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ABSTRACT 

In this paper, a simple and efficient element is proposed for the free vibration and buckling analysis of 

FGM beams. This element is formulating, based on Timoshenko beam theory. The assumption of constant shear 

strain in the element reduces the number of unknowns in addition to improving the efficiency of the new element. 

The performance of the new element is evaluated with the help of several benchmark tests. First, the accuracy and 

convergence rate of the proposed element response in the analysis of free vibration and buckling of the beam are 

investigated separately by exponential variations of the modulus of elasticity and density in each of the beams' 

thickness and length. Subsequently, the element's ability to model material variations in both longitudinal and 

thickness directions of the beam will be measured simultaneously. For comparison, the answers of good elements 

of other researchers are available in each of the numerical tests. These tests will prove the high accuracy and rapid 

convergence rate of the proposed element. 

Keywords: Buckling; Finite element formulation; Functionally graded materials; Free vibration. 

INTRODUCTION 

Functionally graded materials (FGMs) are multilayer composites composed of two or more materials with 

different volume fractions that are made based on an approximate power or exponential relation in the desired 

directions. Thus, engineers can, by varying the volume fractions of the material, achieve the material ideal for the 

construction of high strength and stable structures, and manage the material properties. The FGM concept was first 

discussed in 1984 by a team of Japanese material engineers during a spacecraft project. The use of FGM materials 

reduces thermal stresses, residual stresses, and stress concentration factors. It also eliminates the disadvantages of 

laminated composites such as stress discontinuity and stress concentration as well as delamination. They also have 

excellent performance and resistance to cyclic mechanical and thermal loads. Thus, FGMs can be used for specific 

applications in various fields such as aerospace, mechanics, civil engineering, machinery, nuclear industries, the 

manufacture of turbine blades, etc. So far, much researches have been done on the thermodynamic, buckling, and 

vibration behaviors of structural elements of FGM. Euler-Bernoulli theory, Timoshenko beam theory, or first-order 

shear deformation theory, high-order shear deformation theory, and quasi-three-dimensional theory are some of the 

theories that researchers use to study the dynamic characteristics of beams.  

Sankar (2001) suggested an elasticity solution for the analysis of simply supported FG beams subjected to 

transverse distribution load. In this work, he developed a new beam theory similar to the Euler-Bernoulli beam 

theory. To investigate the thermoelastic behavior of FGM structures, Chakraborty et al. (2003) proposed a new 

beam element based on first-order shear deformation theory. They considered stability, free vibration, and wave 

propagation problems to investigate the behavior of FG beams with pure metal or pure ceramic. A finite element 

model was proposed by Kapuria et al. (2008) for analyzing the stability and free vibration responses of layered FG 

beams. In this work, using Zigzag's third-order theory, effective elastic modulus for two different FGM systems 

with arbitrary boundary conditions is estimated and evaluated. Also, Kadoli et al. (2008) analyzed the static bending 

of FG beams using high-order shear deformation theory. A new beam theory different from the conventional first-

order shear deformation theories was used in 2009 to analyze the free vibration of FG beams by Sina et al. (2009). 

Subsequently, the free and forced vibration characteristics of the Euler-Bernoulli FG beam under a moving harmonic 
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load were investigated by Şimşek and Kocatürk (2009). Şimşek (2010) studied the free vibration of a simply 

supported FG beam under a moving mass by using the Euler-Bernoulli, Timoshenko, and third-order shear 

deformation beam theories. In this study, the effects of shear deformation, various material distributions, moving 

mass velocity, inertia, and the centripetal effects of the moving mass on the dynamic displacements and the stresses 

of the beam are discussed in detail. The free vibration and static of axially loaded FG beams were investigated using 

the first-order shear deformation method by Nguyen et al. (2013). In 2017, he also applied the Timoshenko beam 

model and finite element study for dynamic responses of bi-directional FG beams under moving load(Nguyen et al. 

2017). Nowadays, the study of structures made of FGMs with the use of efficient finite elements has attracted the 

attention of many researchers. Introducing stress equilibrium conditions, Li et al. (2019) developed a new high-

order shear deformation theory. He presented new deformable mixed beam elements based on the new proposed 

theory for the detailed analysis of FG sandwich beams. Nguyen et al. (2019) developed an efficient two-node beam 

element based on the quasi-3D beam theory and mixed formulation to study the static bending of FG beams. 

