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ABSTRACT

A model for the impact between a structurally deformable sphere and a rigid flat 
surface is presented. It includes a nonlinear contact element that accounts for energy 
loss due to local plastic deformation or flattening of the sphere, a viscous element that 
accounts for energy loss due to wave propagation and/or damping, and a linear stiffness 
element that accounts for recoil effects during and after impact. A linearized version 
of the model facilitates normalization of the equations with helpful insights into the 
impact problem. The results show that the impact event can be characterized by two 
non-dimensional parameters, namely the relative stiffness λ, which accounts for recoil 
effects, plastic deformation and/or flattening of the sphere, and the damping factor, 
ζ , which accounts for viscous and/or wave propagation effects. Model predictions 
compare well with experimental data for sports balls that are excellent examples of 
deformable spheres. The normalized impact force and the coefficient of restitution 
(COR) are dependent on both parameters. At low speeds and damping factors the 
normalized impact force and COR mainly depend on damping, whereas, at low 
speeds and large damping factors they depend on damping and flexibility. For a given 
damping factor, the normalized maximum impact force and COR decrease with higher 
flexibility. Depending on the deformation characteristics of the ball, at higher speeds 
the COR decreases further due to surface flattening effects.

Keywords: Coefficient of restitution; deformable compact bodies; impact dynamics.

INTRODUCTION

One of the most important areas of everyday living is sports, where in most cases 
different type of balls are used. In many cases, the balls are deformable spheres, and 
depending on the type of the sport, it involves impact with, a human being, appropriate 
sport equipment that launch the ball, or the ground of a playing field. In designing 
these balls and the corresponding equipment, it is important to understand the impact 
dynamics of the ball with various targets or sources of momentum transfer. Accurate 
knowledge of the impact response of sports balls leads to improvements in performance 
as well as safety. As a result extensive research on the subject has been performed 
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(Cross, 1999; Goodwill et al., 2005; Strong & Ashcroft, 2007; Ranga & Strangwood, 
2010; Ismail & Strong, 2012; Hanly et al., 2012; Alsakarneh et al., 2012; Nevins & 
Smith, 2013; Smith & Burbank, 2013), ranging from experimental studies, simple and 
complicated analytical models to more sophisticated finite element (FE) techniques.

The impact dynamics of a sport ball is a complicated event that depends on the 
type of the ball. Cross (1999) presented an experimental study of the dynamics of a 
bouncing ball for several sports balls. He presented measurements of nonlinear force-
displacement hysteresis curves, force-time and displacement-time response curves, 
and the COR, for a tennis ball, a baseball, a golf ball, a superball, a steel bearing, 
a plasticine ball, and a silly putty ball. He observed that most balls rebounded in a 
slightly compressed state with the energy loss occurring during the bounce. Goodwill 
et al. (2005) presented a study for the oblique and normal impact of a pressurized 
tennis ball on a rigid surface. They used a FE model and compared the simulations 
of the impact event with experiments. The results were in excellent agreement, 
demonstrating the complicated response of a pressurized ball, and the importance of 
accurately modeling material and structural parameters. Stronge & Achcroft (2007) 
presented a planar theory for impact of inflated balls with a rough rigid surface. The 
theory was developed on the assumption of a deformation field that has a flattened 
contact patch, and a reaction force, that is predominately due to internal gas pressure. 
With kinematic assumption, they were able to relate the geometry of the deformed 
ball with the indentation and contact force. Ranga & Strangwood (2010) presented 
a FE modeling and analysis for the dynamic behavior of a solid sports ball by using 
experimentally determined viscoelastic material properties. They concluded that 
viscoelastic material relaxation data are not suitable for the short times associated 
with the dynamic behavior of solid sports balls. Ismail & Stronge (2012) developed a 
viscoplastic compliance model that incorporates both elastic-plastic and viscoelastic 
material effects to analyze direct impact of sports balls. The analysis is based on a 
modified Maxwell model that utilizes experimental measurements of the contact 
force and COR to obtain the parameters of the viscoplastic compliance. Hanly et al. 
(2012) used linear and non-linear contact models to study the impact response of a 
sliotar core. They concluded that the Hunt-Crossley model (Hunt & Crossley, 1975) 
compared well with experimental data. Alsakarneh et al. (2012) used a modified 
Maxwell viscoelastic model to study the impact behavior and predict the COR of 
a sliotar. The correlations between the analytical predictions, developed FE model 
and experimental measurements of the COR were very good. Nevins & Smith (2013) 
demonstrated the importance of quantitative knowledge of how materials affect player 
safety by simulating ball-to-head impacts. They showed that the severity of injury 
strongly depends on ball material properties, which can differ significantly within 
similarly designed balls. Smith & Burbank (2013) showed that numerical predictions 
of solid sport ball impacts can be improved by using correct material models.
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The main objective of this work is to present a nonlinear impact model for 
deformable spheres that captures most of the physics that affect the COR. It is inspired 
from the well-known standard solid or Zener model (Zener & Feshbach, 1939). It 
accounts for most energy dissipation effects seen in inelastic conditions, such as 
plasticity, viscous, and wave propagation effects. It also includes a linear stiffness 
element that accounts for recoil effects during and after contact. The proposed model 
predictions are compared to experimental measurements for several sports balls. 

