit test system (Afkousi-Paqaleh et al., 2010) has 
been used for our simulation studies. Fig. 3 represents the load curve of the 10-unit test 
system which is divided into three different intervals, namely valley period (00:00am–
5:00 am), off-peak period (5:00 am–9:00 am & 14:00 pm–19:00 pm) and peak period 
(9:00 am–14:00 pm & 19:00 pm–24:00 pm). The potential of DRP implementation 
is considered to be 40%. It means that only customer representing 40% of the total 
load signed contracts for participating in the programs. Therefore, ISO will be able 
to decrease the peak load of the system about 600 MW and to increase the reserve 
margin and reduce the cost of UC problem as well as the possibility of load shedding. 
The voluntary IBPs has been introduced in Table I. The price elasticity of demand is 
provided in Table 2. 

Parameter values regarding GV are presented in the following (Saber & 
Venayagamoorthy, 2010b):

Maximum battery capacity = 25 kWh; 

Minimum battery capacity = 10 kWh; 

Average battery capacity, PGV = 15 kWh;

Maximum number of vehicles for power provision at each hour, ( )Max
GV tN  = 10% of 

total GVs; 

Total number of GVs in the system, Max
GVN  = 50, 000;

Charging–discharging frequency = one per study horizon (24h);

Departure state of charge= 50%; 

Efficiency = 85%.

Four different case studies have been considered in order to show the effect of 
smart grid environment (including DRPs and GVs) on the unit commitment problem. 
The first case study focuses on the conventional unit commitment problem without 
consideration of DRPs and GVs. In the second case, the effect of DRPs on the unit 
commitment problem has been studied. In the third case impact of GVs on UC 
problem has been investigated. Finally, the effect of both of DRPs and GVs on the 
unit commitment problem has been studied.



R. Ghadiri Anari  M. Rashidinejad and M. Fotuhi-Firuzabad147

Fig. 3. 10-Unit test system load curve.

Table 1. Statement of Scenarios 

Source Scenario no
Incentive value

($/MWh)
Price elasticity

DRP
1 4 As Table II
2 7 As Table II
3 10 As Table II

Table 2. Price Elasticity of Demand

Hour 1-5 6-9 10-14 15-19 20-24
1-5 -0.04 0.015 0.017 0.015 0.017
6-9 0.015 -0.05 0.02 0.015 0.02

10-14 0.017 0.02 -0.095 0.02 0.005
15-19 0.015 0.015 0.02 -0.055 0.02
20-24 0.017 0.02 0.005 0.015 -0.095

Case 1: Conventional Unit Commitment Problem

In this case, the system includes 10 units with a scheduling time horizon of 24 hours. 
The generating units’ data are given in (Afkousi-Paqaleh et al., 2010). The cost curves 
for generating units given as a quadratic function in (Afkousi-Paqaleh et al., 2010) 
are approximated by twenty linear segments between the minimum and maximum 
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generating units’ capacity. Table III gives the MIP-based solutions (outputs) of units 
for 24-h period for 10-unit based system.

Case 2: Unit Commitment Considering Demand Response Programs

By applying final DR model (17) on the initial load curve of 10-unit system, the 
new load curve with DRPs is represented in Fig. 4. The MIP-based solutions for 
the UC problem with DRPs are provided in Table IV. As shown in in this table, the 
total operation cost of scheduling generation units can be decreased after taking 
into account the DRPs. The total incentive and units’ generation cost have reverse 
trends that means when one of them is increased the other one will decrease. Hence, 
obtaining the optimum value of incentive for the DRPs is a very complicated process. 
The MIP-based optimum values of incentives have been obtained for the DRPs and 
are presented in Table V. The output powers of generation units are presented in Table 
VI after implementing DRPs. The shaded boxes highlight the difference in the output 
power of generating units comparing to the base case. As it can be seen, the expensive 
generating units are not called on peak interval due to reduction in customers’ demand 
after implementation of DRPs. For example, unit 10 that is the most expensive unit of 
the 10-unit test system is not brought online at the peak hour. 
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Fig. 4. The impact of DRPs on load profile in case 2
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Table 3. Units’ Output Power for the Conventional 10-Unit Test System
H