Subsequently, Soltani et al. (2019) investigated the lateral buckling of simply supported non-prismatic I-beams with 

axially varying materials by using a new finite element model. A five-node beam finite element has been proposed 

by Aria et al. (2019) to analyze the thermo-elastic behavior of porous FG nanobeams. They used the non-local 

elasticity theory to incorporate the size-dependent behavior of nanobeams. Recently, (Yaghoobi et al. 2021) 

evaluated the asymmetric effect of the cross-section on the free vibration and bending analysis of FG sandwich 

beams. Also, a pair of functionally graded nano-wire-based tweezers with linearly varying diameter has been 

proposed by Yaghoobi and Koochi (2021) to enhance the nano-tweezers’ operating range. 

In this paper, a simple and efficient element is proposed for the free vibration and buckling analysis of 

FGM beams. The proposed element is formulated based on Timoshenko’s theory and assuming shear strain 

constant. In formulation, the third-order function for the displacement field along the element thickness is used. 

Second-order functions are also utilized for longitudinal displacement and rotation fields. The efficiency of the 

proposed element in free vibration and buckling analysis is evaluated by varying the material properties along the 

thickness and length separately in several tests. To prove the rapid convergence, efficiency, and accuracy of the 

proposed element, the answers of other good elements of the researchers are also available.  

ELEMENT FORMULATION 

In this section, the formulation of the new beam element for free vibration analysis and buckling of FGM 

beams is presented. First, shape functions are calculated. Then, the governing equation of free vibration and 

buckling of beams will be established by calculating the matrices of stiffness, mass, and geometrical stiffness. 

SHAPE FUNCTIONS 

Figure 1 shows the beam element geometry with three nodes and seven degrees of freedom. This element 

has length l and rectangular cross-section with width b and height h. The origin of the x-coordinate axis is located 

the node i. The x-axis represents the longitudinal direction of the beam. To simplify the formulation, the 

dimensionless parameter s is defined as a new coordinate. The origin of the s coordinates is also shown in Figure 1. 

The value of the parameter s on the nodes i, j, and k are -1, 0, and 1, respectively. The relationship between the 

coordinate x and s comes in Equation (1). The z-axis is considered positive along the thickness and upward. The 

vertical displacement at each node is considered positive along the z-axis. 

 

 

Figure 1. The geometry of proposed element. 
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For the vertical displacement field, w , uses the third-order function. Also, a second-order polynomial for 

the rotation field,  , is assumed.  Equations (2) and (3) represent these fields. iw  and kw   shows the vertical 

displacement of the nodes i and k, respectively. Also, the rotations in nodes i and k are determined by the parameters 

i  and k , respectively. Besides, the parameters  ,   and 1  are used to define the unknowns of the fields. 

(1) 2
1

x
s

l
  

(2) 
2 2

1(1 ) (1 ) (1 ) (1 )
2 2

i kw w
w s s l s ls s         
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The second-order polynomial is exploited for the longitudinal displacement field along s. Equation (4) 

shows the equation of this field. Also, Equation (5) makes the element longitudinal displacement field available. 

Using displacement fields along the longitudinal and vertical directions of the beam, the shear strain function is 

calculated as Equation (6). Assuming a constant shear strain, the value of each of the unknown parameters of the 

vertical displacement and rotation fields becomes available. The constant value of the shear strain is represented by 

 . Consequently, by replacing the rotation and vertical displacement functions in Equation (6), the element shear 

strain function is established. Assuming the shear strain of the element is equal to a constant value of  , Equation 

(7) is obtained. 
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The parameters u  and  in the above equations represent the horizontal displacement field and the 

rotational field of the beam, respectively. It is assumed that the shear strain must be constant throughout the beam. 

In other words, Equation (7) will be independent of the parameter s. Accordingly, the following equations are 

available to find unknown parameters of the fields. Also, Equation (11) is used to simplify the relations. 
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(11) 
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2
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The principle of minimizing strain energy is used to find the   value. The element strain energy in 

Equation (12) is shown. xx  and xz , represent normal and shear stresses, respectively. Also, the normal and shear 

strains are defined by xx  and xz , respectively. Relationships of stresses with their strains are given in Equations 

(13) and (14). Also, the normal strain is calculated based on Equation (15) in terms of the longitudinal displacement 

field of the beam. The parameters eE , eG , and s , respectively, determine the modulus of elasticity, shear 

modulus, and shear correction coefficient of the cross-section. For rectangular cross-section, s  has a value of 5
6

. The shear modulus is obtained by Equation (16) in terms of the modulus of elasticity.   is the Poisson's ratio. 
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This study assumes that the elasticity modulus eE and mass density e
 vary based on the power relation 

proportional to k. Equation (17) shows the variation of these parameters only through the thickness, z. Also, the 

state of changing the material properties along the length x is shown by Equation (18). Equation (19) introduces 

changes in material properties in both longitudinal and thick directions. The parameter eP  is used to represent the 

pattern of change in the material properties. uP  and dP , respectively, represent the material properties at the top 

and bottom of the beam. Also, the characteristics of the material on the right and left of the beam are described by 

rP  and lP , respectively. The three-dimensional geometry of the beam element is shown in Figure 2.  
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Figure 2. Three-dimensional coordinate system of the beam element. 

