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Abstract

Modeling and system identification on flexible multi-bearing rotors with two-concentrated
disks are presented in this study. Both rotor unbalance vibration responses through critical
speed were experimentally obtained through accurate control of journal bearing static load.
Vibration simulations of this laboratory rotor-bearing system were performed as a linear
system. The simulation predicted that critical speeds were higher than the experimental ones,
These differences strongly occurred because of errors in estimating journal bearing damping
and stiffness coefficients. Estimated journal bearing coefficients were carried out by using
optimization methods to enhance the model prediction capabilities to the actual test results.
The pattern search method was used to solve an inverse problem for the global parameters.
A good agreement, in terms of instability threshold speeds and system responses, was found
between the experimental results and the optimized model. Both the Response Surface method
and the Neural Network method were used to build a Metamodel for predicting the system
cocfficients. For all tested static loads, the predicted error of the original model was in the
range of 9% - 18%.

Keywords: Global optimization; neural network; metamodeling; rotor-bearing
systems; system identification.

TOMENCLATURE
L/D Length/diameter ratio of journal bearing
M . .3 (3) o ; ;
ey B0 andie) Disk air-gap damping coeflicients at each balancer
if), CE'Z], fl , and c Damping coefficients for the journal bearing
kw , k “) k) and k (’) Disk air-gap stiffness coefficients at each balancer
k\(f),kff),k‘(f’, and k P) Stiffness coefficients for the journal bearing

m,-r and m,r The unbalances at disk | and disk 2 respectively
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The lower and the upper bounds of the unknown

Xand X parameter X.

C Damping matrix

E Modulus of elasticity

G Gyroscopic matrix

! Moment of inertia

L Polar inertia

K Stiffness matrix

L Length of each segment

M Mass matrix of the system

M Disk mass matrix

Me Consistent mass matrix

R Vector of unbalance forces

L. and R2, Experimental maximum displacements of rotors 1 and 2
Rl andR2, Theoretical maximum displacements of rotors 1 and 2
V Potential energy

w Static load

¥ Vector of the stiffness and damping coefficients of the
i journal bearing

z Vector of generalized coordinates

Q Rotor speed

INTRODUCTION

In many industrial applications (turbines, pumps, fans, etc.), the combined demand
for high power and speed with continuous operation is increasingly important. The
prediction and control of the dynamics behavior (unbalance response, critical speeds
and instability) remains an essential issue in the design and analysis of rotating
machinery. Parameter identification is required to reduce the difference between
experimental measurements and analytical predictions. Identification of the journal
bearing hydrodynamic force coefficient is an important step towards the accurate
prediction of fluid flow and dynamic response of rotor-bearing systems.

Any theoretical determination of the journal bearing stiffness and damping
coefficients is subjected to considerable uncertainty because ofthe inherentimperfection
in any actual bearing’s geometrical misalignment, non-uniform fluid viscosity, rotor
cracks and hydrodynamic instability. All these imperfections result in inaccurate
values of stiffness and damping coefficients of journal bearings. Bearing coefficients
calculation using the Sommerfeld number have resulted in large discrepancy in
simulating a rotor-bearing system. Estimating journal bearing coefficients has been
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carried out by several researchers in the past. One of these methods is the impact
impedance, which depends on converting the vibrating response to frequency-
dependent transfer functions, to measure the stiffness and damping coefficients of
Jjournal bearings (Nordmann & Schollhorn, 1981). Estimating the linearized fluid-
film coefficients of two journal bearings from the out of balance responses, where
the rigid shaft was conducted by exciting the systems with a known unbalance force
(Tieu & Qiu, 1994). The measurements were taken in the time domain and FFT in
conjunction with resampling to simplify the data acquisition process and minimize
noise effects. Factors other than the unbalanced load could effect on the estimation
of the parameters. These are geometry parameters such as the rotary inertia, the
gyroscopic inertia, the shear deformation of shaft, and the geometric asymmetry of
shaft (Dakel ef al., 2014). Moreover, the effect of groove geometry, groove location,
supply pressure and bearing geometry were considered in model development of the
two journal bearings model (Zengeya & Gadala, 2012).