EQUATIONS OF MOTION FOR IMPACT

The impact between a deformable sphere having an initial velocity of v0 with a flat 
rigid surface can be modeled as shown in Figure 1. 

Fig. 1. Sketch of the proposed impact model

The motion of the sphere is described by,

                                                        (1)

                                                    (2)

where m is the mass of the sphere, α is the displacement of the sphere, c is the damping 
coefficient, which represents either viscous dissipation in the material, or the effect 
of energy dissipation due to wave propagation, y is the displacement of the viscous 
element, Kr is the recoil stiffness of the sphere, and F is the impact force to be obtained 
from a contact law given in general as,
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                                             (3)

where z is the contact indentation defined as,

                                                         (4)

The initial conditions are described as: α(0) = y(0) = 0, and = v0. 

 In cases where the energy dissipation is due to wave propagation, the damping 
coefficient c can be calculated as in Zener & Feshbach (1939); Goldsmith (1960); 
Doyle (1989) and Christoforou & Yigit (2009). In the case of an axial impact of a rigid 
sphere and a relatively long slender bar the energy is dissipated due to axial waves, 
and the damping coefficient is , where ρ and E are the material density and 
Young’s modulus, respectively, and A is the cross sectional area of the bar. In the case 
of a transverse impact of a relatively large thin plate by a rigid sphere the energy is 
dissipated due to transverse waves and the damping coefficient is , where 
h is the thickness and D is the effective bending stiffness of the plate. According to 
Weir & Tallon (2005), most of the dissipated energy during impact in spherical objects 
is due to Rayleigh waves. Therefore, in a similar fashion to the cases mentioned above, 
the damping coefficient can be calculated as,   

                                                    (5)

where A is the surface area of the sphere, and G is the shear modulus.

The equations of motion can be solved numerically to obtain the impact response 
and determine the severity of impact by utilizing an appropriate contact law. The 
severity of impact can be assessed by the COR. There are three definitions, Newton 
(kinematic), Poisson (kinetic), and Energetic (Stronge, 2000). Depending on the 
problem, these definitions result in different values for the coefficient of restitution. 
However, in the case under study (normal impacts with no friction), all definitions 
give the same result. The Newton’s definition for the coefficient of restitution is the 
simplest as it involves the ratio of the relative velocities of the impactor and the target 
after and before impact. It is simply given as,

                                                                   (6)

In the following sections three contact laws are presented, namely Hertz’s contact 
law, an elastic-fully plastic contact law, and its linearized version. For spherical objects 
that are very compact and elastic in nature (i.e., ball bearings, billiards, bowling balls), 
the Hertz contact law can be used. In such cases impact is elastic and the COR is 
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unity. In metallic spheres, where permanent deformation may occur, the elastic-fully 
plastic contact law can be used. In such cases, depending on material and structural 
characteristics, the impact is inelastic and most of energy dissipation is due to localized 
plastic deformation. The COR may vary from unity to a lower value depending on the 
impact velocity.  For the case at hand, i.e. impact of deformable spheres such as sports 
balls, the linearized contact law that takes into account wave propagation and large 
deformation effects (ball flattening) is used.