To calculate Equation (12), after writing the stress and strain functions in terms of longitudinal 

displacement, vertical displacement, and rotation fields, first the integral is performed on the surface. In this way, 

the strain energy relation is given as Equation (20). In this equation, the index s in the expressions ,su and ,s

represent the derivative of these expressions relative to s. The parameters 0A , 1A , 2A  and 0B  are introduced as 

follows.  
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By solving the integral of Equation (20), the strain energy of the element becomes available. The parameter 

  is obtained by minimizing the strain energy with respect to   as Equation (23). The   and   parameters are 

used for simplification. The parameters 11
A , 12

A , 21
A , 22

A , and 00
B  are available as follows. 
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The matrix of the element shape functions shows the relationship between the displacement and rotation 

fields with the nodal displacement vector as Equation (28). The nodal displacement vector, D , comes from 

Equation (29). By computing, the unknowns  ,  , 1  , and  , the element shape functions become available 

as Appendix(A1). 
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FREE VIBRATION AND BUCKLING 

The element rotation and displacement fields can be written in terms of nodal displacement vectors by 

obtaining the shape functions. Accordingly, the matrix form of the strain energy is given as an Equation (30). Also, 

by minimizing energy relative to nodal displacements, the stiffness matrix, K, is calculated. 
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Furthermore, kinetic energy is calculated from the Equation (32). The parameter e  represents the mass 

density. Using the parameters calculated in Equation (34) we can simplify the kinetic equation of the Equation (33). 

Based on Hamilton's principle, the mass matrix is calculated as Equation )35).  
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The governing buckling equation of beam is established based on the neutral equilibrium concept. Based 

on Figure 3, neglecting the small axial shortening prior to buckling, the vertical distance  , due to the flexural 

deflection is calculated as: 

(36) 
2

0

1
( )

2

l dw
dx

dx
    

Hence, the change in potential energy of the critical load is obtained as below shape: 

 

Figure 3. The geometry of the element of buckled beam. 
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In Equation (37), the term ,sw means the derivative of the displacement field in the vertical direction 

relative to s. Therefore, the geometrical stiffness matrix is available as: 

(38) g , ,20

4l
T

w s w sdx
l

K N N  

Equation (39) illustrates the governing equation of the element. For free vibration mode without axial force, 

the matrix 
gK  is ignored. In this case, by substituting 

i teoD D
 , Equation (40) is obtained. The  denotes 

natural frequencies. The eigenvalues of Equation (40) are the natural frequencies of the beam. By replacing 
xeoD D

 and ignoring the matrix M , the governing equation of buckling becomes available as an Equation 

(41). The least eigenvalues of this relation indicate the buckling load value. 

(39)  gPMD K K D 0    

(40) 
2( ) oK M D 0   

(41) ( )gP oK K D 0   

NUMERICAL TESTS 

In this section, the efficiency of the element is evaluated by applying the proposed element and comparing 

it with the good ones of others in the free vibration and buckling analysis of FGM beams. In FGM beams, it is 

assumed that the elasticity modulus eE  and mass density e
  vary based on the power law. The benchmark tests 

with changes in these parameters along the thickness are given in section 3-1. Section 3-2 includes numerical tests, 

with changes in the material properties along the beam length.  

In different support conditions, the term P-P indicates that there are simple supports on both sides of the 

beam. The clamped support conditions on both sides of the beam show with C-C. The C-F also represented the 

cantilever beam.  

dx   

dy   

d   

ds   
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The calculation of the eigenvalues of the stiffness and mass matrices, or in other words the calculation of 

the determinants of Equation (40), provides the values of the natural frequencies. Other researchers have used non-

dimensional natural frequency in free vibration analysis to present their results. Therefore, to compare the results in 

each benchmark test, the non-dimensional natural frequencies of the structure for the proposed element will be 

calculated using the relation provided in the title of the benchmark dependent table. 

 

 

 

CHANGING THE PROPERTIES OF THE MATERIALS ALONG THE THICKNESS 

In this section, it is assumed that the properties of material change only through-thickness. How to change 

the material properties in the thickness of the beam was shown as a power relation in terms of zk  in Equation (17). 

In the case of using aluminum at the bottom and aluminum oxide at the top of the beam, Figure 4 shows the changes 

in elasticity modulus and mass density of the beam thickness. The characteristics of aluminum, aluminum oxide, 

and steel are presented in Table 1. The 
f  and b  represent the magnitude of the Poisson's ratio used in free 

vibration and buckling problems, respectively. 