[n addition, new method for identifying the stiffness and the damping coefficients
of the journal bearing are conducted by updating the eccentricity ratio at a spin speed
(Chouksey et al., 2014). This work is mainly done based on Inverse Eigen-sensitivity
method. Eccentricity ratio and coefficient of shaft material damping are updated
in this process to identify bearing model and internal friction force at any speed.
Updating of eccentricity ratio to identify journal bearing coefficients is considered a
new approach that eliminates the need to update eight bearing coefficients per bearing
and hence helps in effective parameterization in the model updating process. Another
technique for estimating non-linear stiffness of rolling element bearings is performed
by processing random response signals that were picked up from caps of rotor bearing
systems (Tiwari & Vyas, 1995). The advantage of this technique is the negligence of
excitation force measurement and the straight determination of the random response
signal. Identified oil film coefficients of large journal bearings on a full scale journal
bearing testing has been done by many researchers (Jiang ef al., 1997; Yang & Lin,
2009). They applied a nonlinear optimization algorithm to identify stiffness and
damping coefficients. However, since the test conditions of the experiments were
limited, the results were unsatisfactory (Jiang ef al., 1997). The non-linear stiffness
parameters of rolling elements bearing were identified by using random response
of flexible rotor-bearing caps (Tiwari & Vyas, 1997). This method did not account
for shaft flexibility and thus the analysis was only of a single-degree-freedom. The
fluid film bearing coefficients were obtained from measurements of bearing dynamic
response due to periodic forces applied by shakers (Andres & Santiago, 2004; Andres
& Santiago, 2005). Journal bearing force coefficients under high dynamics loading
was subsequently determined. Optimization methods are frequently used for solving
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inverse problems such as parameter estimation (Rosa et al., 1997; Nicoletti, 2013).
The variation of nonlinear stiffness and damping coefficients of journal bearing
relative to equilibrium position was investigated (Sawicki & Rao, 2004). The dynamic
pressure gradient was considered as a first order perturbation of static pressure.
Higher order pressure gradients for displacement and velocity perturbations were also
used to obtain nonlinear dynamic coefficients. A numerical identification of nonlinear
fluid film bearing parameters considering large journal orbital motion was proposed
(Meruane, & Pascual, 2008). Stiffness and damping coefficients were obtained using
Taylor series expansion of the bearing fluid film forces in terms of both perturbation
displacements and velocities.

Other researchers use effective method based on Kriging surrogate model and
evolutionary algorithm to identify the bearing parameters and unbalance information
in rotor-bearing system (Han e al., 2013). The developed algorithm has been tested
with numerical example and experimental application, where it effectively reduces
the computational expense of parameter identification.

Based on a review of the current published research, the purpose of this study
was to calculate the journal bearing coefficients using analytical and experimental
approaches with the help of the pattern search optimization technique. The ultimate
objective of this study was to investigate the influence of bearings and supports
upon the entire rotor dynamics. Numerical examples and experimental results were
used to demonstrate new approach capabilities. The enhanced model with the newly
identified parameters accurately predicts the dynamic responses of the entire rotor-
bearing system under different static loads.

MATHEMATICAL MODEL

The model used to simulate the entire rotor system contains 12 generalized coordinates
(DOFs), two angular displacements and two radial displacements at each of the three
locations shown in Figure 1:

s [x]’yl’ 9"‘-’ QI-V’XZ’yZ' 92‘! gzynxa ,y3J 8;: ij]r (])

3

where x ,, v, are the radial displacements and ", ¢” are the angular displacements

of the three locations of i=1, 2 and 3.
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Disk 1 Disk 2
v (Drive end) (Outboard)
2
X 5 s
< .S
| |
|
|
| | :
| | |
| | : | |
[
L [ L L | L !
I—<{ 1 M 2 }>L<{ 2 1 >l

Fig. 1. 12-DOF test rig model using mass stations.