Hertz contact law

In cases where impacts are elastic in nature, (i.e. no plastic deformation or viscous 
effects) the classical Hertz contact theory (Goldsmith, 1960; Johnson, 1985: Stronge, 
2000) may be used in Equation (3) to obtain the impact force. The relationship between 
the contact force and the relative contact deformation is given as,

                                                       (7)

where Kh is the Hertzian contact stiffness given as,

                                                    
(8)

R is the radius of the sphere, and E* is the effective contact modulus given as,

                                             
 (9)

where νi and Ei are the Poisson’s Ratios and Elastic Moduli of the two contacting 
bodies, respectively. It is important to note here that, when the Hertzian elastic contact 
law is used alone, the COR, which is a measure of the severity of impact is always 
equal to unity. This is correct as long as the deformation is elastic and there are no 
viscous or plastic effects. However, it is well known, that in some cases there is energy 
loss due to plastic deformation or damage. For example, in case of metallic spheres, 
plasticity effects are present even for relatively low impact velocities (Goldsmith, 
1960; Johnson, 1985; Lim & Stronge, 1998; Vu-Quoc & Zhang, 1999, Wu et al., 
2003). Therefore, the Hertzian contact law has been used as part of more complicated 
contact laws that include damage effects due to plastic or permanent deformation. 
Such a nonlinear contact law and its linearized version are explained in detail in the 
following section.   

Elastic-fully plastic contact law (flat spherical cap)

Experimental evidence suggests that during impact between metallic spheres, even at 
low impact velocities, the contact stresses are high enough to cause material yielding, 
and thus plastic deformation (Johnson, 1985).
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In order to account for permanent deformation, an elastic-fully plastic contact law 
(Yigit & Christoforou, 1994) may be used to obtain the impact force. The contact 
law was obtained by combining the classical Hertzian contact theory (Goldsmith, 
1960), and the elastic-fully plastic indentation theory given in Johnson (1985). The 
contact consists of three phases, with the first phase being elastic, where the contact is 
assumed to be Hertzian, the second phase being elastic-fully plastic, where the contact 
is assumed to exceed a threshold value and it includes both elastic and fully plastic 
deformation, and the third phase (unloading) being elastic. The contact law is given 
as follows:

Phase I: Elastic loading 

                        (10)

Phase II: Elastic-fully plastic loading 

                       (11)

Phase III: Elastic unloading 

                                             
(12)

The transition from elastic to fully plastic loading occurs at indentation zp, where 
fully plastic conditions are assumed. At the transition the contact force is given as,

                                                    (13)

where p0 is the mean pressure, which remains constant within the contact region of 
radius ap at fully plastic conditions. For metals, this begins to occur when p0 =2.2Sy 
where Sy is the yield strength of the target material (Goldsmith, 1960; Johnson, 1985; 
Yigit & Christoforou, 1994; Stronge, 2000).  At fully plastic conditions the indentation 
and contact radius are related by,

                                                      
(14)

By combining Equations (13) and (14) the linear slope of the loading curve is 
given as, 

                                                    (15)

As it is well known initial yielding occurs well before and below the surface at 
p0 = 1.1Sy. There is a transition region that involves complicated force-deformation 



201 Andreas P. Christoforou and Ahmet S. Yigit

relationships, which is between initial yield and fully plastic conditions (Stronge, 
2000). In order to keep the contact law simple this region was ignored by matching 
the slope given by Equation (14) with the slope of the elastic loading curve given by 
Equation (10) at the transition indentation given as,

         
                                      

  (16)

After some algebra the transition indentation is obtained as, 

                                                  
(17)

After maximum indentation zm and force Fm are reached, the unloading is elastic as 
prescribed by Equation (12). At the end of impact, the force is zero and the permanent 
deformation zf  is given as,

                                                   (18)

where zr is the elastically recovered indentation given as (Goldsmith, 1960; Stronge, 
2000),

  
                                  

            (19)

As mentioned above, for metallic spheres the transition to fully plastic conditions 
begins to occur at around two times the yield strength of the material where the 
contact pressure distribution remains constant. In the case of impact of sports balls, 
a similar behavior was observed (Cross, 1999; Stronge & Ashcroft, 2007), where the 
initially spherical ball flattens against the rigid surface. At the flattened stage of the 
ball, the contact force can be obtained similarly as in Equation (13), but with a more 
complicated expression of pressure and contact radius. By keeping the focus on balls 
with elastic cores and assuming elastic deformation up to the flattened configuration, 
the maximum contact pressure is assumed to be equal to the elastic stress at the contact 
point, which is estimated as,