 

Figure 4. Changes of elastic modulus and mass density along the beam thickness. 

Table 1. Physical properties of materials. 

Matrial   GpaE   3kg m  f
υ  

b
υ  

Al  70 2702 0.3 0.23 

2 3
Al O  380 3960 0.3 0.23 

Steel  210 7850 0.3 0.23 

 

CONVERGENCE RATE 

In order to show the rapid convergence rate and high accuracy of the proposed element, the buckling and 

free vibration analysis of an FG beam is analyzed with various boundary conditions with a length to thickness ratio 

of 5 and 1
z

k  . To this end, the suggested element is used for free vibration and buckling analysis of P-P, C-C, 

and C-F conditions with several meshes, and its responses are compared with the good results of other researchers. 
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Table 2 lists the responses of dimensionless frequency  . Also, the dimensionless critical load 
crN  of the 

mentioned beam with various boundary conditions is presented in Table 2. It should be noted that the   and 
crN  

parameters are available in section 3-1 as follows: 

(42) 

2 
  d

d

l

h E
 

(43) 

2

3

12
cr cr

d

l
N N

E h
 

Evaluation of these tables shows the high accuracy and rapid convergence rate of the proposed element in 

the analysis of FG beams with different boundary conditions. Kahya and Turan (2017) responses are available for 

comparison by applying 20 elements and each of their element has four nodes and nine degrees of freedom. The 

results of Simsek, Li, and Batra for dimensionless natural frequencies and normalized critical load are also given in 

Table 2. 

Table 2. Convergence of the proposed element for FGM beam with different boundary conditions 

. 

Number of Elements C-C P-P C-F 

Normalized fundamental frequency 
2

d

d

l

h E



 

  
 

 

2 8.19982 4.01342 1.46484 

4 7.96681 3.97921 1.46318 

6 7.92796 3.97437 1.46294 

8 7.91530 3.97279 1.46286 

10 7.90960 3.97208 1.46282 

12 7.90656 3.97170 1.46280 

14 7.90473 3.97147 1.46279 

16 7.90356 3.97133 1.46278 

18 7.90275 3.97123 1.46278 

20 7.90218 3.97115 1.46277 

Kahya and Turan (2017) 7.89921 3.97085 1.46276 

Şimşek (2010) 7.92529 3.99023 1.46300 

Normalized buckling load 
2

3

12
cr cr

d

l
N N

E h

 
 

 
 

2 84.28390 25.17601 6.55227 

 5, 1
z

l h k 
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4 83.79227 24.78467 6.54447 

6 81.91009 24.72828 6.54339 

8 81.45277 24.70983 6.54305 

10 80.99544 24.70152 6.54289 

12 80.84200 24.69707 6.54281 

14 80.75003 24.69440 6.54276 

16 80.69055 24.69268 6.54273 

18 80.64988 24.69150 6.54270 

20 80.62084 24.69066 6.54269 

Kahya and Turan (2017)  80.49833 24.68713 6.54262 

Li and Batra (2013) 80.49800 24.68700 6.60020 

 

 

Free vibration and buckling analysis under different boundary conditions 

In this section, to show the high accuracy of the proposed element in the study of FGM beams by varying 

the properties of the material along the thickness, beams with different boundary conditions and different power-

law exponents of FGM are investigated. For this purpose, free vibration analysis of simply supported FG beams P-

P, beams with clamped supports C-C, and cantilever beam C-F is performed. It should be noted that, 20 elements 

were used for analyzing benchmark tests. The ratio of length to thickness is assumed to be equal to five for Tables 

3 and 4. By performing the analysis, the dimensionless frequency   and critical load crN  responses for the 

proposed element, along with the results of other researchers, are presented in Tables 3 and 4, respectively. By 

examining the responses listed in the tables, it can be seen that the proposed element has high accuracy in analyzing 

different FGM beams for all types of boundary conditions. 

Table 3. Non-dimensional frequency (
2

d

d

l

h E


   ) for FGM beam with different boundary conditions.  

B.C Element 0
z

k    0.5
z

k   1
z

k   2
z

k   5
z

k   10
z

k   z
k    

C-C Present 10.09122 8.74527 7.96501 7.24766 6.70571 6.37988 5.24332 

 Kahya and Turan (2017) 10.08647 8.75479 7.98414 7.27155 6.71481 6.37413 5.24085 

  Şimşek (2010) 10.0705 8.74674 7.95034 7.17674 6.49349 6.16515 5.23254 

  Nguyen et al. (2015) 10.0726 8.7463 7.9518 7.1776 6.4929 6.1658 - 

  Barretta et al. (2015) 10.0678 8.7457 7.9522 7.1801 6.4961 6.1662 - 
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  .Barretta et al. (2016)  10.1851 8.8641 8.077 7.3039 6.596 6.2475 - 