The complete model is shown in Figure 1. However, the third disk in the middle
of the shaft, where the journal bearing is located, is actually not present in the test
rig. This “virtual” disk is just used to obtain the shaft’s stiffness matrix using linear
beam theory. The shaft was subdivided into four beams that are classified into two
different types of the same length. The masses were divided and concentrated at three
stations. In contrast to stations 1 and 3, station 2 has no polar inertia at the disk and is
just assumed to contribute to the stiffness matrix, (Figure 2). Naturally, the mass and
transverse inertia at station 2 is smaller than at stations 1 and 3.

Disk 1 Disk 2
/! \ /" \
1 \ 1 \
My Ly, Erly ‘ I Ma, Lo, Ea. Iy
I o | a— |1
Segment 1 | | \ Segment 2
W / W\ |
Station 1 \Station 2/ \ Station 2/
\\ / W\ /
Ny S N
Segment 1 Segment 2

Fig. 2. Subdivided part of the model used for the derivation of the stiffness matrix.

The general equations of motion for the model with 12 degrees are:

M-z +(C+G)z+K-z =R 2)
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where z: Vector of Generalized Coordinates, M: Mass Matrix, C: Damping Matrix, G:
Gyroscopic Matrix, K: Stiffness Matrix and R: Vector of Unbalance Forces. Note that
the sizes of the matrices are {M,C,G,K} "' {z'"z‘ .z,R } 1211,

The shaft element is considered to have a uniform cross section and is subjected
to bending moment. A finite element analysis with the approximation shape function
(deflection shape function) was used to obtain the element mass matrix. Masses of
disks 1 and 2 are lumped at their corresponding stations, namely stations 1 and 3. The
complete mass matrix resulting from the addition of the shaft matrix and disk matrix is

complete = M shaft o M disk (3 )
where Mshaft is a consistent mass matrix (Adams, 2001; Falah, 2002)

The matrix [C] contains the additional outer damping represented by the journal
bearing at station 2 and the air gap dampers at disks 1 and 2. c_f_l), c;), f;’, and 0(3)
are the disk air-gap damping coefficients at each balancer. These parameters are

assumed zero at the present study, since they have a minor effect on the response
of both rotors. C_E_f), C_Ef)’ £\ , and ,; are the damping coefficients of the journal
bearing. The gyroscopic moment components that are applied to each disk at stations
1 and 3 are expressed as follows:

M, . =-1,Q6,

2V X

M, =+,Q8,

.y

)

where €/, represent the gyroscopic coefficient at the end of disk.

The stiffness resulting from the shaft flexibility is obtained by using the classical
linear beam theory (Cook et al., 2001). The problem is thus divided into three parts.
The stiffness of the two beams connecting the two disks is calculated (beam type 2).
The resulting stiffness beams between the disks and the support are derived. Finally,
the additional outer stiffness from each disk and that ofthejoumal bearing coefficients

as k0, k0, k2, and k)

are considered. The additional stiffness matrix K R
for the disk air-gap stiffness coefficients at each balancer. These coefficients are

addy nonai

assumed zero. k2, k2 k>, and km are the stiffness coefficients for the journal

xx 2ay PV yx 2
bearing. The complete stiffness matrix is:

K= +K

K(m’dm'{mm' Shaft ( 5 )

The stiffness and damping coefficients for the cylinder journal bearing are calculated
initially, considering non-dimensional damping coefficients of the cylindrical journal
bearing at different Sommerfeld numbers and for a Length/diameter ratio (L/D)
equals to %. The unbalance forces are introduced by two static unbalances that can be
set independently at stations of the two disks. The unbalance forces are effective in the
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lateral directions at these stations (in the x-y plane) and are given by:

m

~

|+ -cos(Q +¢,)7
m,-r-sin(Qf +¢)
0

o o o O

(6)
0
-cos(C +¢,)
m,-r-sin(Q +¢,)
0
0

m

™

Here, m r and m r are the unbalances at disk 1 and 2 respectively, m is the
unbalance mass and r is the distance (Figure 3).