                                                  
 (20)

By assuming similar behavior as in fully plastic conditions, that is constant mean 
pressure within the flat contact area, the transition indentation and contact stiffness at 
the onset of flattening can be obtained by substituting Equation (20) into Equations 
(16) and (17).
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Linearized elastic-fully plastic contact law

In previous work it was shown that an elastoplastic contact law could be used 
effectively in the impact of compact bodies as well as flexible structures (Yigit & 
Christoforou, 1994; Christoforou & Yigit, 1998). Physically consistent results for 
the coefficient of restitution for the impact of spherical objects on thick composite 
laminates, and for the impact response of flexible structures with local contact damage 
were obtained. Furthermore, a linearized contact law was used to obtain simple and 
informative results for the non-dimensional response of structures (Christoforou & 
Yigit, 2009). The linear contact law, however, was elastic in nature and the effect 
of permanent deformation was neglected. Recently, a piecewise linear elastoplastic 
contact law, which was linearized at initial yielding was also proposed (Yigit et al., 
2011). This linearization seems to have captured damage in brittle materials, such as 
fiber composites, but it under-predicted the contact force during yielding in metals. 
In response, a bi-linear contact law was suggested by linearizing the elastic-plastic 
loading and elastic unloading phases of the nonlinear elastic-fully plastic law given 
above (Christoforou et al., 2013). The two phases of the linearized contact law are 
given as follows:

Phase I: Loading

                                                       (21)

Phase II: Unloading

                                               (22)

Normalized governing equations

It is usually convenient to present the results in a normalized form. Therefore, impact 
time, sphere displacement and impact force are normalized as follows:

 
                                

(23)

where ω0 is the linear contact frequency given as,

                                                    
(24)

By introducing the linearized contact law into the equations of motion it is easy 
to show that the impact problem is governed by the following integral-differential 
equation given as,
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                          (25)

where the two non-dimensional parameters, the relative stiffness, λ, and the damping 
factor, ζ, are given respectively as,

                                           
(26)

Furthermore, by using the normalized procedure, the integral-differential equation 
can be given in normalized form as,

                              
 (27)

The initial conditions are now described as:  = 0, and  = 1. 

It should be noted here that although normalization is done using the linearized 
stiffness, it could be applied to the nonlinear equations as well with no difficulty. What 
is important is the insight provided by the normalized equations. For example, in the 
case of metallic spheres the relative stiffness could be unity or higher. Because of the 
high shear modulus the damping coefficient will be large resulting in a relatively small 
damping factor. This kind of impact will mainly be governed by the contact stiffness 
and the energy dissipation will be due to plastic deformation. On the other hand, in the 
case of sport balls the relative stiffness and the damping factor may vary significantly 
depending on the ball. For example, a superball will have relative stiffness close to 
unity, and a small damping coefficient resulting in a relatively large damping factor. 
This kind of impact will be governed by all the parameters, and the energy dissipation 
will mainly be due to damping. Furthermore, it is worth noting that when λ → 0 the 
above equation reduces to the equation that governs the impact response of an infinite 
structure or a visco-elastoplastic sphere, which is given by the modified Maxwell model 
(Yigit et al., 2011; Ismail & Stronge, 2012), where the response is solely governed by 
the damping factor ζ. The governing equation is given as,

                                                (28)

As ζ → 0 the equation reduces further to that of an impact between compact bodies 
where the only energy dissipation is due to local plastic deformation. On the other 
hand for a specified λ, as ζ → ∞ Equation (27) reduces to the equation of a quasi-static 
type of impact where the response is solely governed by the relative stiffness, λ. In this 
case the governing equation is given as,

                                              
 (29)
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The following simulations utilize examples from impact of some sport balls to 
demonstrate the applicability of the proposed model across a wide spectrum.    

SIMULATION RESULTS AND DISCUSSION

In the following, the simulation results of the impact of various sports balls with a rigid 
flat surface are presented. The linearized equations of motion were solved numerically 
with the appropriate ball properties and initial conditions. The type of balls used, their 
properties and experimental measurements (Cross, 1999) are shown in Table 1. 

Table 1. Experimental measurements of impact of sports balls.