P-P Present 5.16521 4.40851 3.97901 3.61202 3.41047 3.30509 2.68380 

 .Kahya and Turan (2017) 5.22193 4.46926 4.04967 3.6936 3.48818 3.36434 2.71328 

  Şimşek (2010) 5.15274 4.41108 3.99042 3.62643 3.4012 3.2816 2.67732 

  Nguyen et al. (2015) 5.1528 4.4102 3.9904 3.6264 3.4009 3.2815 - 

  Barretta et al. (2015) 5.1528 4.4019 3.9716 3.5979 3.3743 3.2653 - 

  Barretta et al. (2016) 5.1618 4.424 4.0079 3.6442 3.4133 3.2903 - 

C-F Present 1.89674 1.61870 1.46427 1.33493 1.26578 1.22542 0.98553 

 Kahya and Turan (2017) 1.90772 1.62865 1.47394 1.34469 1.27515 1.26363 0.99124 

  Şimşek (2010) 1.89523 1.61817 1.46328 1.33254 1.25916 1.21834 0.98474 

  Nguyen et al. (2015) 1.8957 1.6182 1.4636 1.3328 1.2594 1.2187 - 

  Barretta et al. (2015) 1.8952 1.618 1.4633 1.3326 1.2592 1.2184 - 

  Barretta et al. (2016) 1.9055 1.6313 1.4804 1.3524 1.2763 1.2308 - 

 

Table 4. Non-dimensional buckling load (

2

3

12
cr cr

d

l
N N

E h
 ) for FGM beam with different boundary conditions. 

B.C Element 0
z

k    0.5
z

k   1
z

k   2
z

k   5
z

k   10
z

k   z
k    

C-C Present 154.6075 103.3859 80.6208 62.7110 50.4686 44.3451 28.4803 

  Kahya and Turan (2017) 151.9430 101.7439 79.3903 61.7449 49.5828 43.5014 27.9896 

 

Nguyen et al. (2015) 

 

154.5610 103.7167 80.5940 61.7666 47.7174 41.7885 - 

  Barretta et al. (2015) 154.5500 103.7490 80.6087 61.7925 47.7562 41.8042 - 

  Barretta et al. (2016) 160.1070 107.6550 83.6958 64.1227 49.3856 43.1579 - 

  Li and Batra𝑎 154.3500 103.2200 80.4980 62.6140 50.3840 44.2670 28.4330 

  Li and Batra𝑏 154.3500 103.2200 80.4980 62.6140 50.3840 44.2670 28.4330 

  Li and Batra𝑑 214.3100 138.9300 106.8200 83.3550 70.4910 64.2070 39.4780 

P-P Present 48.8433 31.9721 24.6907 19.2478 16.0267 14.4298 8.9974 

  Kahya and Turan (2017) 48.5907 31.8238 24.5815 19.1617 15.9417 14.3445 8.9510 

  Nguyen et al. (2015)  48.8406 32.0013 24.6894 19.1577 15.7355 14.1448 - 
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 Barretta et al. (2015) 48.8401 32.0094 24.6911 19.1605 15.7400 14.1468 - 

 Barretta et al. (2016) 49.5901 32.5867 25.2116 19.6124 16.0842 14.4116 - 

 Li and Batra𝑎 48.8350 31.9670 24.6870 19.2450 16.0240 14.4270 8.9959 

 Li and Batra𝑏 48.8350 31.9670 24.6870 19.2450 16.0240 14.4270 8.9959 

 Li and Batra𝑑 53.5780 34.7310 26.7050 20.8380 17.6230 16.0520 9.8696 

C-F Present 13.0771 8.4992 6.5427 5.1041 4.2985 3.9031 2.4089 

 Kahya and Turan (2017) 13.0594 8.4899 6.5352 5.0981 4.2926 3.8970 2.4057 

  Nguyen et al. (2015) 13.0771 8.5000 6.5427 5.0977 4.2772 3.8820 - 

  Barretta et al. (2015) 13.0771 8.5020 6.5428 5.0979 4.2776 3.8821 - 

  Barretta et al. (2016) 13.0993 8.5469 6.6067 5.1680 4.3290 3.9121 - 

  Li and Batra𝑎 13.2130 8.5782 6.6002 5.1495 4.3445 3.9501 2.4340 

  Li and Batra𝑐 13.2130 8.5782 6.6002 5.1495 4.3445 3.9502 2.4340 

  Li and Batra𝑑 13.3940 8.6829 6.6763 5.2097 4.4057 4.0129 2.4674 

 

Natural frequencies of higher modes 

To demonstrate the efficiency of the proposed element in the calculation of the frequency for the higher 

modes of the FGM beam, a beam made of steel at the top and aluminum at the bottom is analyzed with simple 

supports. The desired length and thickness of the beam are 0.5 and 0.125. The natural frequencies of the first five 

modes are calculated. The properties of the FGM material used for the beam are summarized in Table 1. By 

performing the free vibration analysis, the proposed element responses, along with those of other researchers, are 

listed in Table 5. This table proved the high accuracy of the suggested element even for frequencies of higher-order 

modes. 