‘\ Shaft
7

L1 Disk

Fig. 3. Static rotor disk unbalance.

In Equation (6), Q is the rotor speed ¢, and ¢, are the phase angles between the
unbalance at each disk, respectively.



163 A H. Falahand E. A. Khorshid

PARAMETER ESTIMATION PROBLEM STATEMENTS

In the parameter estimation technique, the unknown variables are the parameters of
the mathematical model. This step was conducted after completing the entire required
elements in the mathematical model of the rotor-bearing system. The problem
formulation of the parameter estimation, or what is defined as an inverse problem,
and the solution method are discussed in this section.

The 12 second-order differential equations of motion in Equation (2) were
transformed into 24 first order differential equations of the following form

U h=4 b tB )

where

[0]|2x|2 [[]|2x12
[4]= 8)

=1

o
_[M]nuz'["( ]I2x|2 7[M ]mlz'[C ]llez 2424

[O]I2xl
[B]= )

-1

[M ]|2><l2 [R]12x1 24x]

{y‘}{jﬁ}m1 (10)

-l

where [/] is the identity matrix.

The parameter estimation of journal bearing damping and stiffness coefficients,
contained in X, is obtained mathematically by solving the following mathematical

]

programming problem as:
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Given: Unbalance force applied on each balancer, oil viscosity, static load,
and operating speed

Find: Unknown parameters (damping and stiffness coefficients of the
journal bearing)
X=| 2 .(2) .(2) (2) (@) () (@)
[eP6063, @ 30 5@ 30 0

To Minimize: F(X ) = Z(R lcxp -R ltheo )!2 T Z(R 2 -R 2““0) (12)

i=l =1

Subject to: Y ax S)?

Rl and R2  arethe experimental maximum displacements of rotors 1 and 2, R1 -
and R2,  are the theoretical maximum displacements of rotors | and 2, i is the index of
the input speed Q and » is the total number of runs. Also, X and x are the lower and
the upper bounds, respectively, of the unknown parameter in the vector {X}.

This problem is a nonlinear constrained optimization program (NLP). By
computational experimentation of the optimization problem in Equation (12), local
minima of {X} could be found. Finding the global optimum is a great challenge
because it requires larger combination numbers of the initial values for the design
parameters (Assis & Steffen, 1999). Genetic algorithm, simulated annealing and
evolutionary optimization, all belong to the family of global search methods, which
are also known as stochastic algorithms (Camargo ef al., 2010; Castro, 2013; Lia et
al., 2014). Recently, stochastic algorithms have achieved popularity, mainly for their
distinguished properties. These are performing global optimizations, requiring no or
very low accurate gradient information, using probability rules to guide their searches
and being suitable for solving complex real-world problems. Stochastic algorithms
achieve the above merits at the expense of requiring more function evaluations
compared with conventional optimization algorithms (Goldberg, 1989). In order to
find the global solution for the estimated parameters, the pattern search method was
selected (Lia et al., 2014). Pattern search is a method for solving optimization problems
that does not require any information about the gradient of the objective function
(#(x) in Equation (12)). A direct search algorithm searches a set of points around the
current point, looking one, where the value of the objective function is lower than
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the value at the current point. This is more suitable than the traditional optimization
methods that use information about the gradient or higher derivatives to search for an
optimal point. The pattern search method can be used to solve problems for which the
objective function is not differentiable, or even continuous. This fits the optimization
problem in Equation (12) since the objective function is non-differentiable. The non-
differentiability occurs because the values of R1, and R2  are obtained by solving
the set of differential equations described in Equation (2).