Ball Mass Radius Impact velocity COR Max force Contact time

m (g) R (mm) v0 (m/s) e Fm (N) t (ms)

Superball 37.4 21.55 3.12 0.75 121.8 3.0

Golfball 45.6 20.75 1.47 0.84 226.0 0.9

Baseball 143.6 35.25 1.25 0.49 289.0 2.2

Figure 2 shows the variation of the COR as a function of the two non-dimensional 
parameters ζ and λ. It presents the variation as a function of ζ for three values of λ, 
namely, λ = 0, λ = 0.4 and λ = 1. The simulations were carried out at a small and constant 
impact velocity to avoid plastic deformation, as it had been done in the experiments. 
Therefore, in Figure 2, only energy dissipation due to viscous or wave propagation is 
accounted for. For λ = 0, the COR varies with ζ as predicted by the modified Maxwell 
model. In the case of a specified λ, the COR initially decreases as a function of ζ, it 
reaches a minimum value and then it increases. It will eventually reach its quasi-static 
elastic impact value, which is equal to unity and where the response is independent of 
ζ.  This will occur at large values of ζ, which is not practical for the small mass sports 
balls under study here. This figure clearly illustrates the effect of flexibility on the 
COR. For a given damping factor the higher the flexibility, the lower the COR. The 
model predictions agree well with the experimental data.
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Fig. 2. Effect of damping and flexibility on the coefficient of restitution for various sports balls.

In order to demonstrate further the effect of the non-dimensional parameters on the 
impact response, the predicted normalized impact forces are placed as a function of 
λ and ζ on a characterization diagram that has been established in earlier work (Yigit 
& Christoforou, 2007), as shown in Figure 3. As it can be seen, the force response 
follows similar trends as the COR. Here, logarithmic scale is used in order to show 
large values of ζ and the complete dynamic spectrum. 

Fig. 3. Effect of damping and flexibility on the normalized maximum impact force for various sports balls.
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In order to investigate the effect of flattening of the balls on the impact response, 
the impact velocity was increased substantially in the simulations. Figure 4 shows 
the effect of impact velocity on the COR. As it can be seen, the dependence of COR 
evolves as expected, that is at some critical velocity where plastic deformation or in 
this case flattening of the ball, the COR begins to decrease. As it was shown earlier, 
before the critical speed, the COR reduction is mainly due to wave propagation 
effects. However, at higher speeds the flattening area of the balls increases, with the 
ball remaining flattened after impact resulting in a lower COR. Ultimately, the ball 
will regain its original shape due to its recoil stiffness.

Fig. 4. Effect of impact velocity on the coefficient of restitution for various sports balls. 

Also shown in Figures 2-4 are the experimental data of the COR and normalized 
maximum impact force for several sports balls (Cross, 1999). The non-dimensional 
parameters used for the balls in order to place the experimental data in the Figures, are 
shown in Table 2.

Table 2. Model parameters and predictions in impact of sports balls.

Ball Relative stiffness Damping factor COR Max force Contact time

λ ζ e Fm (N) t (ms)

Superball 1.3 0.16 0.75 117.3 2.8

Golfball 1.0 0.07 0.84 214.2 0.9

Baseball 0.4 0.61 0.49 276.8 1.6
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As it will be explained below, for all cases, the non-dimensional parameters 
were calculated by Equation (26). Using the necessary and appropriate material and 
geometric properties, the damping coefficient c was calculated by using Equation (5), 
the contact parameters Kp and zp were calculated by using Equations (15)-(20), and the 
recoil stiffness Kr was calculated to match the measured COR. 

In the case of the superball the material density was calculated to be ρ = 892 kg/
m3 by using the mass and the radius of the ball given in Table 1. The elastic material 
properties used were E = 2.2 MPa for the modulus of elasticity and ν = 0.5 for the 
Poisson’s ratio, which are common values used for the type of rubber material that 
the ball is made from (Callister & Rethwisch, 2011). By using Equation (5) the 
damping coefficient was calculated as c = 140 kg/s. Subsequently, by using Equations. 
(15), (17) and (20) the transition indentation was calculated as zp = 4 mm, and the 
contact stiffness was calculated as Kp = 5.45 x 104 N/m. Following the procedure 
mentioned above, the recoil stiffness was obtained as Kr = 7.08 x 104 N/m to match 
the experimental COR. By substituting these parameter values into Equations (26) the 
non-dimensional parameters were calculated as ζ = 0.16 and λ = 1.3.