Table 5. The first five natural frequency  rad s  of free vibration for FGM beam. 

Mode 

zk 
 
 

Steel  1zk 
 
 

FGM  0zk 
 
 

Al  

Kahya 

and 

Turan 

(2017) 

Li (2008) Present 

Kahya 

and 

Turan 

(2017) 

Şimşek (2010) Li (2008) Present 

Kahya 

and 

Turan 

(2017) 

Li (2008) Present 

1 6858.23 6728.89 6600.23 6574.81 6443.78 6457.93 6420.20 6742.83 6615.66 6713.19 

2 23178.91 22279.03 21793.93 22456.85 21493.99 21603.18 21617.26 22788.88 21904.14 22166.92 

3 42917.53 41094.04 40205.72 41942.82 39909.87 40145.42 39878.00 42195.37 40402.57 40893.83 

4 63325 60889.98 59772.11 62243.73 59509.8 59779.01 59730.10 62259.45 59865.4 60795.09 

5 83630.93 80895.78 79908.85 82505.87 79589.32 79686.16 80472.08 82223.7 79534.57 81276.46 
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Free vibration analysis for different ratios of elasticity modulus  

In the following, the free vibration analysis of FGM beams with different elasticity modulus ratios will be 

evaluated. In this study, a simply supported beam with length to thickness ratios of 20 and 100 is considered. Non-

dimensional natural frequency responses of the proposed element for the first mode are listed in Table 6. Also, the 

response of other researchers' good elements is available for comparison. The high efficiency of the proposed 

element for different elasticity modulus ratios, length to thickness ratios, and 
z

k  parameters in this test are evident. 

The dimensionless natural frequency of  , for section 3-1, is defined in the following relation: 

 

 

 

Table 6. Non-dimensional first natural frequency ( 2 d

d

A
l

E I


   ) for FGM beam. 

L/h  Element ratio
E  0

z
k   0.1

z
k   0.2

z
k   0.5

z
k  1

z
k   2

z
k   5

z
k   10

z
k   

20 Alshorbagy et al. (2011) 0.25 2.2203 2.3746 2.4614 2.5979 2.7041 2.8057 2.9302 3.0085 

  Şimşek and Kocatürk (2009)   2.2203 2.3739 2.4606 - 2.7035 2.8053 - 3.0084 

  Present   2.2176 2.3715 2.4581 2.5944 2.7007 2.8025 2.9270 3.0051 

  Alshorbagy et al. (2011) 0.5 2.6404 2.7107 2.7576 2.8363 2.8946 2.9461 3.0110 3.0563 

  Şimşek and Kocatürk (2009)   2.6403 2.7104 2.7573 - 2.8944 2.9459 - 3.0562 

  Present   2.6372 2.7073 2.7541 2.8327 2.8911 2.9426 3.0076 3.0528 

  Alshorbagy et al. (2011) 1 3.1400 3.1400 3.1400 3.1400 3.1400 3.1400 3.1400 3.1400 

  Şimşek and Kocatürk (2009)   3.1399 3.1399 3.1399 - 3.1399 3.1399 - 3.1399 

  Present   3.1361 3.1361 3.1361 3.1361 3.1361 3.1361 3.1361 3.1361 

  Alshorbagy et al. (2011) 2 3.7341 3.6773 3.6300 3.5296 3.4423 3.3768 3.3196 3.2726 

  Şimşek and Kocatürk (2009)   3.7340 3.6775 3.6301 - 3.4421 3.3765 - 3.2725 

  Present   3.7295 3.6728 3.6256 3.5254 3.4381 3.3724 3.3151 3.2683 

  Alshorbagy et al. (2011) 4 4.4406 4.3366 4.2455 4.0346 3.8241 3.6496 3.5326 3.4549 

  Şimşek and Kocatürk (2009)   4.4406 4.3370 4.2459 - 3.8234 3.6485 - 3.4543 

  Present   4.4352 4.3314 4.2405 4.0298 3.8193 3.6445 3.5271 3.4495 

                      

100 Alshorbagy et al. (2011) 0.25 2.2214 2.3798 2.4683 2.6074 2.7159 2.8071 2.9317 3.0100 
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  Şimşek and Kocatürk (2009)   2.2213 2.3752 2.4621 - 2.7053 2.8071 - 3.0100 