GENERAL PROCEDURE FOR ESTIMATING THE COEFFICIENTS

The general procedure for estimating the journal bearing coefficients is shown in
Figure 4.

Experimental data from rotor-bearing Parameter estimation of the ODE model
test apparatus

rEFESs=====g /@
i Fixtre oadin | Solve the ODE of the
| lL I mathematical model (numerical
| | | results) for each Q) and W,
I 2 Vary the speed Q for | {}
the whole range from |
| 400rpm to 3000rpm All the experimental Formulate the inverse
| data aretsfet to ‘:‘e problem similar to Eq.12
correct forma
I 45
I G
\

Record the output I
displacements for both rotors | £
~ W, and rotational speed €,

I
|
|
= I, : ;
W] | e —_ | find the set of X" for journal bearing
|
|
|

using optimization
L 9 .
{ Validate both A—_P Construct metamodel
| metamodels from the modified
|
|
I

NO

Are all conditions

with untested i
mathematical model of (C0,W)) covered?

experimental -Response Surface Model |')|
at3.8161b

\

|

|

|

I

|

|

. — I
At each loading condition |
|

|

|

|

|

|

I

(RSM) |
-Neural Network Model (NN) e = —— -

-
—
~

Fig. 4. General procedure for parameter estimation of the journal bearing coefficients
using the pattern search method.

The steps of Figure 4 can be explained in details as follows:

Step 1: The experimental data is collected for different loading conditions and
various speeds.

Step 2:  The four load cases used for parameter estimation are defined in the vector
W=[0.823 1.32 1.817 2.316] Ib. The untrained load, which will be used for
testing the model validity, is at 3.816 |b. The speed range for Q is varied
from 400 to 3000 rpm.

Step 3: At each combination of load-speed, the amplitude and the phase angle of
balancer 1 and 2 are recorded. The experimental data collection is repeated



Step 4:

Step 5

Step 6:

Step 7:

Step 8:
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for all specified ranges of load-speed combinations. The experimental data
is set in the correct format for feeding to the parameter estimation of the

ODE mathematical model, i.e. in the vectors of (R 1exp, mp).

From step 4 to 6, the aim is to estimate the unknown parameters using
the Pattern Search optimization method. At each combined condition of
(W, Q), the Nonlinear differential equation is solved numerically using the
Runge-Kutta method. This method can be called in MATLAB by function
ODE45. The output resulted from this solution (for each loading condition)
is the displacement of both rotors of the journal bearings(R Lo B 2meo) !

Formulate the inverse problem similar to Equation (12). This requires that
all the vectors of the experimental and the theoretical data will be of the same
length, and the entire upper and lower bounds of the unknown coefficients
(/X,E) are set to be within 30% of the coefficient of the Sommerfeld
number.

xp *Txy * ll’ E &R TS (R

The unknown parameters X'= [CS)’ @ ) ) k@ @ 2 ‘2’}
are estimated using the Pattern search method (Lia er al., 2014). The pattern

search algorithm starts with an initial point with a finite function value,
followed by a series of iterations, each of which consists of an optional
search step and a local poll step. Both steps evaluate points on a carefully
constructed mesh in an attempt to find an improved mesh point; i.e., one
with a lower objective function value than that of the incumbent. The mesh
is constructed as a lattice based on a set of directions that form a positive
spanning set (Charles & Dennis, 2004). In the search step, any finite set
of mesh points can be evaluated. This allows the user great flexibility in
choosing points. If the search step is empty or unsuccessful in finding an
improved mesh point, then the poll step is invoked. In this more rigidly
defined step, the neighboring mesh points to the current iterate are evaluated.
The fact that these neighboring points are constructed by means of positive
spanning sets drive the convergence theory for the algorithm. If the search
and poll steps are both unsuccessful, then the current incumbent is declared
a mesh local optimizer, and the mesh is refined by reducing a single mesh
size parameter. If an improved mesh point is found in either step, then the
mesh is either retained or coarsened by increasing the mesh size parameter
(Torczon, 1997).