Figures 5 and 6 show the comparisons of the proposed model predictions and the 
experimental data for the impact response of a superball.  As it can be seen the agreement 
is very good with nonlinear effects being evident, more so in the force-displacement 
response. The experimentally measured COR and the normalized maximum impact 
force were placed in Figures 2 and 3 using the calculated non-dimensional parameters. 
The proposed model prediction agrees with the experimental result exactly since the 
recoil stiffness value was selected to yield the same COR. As mentioned earlier, Figures 
2 and 3 demonstrate the effects of flexibility of the impact response of the ball. When 
the effect of flexibility is significant, using the Maxwell model (λ = 0) as proposed 
by Ismail & Stronge (2012), may cause inconsistent interpretation of the results. By 
matching the impact force and COR they estimated the damping factor to be ζ = 0.01, 
which accounts for viscous effects, and the plastic loss factor to be γ = 0.78, which 
accounts for plasticity effects. These values would place the COR to the left of the 
curve for the Maxwell model shown in Figure 2. According to the model, it means 
that almost all lost energy is due to permanent indentation, which is not possible for 
a superball. Furthermore, using ζ = 0.01, the placement of the normalized maximum 
impact force ( ) in Figure 3 will not be in agreement with the predictions of 
the proposed model when λ = 0, because the normalized loading response and impact 
force are governed by the damping factor only (see Equation (28)). Moreover, by 
examining Figures 2 and 3 for the case at hand, the damping factor cannot be less than 
0.1 and have consistent results for the COR and normalized impact force. Therefore, 
it is concluded that the energy loss reflected in the COR is due to wave propagation 
effects, with flexibility having major influence on the response, which is accounted for 
by the proposed model. 



208Inelastic impact and the coefficient of restitution

 
Fig. 5. Comparison of the proposed model prediction of force-time response with experimental 

measurement during impact of a superball with a rigid surface.

Fig. 6. Comparison of the proposed model prediction of force-displacement response with experimental 
measurement during impact of a superball with a rigid surface.

The second that is considered is the impact response of a golf ball. The estimation 
of the material parameters used for the simulations is more difficult, because the golf 
ball is a composite structure of three layers with different materials (Ismail & Stronge, 
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2008). The surface layer is made out of an elastomer resin having thickness t = 2 mm, 
density ρ = 950 kg/m3, modulus of elasticity E = 400 MPa, and Poisson’s ratio ν = 0.45. 
The mantle, which is the second layer, is made out of Polybutadiene rubber having 
thickness t = 5.4 mm, density ρ = 1155 kg/m3, modulus of elasticity E = 50 MPa, and 
Poisson’s ratio ν = 0.43. The core, which is the third layer, is made out of Titanium-
Aluminum alloy (TI-6AL-4V) having thickness t = 1.3 mm, density ρ = 4510 kg/m3, 
modulus of elasticity E = 116 GPa, and Poisson’s ratio ν = 0.3. Internally there is a 
spherical air gap, of approximately 12.05 mm radius, and with an assumed modulus 
of elasticity of 20.8 MPa. Following similar procedure as in the previous example, the 
transition indentation was calculated as zp = 3 mm, the contact stiffness was calculated 
as Kp = 5.6 x 105 N/m. The recoil stiffness was obtained as Kr = 5.6 x 105 N/m to match 
the experimental COR. The composite modulus of elasticity that was used to estimate 
the contact stiffness was calculated by using the in-series spring analogy as,

                                                  
(30)

By substituting the values of the three different layers plus the air-gap in Equation 
(30), the composite modulus was calculated to be 30 MPa. The Poisson’s ratio was 
estimated as 0.4 by only using the three material layers in an equation similar to Equation 
(30). In order to estimate the damping factor, which depends on properties along the 
surface of the sphere, the parallel-spring analogy (rule of mixtures) was used as,

                                                    

(31)