  Present   2.2213 2.3757 2.4625 2.5990 2.7053 2.8070 2.9315 3.0099 

  Alshorbagy et al. (2011) 0.5 2.6417 2.7121 2.7590 2.8377 2.8961 2.9476 3.0125 3.0578 

  Şimşek (2010)   2.6416 2.7117 2.7587 - 2.8960 2.9475 - 3.0578 

  Present   2.6416 2.7119 2.7589 2.8375 2.8959 2.9474 3.0124 3.0577 

  Alshorbagy et al. (2011) 1 3.1415 3.1415 3.1415 3.1415 3.1415 3.1415 3.1415 3.1415 

  Şimşek and Kocatürk (2009)   3.1415 3.1415 3.1415 - 3.1415 3.1415 - 3.1415 

  Present   3.1414 3.1414 3.1414 3.1414 3.1414 3.1414 3.1414 3.1414 

  Alshorbagy et al. (2011) 2 3.7359 3.6791 3.6317 3.5313 3.4440 3.3784 3.3213 3.2743 

  Şimşek and Kocatürk (2009)   3.7359 3.6793 3.6320 - 3.4440 3.3784 - 3.2742 

  Present   3.7357 3.6789 3.6316 3.5312 3.4439 3.3782 3.3211 3.2741 

  Alshorbagy et al. (2011) 4 4.4428 4.3388 4.2476 4.0366 3.8260 3.6514 3.5343 3.4566 

  Şimşek and Kocatürk (2009)   4.4427 4.3392 4.2481 - 3.8259 3.6513 - 3.4565 

  Present   4.4426 4.3385 4.2474 4.0364 3.8258 3.6512 3.5341 3.4564 

 

Changing the material properties along the longitudinal direction 

In this section, the accuracy of the proposed element in free vibration and buckling analysis of FG beams 

is evaluated by varying the material properties along the longitudinal direction of the beam. It should be noted that 

the relation of the change of material properties along the length is given in Equation (18). The amount of material 

change along the longitudinal direction of the beam is also determined by the power parameter xk .  

In order to show the rapid convergence rate of the proposed element, first, an FGM beam with 5l h   

and 1xk   is analyzed with different boundary conditions and by applying different meshes. The FGM beam is 

made of aluminum  Al material on the right and aluminum oxide  2 3
Al O on the left. Table 7 shows the 

dimensionless natural frequency and buckling responses of the beam. Examination of this table demonstrates the 

high accuracy and rapid convergence rate of the proposed element.  

Table 7. Convergence of the proposed element for FGM beam with different boundary conditions

 5, 1
x

l h k   

Number of 

Elements 
C-C P-P C-F 

Normalized fundamental frequency
2

r

r

l

h E



 

  
 

 

2 8.5752 4.0428 1.7060 
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4 8.0604 4.0043 1.5756 

6 7.9721 3.9985 1.5362 

8 7.9425 3.9966 1.5172 

10 7.9290 3.9957 1.5061 

12 7.9218 3.9953 1.4988 

14 7.9174 3.9950 1.4937 

16 7.9146 3.9948 1.4898 

18 7.9127 3.9947 1.4868 

20 7.9113 3.9946 1.4845 

Normalized buckling load 
2

3

12
cr cr

r

l
N N

E h

 
 

 
 

2 89.6356 24.8025 7.3949 

4 82.0847 24.6410 6.9238 

6 80.6285 24.6077 6.7884 

8 80.0885 24.5961 6.7232 

10 79.8359 24.5908 6.6848 

12 79.6982 24.5879 6.6594 

14 79.6150 24.5862 6.6414 

16 79.5609 24.5850 6.6280 

18 79.5239 24.5843 6.6176 

20 79.4973 24.5837 6.6092 

 

In order to further investigate such structures and study the effect of changing the material properties along 

its length, FGM beams are analyzed with different values of xk . The dimensionless natural frequency and 

normalized buckling load of the beam with different boundary conditions are given in Figure 5. According to Figure 

5, as the aluminum beam progresses to oxidation, the natural frequency and critical buckling load of the beam 

increase. Also, the rate of increase will be the highest in the clamp-clamp beam mode and the lowest in the cantilever 

beam mode.  
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Figure 5. Influence of factor x
k  on dimensionless parameters   and . 

Free vibration analysis for different elastic modulus ratios 

To investigate the effect of different elasticity modulus ratios on FGM beams, the free vibration of a simply 

supported beam is analyzed with length to thickness ratios 20 and 100. In this test, the elastic modulus ratios equal 

to 0.25, 0.5, 1, 2 are provided. Table 8 shows the dimensionless natural frequencies of the first, second, and third 

modes of the beam for each value of x
k .  