ou
rs Units

1 2 3 4 5 6 7 8 9 10

1 455 245 0 0 0 0 0 0 0 0
2 455 295 0 0 0 0 0 0 0 0
3 455 370 0 0 25 0 0 0 0 0
4 455 455 0 0 40 0 0 0 0 0
5 455 455 0 0 70 20 0 0 0 0
6 455 455 0 130 40 20 0 0 0 0
7 455 390 130 130 25 20 0 0 0 0
8 455 440 130 130 25 20 0 0 0 0
9 455 455 130 130 100 20 0 10 0 0

10 455 455 130 130 162 33 25 10 0 0
11 455 455 130 130 162 73 25 10 10 0
12 455 455 130 130 162 80 25 43 10 10
13 455 455 130 130 162 33 25 10 0 0
14 455 455 130 130 100 20 0 10 0 0
15 455 455 130 130 30 0 0 0 0 0
16 455 310 130 130 25 0 0 0 0 0
17 455 260 130 130 25 0 0 0 0 0
18 455 360 130 130 25 0 0 0 0 0
19 455 455 130 130 30 0 0 0 0 0
20 455 455 130 130 162 23 25 10 10 0
21 455 455 130 130 85 20 25 0 0 0
22 455 445 0 130 25 20 25 0 0 0
23 455 420 0 0 25 0 0 0 0 0
24 455 320 0 0 25 0 0 0 0 0

Table 4. Total Cost Comparisons of Different Scenarios in Case 2

Scenario no Source Cost of Generating  
Units ($) Total Incentive($) Total Cost($)

Base Case 565283.9537 0 565283.9537
1

DRP
531285.7933 7003.9 538289.6933

2 519728.8862 21449.4 541178.2862
3 511579.6245 43774.4 555354.0245



A mixed integer linear programming based approach for unit commitment in smart grid environment 150

Case 3: Unit Commitment Considering Gridable Vehicles

The MIP-based solutions for the UC problem with GVs are provided in Table VII. 
The output powers of generation units are presented in this table after implementing 
GVs. Like before the shaded boxes highlight the difference in the output power of 
generating units comparing to the base case. The total generation cost of generation 
units is 552,464.6172 $. It shows considerable reduction in the UC problem after 
including GVs comparing to the 565283.9537 $ for the case 1. As mentioned earlier it 
is assumed that GVs are charged from renewable resources. In case GVs are charged 
via power grid their charging power consumption should be considered in the load 
curve and therefore simulations.

Implementation of GVs has decreased the generation costs by turning off the 
expensive generating units at peak interval. 

The results of the proposed MIP-based approach are compared with those reported 
in the literature. 

In (Saber & Venayagamoorthy, 2010a) the authors studied the impact of GV on 
unit commitment problem. Particle Swarm Optimization (PSO) was used to determine 
the best solution. The same assumptions has been considered in this study, that are, 
using renewable resources for recharging of GVs so the charging power needed for 
this matter is not supplied from the grid’s units and therefore there is no emission for 
recharging. Shown in Table IX is the comparison of the proposed method with those 
of PSO form (Saber & Venayagamoorthy, 2010a).

Table 5. Optimum Value and Total Cost of DR Programs in Case 2

Source A ($/MWh) Generation Cost Total Incentive Total cost

DRP 5.02 526822.8534 11031.3238 537854.1772
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Table 6. 10-Unit Output Power with DRPs in Case 2, Scenario 2 