A similar equation can be obtained for the density. By using only the first two surface 
layers in Equation (31), the modulus of elasticity along the surface was estimated to 
be 150 MPa and the density to be 1100 kg/m3. These estimations resulted in damping 
coefficient c = 1216 kg/s. Finally, by substituting these parameter values into Equation 
(26) the non-dimensional parameters were calculated as ζ = 0.07 and λ = 1. Figures 7 
and 8 show the comparisons of the proposed model predictions and the experimental 
data for the impact response of a golf ball. As it can be seen the agreement is very good 
with nonlinear effects being less evident than in the case of the superball. As in the case 
of the super ball, the experimentally measured COR and the normalized maximum 
impact force were placed in Figures 2 and 3 using the calculated non-dimensional 
parameters. As before, the placement of the measured normalized maximum force in 
Figure 3 shows the effects of flexibility of the ball. In this case it is possible to use the 
Maxwell model (λ = 0) to obtain the response, if the model parameters are properly 
selected. It is concluded that in the case of the golfball the two models are in closer 
agreement with respect to the COR and the impact force. 
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Fig. 7. Comparison of the proposed model prediction of force-time response with experimental 
measurement during impact of a golf ball with a rigid surface.

Finally, in the case of the baseball the material density was calculated to be ρ = 783 
kg/m3 by using the mass and the radius of the ball given in Table 1. The estimation 
of the properties is also difficult here as the surface of the baseball is made of thin 
leather and its core of cork. Therefore, an attempt was made to just match the COR 
and maximum impact force without paying particular attention to the details of the 
response. The elastic material properties used for the contact properties were E = 
40 MPa for the modulus of elasticity and ν = 0.4 for the Poisson’s ratio. Along the 
surface, in order to capture the wave propagation effect, E = 2 MPa was used, which 
is a common value for an elastomer (Callister & Rethwisch, 2011). By using Equation 
(5) the damping coefficient was calculated as c = 320 kg/s. 
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Fig. 8. Comparison of the proposed model prediction of force-displacement response with experimental 
measurement during impact of a golf ball with a rigid surface.

Subsequently, by using Equations (15), (17) and (20) the transition indentation 
was calculated as zp = 5 mm, the contact stiffness was calculated as Kp = 10.5 x 105 
N/m. Following the procedure mentioned above, the recoil stiffness was obtained as 
Kr = 4.2 x 105 N/m to match the experimental COR. By substituting these parameter 
values into Equation (26) the non-dimensional parameters were calculated as ζ = 0.61 
and λ = 0.4. The experimentally measured COR and the normalized maximum impact 
force were placed in Figures 2 and 3 using the calculated non-dimensional parameters. 
What it seems to be of interest here, is the placement of the measured COR in Figure 
2.  As it can be seen the flexibility of the ball has a major influence on the response. 
Therefore the simpler Maxwell model should not be used in the case of the baseball. 

In closing, it is obvious from the results that the Maxwell model is adequate for 
small values of ζ, where flexibility does not play a major role. This will certainly be 
valid for metallic spheres, billiards and bowling balls. In the case of flexible sports 
balls, however, this model may not perform well in some cases. The proposed model 
can be a good alternative because in addition to wave propagation and local plastic 
deformation effects it includes the structural flexibility of the ball, which introduces a 
second non-dimensional parameter, the relative stiffness, λ. 

CONCLUSIONS

An impact model that incorporates energy losses due to local plastic deformation, 
viscoelastic material behavior and wave propagation has been developed and used 
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to study the impact response of deformable spheres. The model also takes into 
consideration the structural deformation of the spherical object. Linearization of the 
governing differential equations and subsequent normalization has shown that the 
impact response of deformable spheres on a rigid surface is governed by two non-
dimensional parameters, namely the relative stiffness λ, which accounts for structural 
recoil effects, plastic deformation and/or flattening of the sphere, and the damping 
factor, ζ, which accounts for viscous and/or wave propagation effects. It has been 
shown that the impact response and the COR are dependent on both parameters. 
At low speeds and damping factors the normalized impact force and COR mainly 
depend on damping; whereas, at large damping factors the flexibility of the sphere 
plays an important role as well. For a given damping factor, the normalized maximum 
impact force and COR decrease with higher flexibility. At higher speeds the COR 
decreases further due to surface flattening of the sphere. The model predictions have 
been compared to experimental data for a superball, a golf ball and a baseball with 
very good results. Based on the performance and safety needs of a particular sports 
ball, the non-dimensional parameters and their relationship to COR and maximum 
impact force, can be used in parametric studies to optimize performance and safety. 
It is expected that time and cost can be reduced in experimental and analytical/
computational studies because the number of parameters of the problem has been 
reduced to two non-dimensional parameters.
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