Table 8. the first three non-dimensional natural frequencies of (
2 r

r

A
l

E I


   ) for FGM beam. 

L/h ratio
E  i 0

x
k   0.1

x
k   0.2

x
k   0.5

x
k   1

x
k   2

x
k   5

x
k   10

x
k   

20 0.25 1 2.2176 2.3380 2.4142 2.5593 2.7012 2.8513 3.0064 3.0717 

    2 4.4127 4.6532 4.8055 5.0952 5.3772 5.6748 5.9821 6.1118 

    3 6.5660 6.9258 7.1541 7.5871 8.0063 8.4466 8.9004 9.0927 

  0.5 1 2.6372 2.6921 2.7324 2.8131 2.8912 2.9728 3.0582 3.0959 

    2 5.2476 5.3572 5.4377 5.5985 5.7539 5.9157 6.0850 6.1601 

    3 7.8083 7.9720 8.0922 8.3322 8.5634 8.8030 9.0535 9.1650 

  1 1 3.1361 3.1361 3.1361 3.1361 3.1361 3.1361 3.1361 3.1361 

    2 6.2405 6.2405 6.2405 6.2405 6.2405 6.2405 6.2405 6.2405 

    3 9.2857 9.2857 9.2857 9.2857 9.2857 9.2857 9.2857 9.2857 

  2 1 3.7295 3.6849 3.6445 3.5458 3.4383 3.3320 3.2363 3.1947 

    2 7.4213 7.3324 7.2519 7.0558 6.8426 6.6318 6.4413 6.3581 

    3 11.0426 10.9102 10.7904 10.4994 10.1836 9.8714 9.5881 9.4633 

  4 1 4.4352 4.3535 4.2755 4.0691 3.8200 3.5602 3.3457 3.2659 
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    2 8.8254 8.6627 8.5076 8.0982 7.6045 7.0895 6.6627 6.5024 

    3 13.1320 12.8895 12.6589 12.0523 11.3226 10.5610 9.9258 9.6839 

                      

100 0.25 1 2.2213 2.3418 2.4180 2.5633 2.7053 2.8557 3.0113 3.0768 

    2 4.4417 4.6831 4.8356 5.1260 5.4096 5.7097 6.0203 6.1515 

    3 6.6603 7.0234 7.2525 7.6877 8.1119 8.5604 9.0250 9.2221 

  0.5 1 2.6416 2.6966 2.7370 2.8177 2.8959 2.9776 3.0632 3.1011 

    2 5.2821 5.3922 5.4731 5.6344 5.7907 5.9537 6.1246 6.2003 

    3 7.9205 8.0862 8.2076 8.4495 8.6833 8.9267 9.1822 9.2961 

  1 1 3.1414 3.1414 3.1414 3.1414 3.1414 3.1414 3.1414 3.1414 

    2 6.2815 6.2815 6.2815 6.2815 6.2815 6.2815 6.2815 6.2815 

    3 9.4191 9.4191 9.4191 9.4191 9.4191 9.4191 9.4191 9.4191 

  2 1 3.7357 3.6911 3.6505 3.5516 3.4439 3.3374 3.2416 3.2000 

    2 7.4700 7.3805 7.2993 7.1015 6.8863 6.6739 6.4828 6.3995 

    3 11.2013 11.0667 10.9448 10.6481 10.3262 10.0089 9.7233 9.5982 

  4 1 4.4426 4.3607 4.2825 4.0757 3.8258 3.5654 3.3508 3.2710 

    2 8.8833 8.7194 8.5629 8.1492 7.6503 7.1306 6.7023 6.5428 

    3 13.3206 13.0741 12.8391 12.2188 11.4720 10.6952 10.0553 9.8161 

 

CONCLUSION 

In this paper, a three-node element is proposed for the buckling and free vibration analysis of the FGM 

beams. For this purpose, the axial displacement and rotation fields of the second-order were chosen. Also, was 

utilized a third-order field for vertical displacements. By utilizing the Timoshenko theory and the assumption of 

constant shear strain in the element, some unknowns became available. Using other unknowns, element fields were 

written in terms of nodal degrees of freedom. Then, the formulations of the stiffness, mass, and geometrical stiffness 

matrices were calculated based on the elasticity modulus and density functions. The exponential variations of the 

elasticity modulus and density along the beam length and thickness were investigated separately. For better 

comparison, the answers of the good elements of the other researchers were available in each of these tests. The 

high accuracy and rapid convergence rate of responses in each of these modes for different boundary conditions, 

elastic modulus ratios, aspect ratio, and power-law exponents of FGM, prove the high efficiency of the proposed 

element. 

APPENDIX 

 Shape function matrix for proposed element+ 
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3 3 1
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l
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