H
ours

Units

1 2 3 4 5 6 7 8 9 10
1 455 298.31 0 0 0 0 0 0 0 0
2 455 352.12 0 0 0 0 0 0 0 0
3 455 434.74 0 0 25 0 0 0 0 0
4 455 455 0 0 95.35 20 0 0 0 0
5 455 446.16 130 0 25 20 0 0 0 0
6 455 438.56 130 130 25 20 0 0 0 0
7 455 455 130 130 63.04 20 0 0 0 0
8 455 455 130 130 107.52 20 0 10 0 0
9 455 455 130 130 162 54.48 0 10 10 10
10 455 428.18 0 130 25 20 0 0 0 0
11 455 455 0 130 35.97 20 0 0 0 0
12 455 455 0 130 73.76 20 0 0 0 0
13 455 428.18 0 130 25 20 0 0 0 0
14 455 352.59 0 130 25 20 0 0 0 0
15 455 455 130 130 117.52 0 0 10 10 0
16 455 404.08 130 130 25 0 0 0 0 0
17 455 349.60 130 130 25 0 0 0 0 0
18 455 455 130 130 28.56 0 0 0 0 0
19 455 455 130 130 117.52 0 0 10 10 0
20 455 318.18 130 130 25 0 0 0 0 0
21 455 372.59 130 0 25 0 0 0 0 0
22 455 246.42 130 0 0 0 0 0 0 0
23 455 150 75.26 0 0 0 0 0 0 0
24 454.67 150 0 0 0 0 0 0 0 0

As shown in this table the proposed MIP-based solution always result in the same 
solution while the results obtained by PSO varies considerably. Moreover the proposed 
method render better solution in comparison with the PSO. It should be noted that 
since the UC is an operational problem the execution time is very important. Reference 
(Saber & Venayagamoorthy, 2010a) have not provided the execution time, however, 
it should be noted the reaching the best solution by PSO is not guaranteed while MIP 
always render the optimum solution of the linearized problem. The execution time of 
the proposed method on 2.67GHz Core i5, 4G RAM is 3.72 seconds that is very low.
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Table 7. 10-Unit Output Power with GVs in Case 3 

H
ours

Units GV

1 2 3 4 5 6 7 8 9 10
1 455 245 0 0 0 0 0 0 0 0 0
2 455 295 0 0 0 0 0 0 0 0 0
3 455 395 0 0 0 0 0 0 0 0 0
4 455 455 0 0 38.70 0 0 0 0 0 1.3
5 455 455 0 0 58.12 20 0 0 0 0 31.87
6 455 455 0 130 37.57 20 0 0 0 0 22.42
7 455 410 130 130 25 20 0 0 0 0 0
8 455 455 130 130 30 20 0 0 0 0 0
9 455 455 130 130 78.12 20 0 10 0 0 31.87
10 455 455 130 130 143.12 20 25 10 0 0 31.87
11 455 455 130 130 162 41.12 25 10 10 0 31.87
12 455 455 130 130 162 80 25 11.12 10 10 31.87
13 455 455 130 130 143.12 20 25 10 0 0 31.87
14 455 455 130 130 78.12 20 0 10 0 0 31.87
15 455 455 130 130 30 0 0 0 0 0 0
16 455 310 130 130 25 0 0 0 0 0 0
17 455 260 130 130 25 0 0 0 0 0 0
18 455 360 130 130 25 0 0 0 0 0 0
19 455 455 130 130 30 0 0 0 0 0 0
20 455 455 130 130 158.12 20 0 10 10 0 31.87
21 455 455 130 130 78.12 20 0 0 0 0 31.87
22 455 445 0 130 31.85 20 0 0 0 0 8.150
23 455 420 0 0 25 0 0 0 0 0 0
24 455 320 0 0 25 0 0 0 0 0 0

Table 9. Comparison of the Results of the Proposed Method with PSO for Case 3

Method Best Solution Worst Solution Average Solution

PSO 554,509.5 559,987.8 557,584.4
MIP 552,464.6 552,464.6 552,464.6

Case Study 4: Unit Commitment Considering DRPs and GVs

In this case both DRPs and GVs are considered in the UC problem. Table X provides 
the MIP-based solution of the UC problem in the smart grid environment. 



R. Ghadiri Anari  M. Rashidinejad and M. Fotuhi-Firuzabad153

Considering both DRPs and GVs resulted in more reduction in generation costs 
of the system and decreased the peak load considerably. The total cost of the system 
including costs of generation units and DRPs is 533,023.706 $. 

Table 10. Optimum Value and Total Cost of DR Programs in Case 4

Source A ($/MWh) Generation Cost Total Incentive Total cost
DRP 5.02 511574.3060 21449.4 533023.706

It shows significant reduction in the UC problem after including GVs comparing to 
the 565283.9537 $ for the case 1, 537854.1772 for case 2 and 552,464.6172 $ for case 3.

The output powers of generation units are presented in Table XI after implementation 
of DRPs and GVs. The shaded boxes show the difference in the output power of 
generating units comparing to the base case.  

Table 11. 10-Unit Output Power with DRPs and GVs in Case 4 

H
ours

Units GV

1 2 3 4 5 6 7 8 9 10
1 455 245 0 0 0 0 0 0 0 0 0
2 455 295 0 0 0 0 0 0 0 0 0
3 455 395 0 0 0 0 0 0 0 0 0
4 455 455 0 0 38.70 0 0 0 0 0 1.3
5 455 455 0 0 58.12 20 0 0 0 0 31.87
6 455 455 0 130 37.57 20 0 0 0 0 22.42
7 455 410 130 130 25 20 0 0 0 0 0
8 455 455 130 130 30 20 0 0 0 0 0
9 455 455 130 130 78.12 20 0 10 0 0 31.87
10 455 455 130 130 143.12 20 25 10 0 0 31.87
11 455 455 130 130 162 41.12 25 10 10 0 31.87
12 455 455 130 130 162 80 25 11.12 10 10 31.87
13 455 455 130 130 143.12 20 25 10 0 0 31.87
14 455 455 130 130 78.12 20 0 10 0 0 31.87
15 455 455 130 130 30 0 0 0 0 0 0
16 455 310 130 130 25 0 0 0 0 0 0
17 455 260 130 130 25 0 0 0 0 0 0
18 455 360 130 130 25 0 0 0 0 0 0
19 455 455 130 130 30 0 0 0 0 0 0
20 455 455 130 130 158.12 20 0 10 10 0 31.87
21 455 455 130 130 78.12 20 0 0 0 0 31.87
22 455 445 0 130 31.85 20 0 0 0 0 8.150
23 455 420 0 0 25 0 0 0 0 0 0
24 455 320 0 0 25 0 0 0 0 0 0
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Discussions

Fig. 5 shows the difference in market clearing price (MCP) between the all the cases 
in the study horizon. As it can be seen MCP has been decreased after implementation 
of DRPs and GVs in the peak period. The MCP reduction demonstrates the capability 
of DRPs and GVs in peak shaving. 

As the presented results show the smart grid has a significant influence on the UC 
problem and if these influences are not considered thoroughly it might raise some 
challenges and difficulties in optimal operation of the system.
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Fig, 5. The impact of different cases on MCP 

CONCLUSIONS

A mixed-integer programming approach for solving the UC problem in the smart 
grid environment has been addressed in this paper. DR and GVs as two of the most 
important programs of the smart grids are considered in this paper. The objective 
function of the UC problem has been modified to incorporate DRPs and GVs. The 
proposed method has been illustrated using the conventional 10-unit test system. 
Four different cases have been derived to investigate the impact of DRPs and GVs 
separately and simultaneously. As demonstrated in results section of the paper the 
proposed MIP-based solution render the optimal solution of the linearized problem. 
The proposed method gives the better solutions in comparison with those reported in 
the literature.
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Obtained results demonstrate the impacts of smart grid environment on the UC 
problem and the reveals benefits of implementing DRRs and GV in UC problem. The 
incorporation of DRPs and GV decreased the operational costs by 5.7%. With the 
higher degree of penetration of smart grid more reduction in operational costs can be 
achieved. 
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