The loop will continue from step 4 to step 6 until all the loading conditions
(w, Q) are covered.

This step is to collect the data from the previous parameter estimation
step and present them in three-dimensional plots. The Response Surface
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Model (RSM) is built for quick estimation of the system’s eight unknown
parameters at any speed and load condition. The second-order model is

N /i N M N !
X G/Vf !Q) =4, &3 \ZGJWA * iaj Q,f + Zz a!'iWN Qf o ZaﬁW-’fl " iaﬂgf (] 3)
i=l 7=l i=1 f=l

i<j j=2

The model includes, from left to right, an intercept, linear terms, quadratic
interaction terms and squared terms. Linear terms alone produce models
with response surfaces that are hyperplanes. The addition of interaction
terms allows for warping of the hyperplane. Squared terms produce the
simplest models in which the response surface has a minimum or maximum,
and so an optimal response. The second-order model is widely used in
response surface methodology because of its flexibility and its capability to
approximate the true response surface. Another reason for using the RSM
model is simplicity in estimating the parameters (the a’s) in the second-order
model using the least squares. The RSM model is conducted in MATLAB
using the statistical toolbox.

For comparison reasons, another metamodel is built: the NN model.
The objective is to increase the prediction accuracy of the rotor-bearing
metamodel especially for untrained input, where such as that of load
3.816 lb. However, to find any new coefficients with different static load
or speed, it must solve the inverse problem. The objective of this step is
to build a neural network model that can be easily used to estimate the
unknown coefficients without going through the complicated details of
modeling and optimization. The neural network (NN) modeling technique
is suitable for building the metamodel, since it has a great capability for
approximating nonlinear input-output relations, and it can quickly calculate
the output results of the rotor-bearing coefficients at any static load and
rotor speed. The MATLAB Neural Network toolbox is used to build the
NN model (Beale ef al., 2012). The type of NN models is the Feed Forward
Backpropagation network (FFBP). The network, with fwo inputs of the
vector {2, w} and eight outputs of the parameter’s vector is shown in Figure

5 (C(n c@ @) @) @ g @) g k(z))-

xx * Yxy oV yx 0 yy 2 ax 2 xy 2 Mx Mgy
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Input General Neuron Output

r ¥ )

Fig. 5. Backpropagation bases neuron.

EXPERIMENTAL SETUP

The details of the experimental setup used in this study are shown in Figure 6. The test
setup consisted of two identical maximum precision duplex angular contact preloaded
ball bearings at each end of the shaft. The bearing span was 30 inches (760 mm). The
shaft (journal) had a diameter of 0.65 inches (16.5 mm). It was powered by a very thin
and flexible quill shaft connected to a small DC motor with an accurate stable speed
control of up to 10,000 rpm.

The setup allows for real-time control of two identical rotor balancers. Each rotor
contained two internal circumferential stepping motors that could be placed angularly
to its eccentric mass, relative to a fixed point on the rotor with 5° stepping increments.
The balancer consisted of rotating and stationary components. The stationary part was
fixed to the casing of the test rig. Power was passed from the stationary to the rotating
balancer ring in the balancer by inducing a magnetic field across an air gap. Thus, no
mechanical contact between stationary and rotating components could take place. The
real-time balancers were used to place known controlled mass unbalances at their two
respective axial locations. More details about the setup can be reviewed in (Adams &
Falah, 2004).
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Legend:

1- End bearing

2- Drive end balancer
3- Qutboard balancer
4- Shaft

5- Journal bearing

6- Load support
7-Rods

8- Beams

9- Load measurement device
10- Columns

11- Beam

12- Knob

13- Lid

14- Threaded rod

Fig. 6. Experimental setup.

15- Oil tank

16- Table support

17- Quill shaft

18- DC motor

20- Motor support base
19- Key phasor

21- Aluminum base

The length and the diameter of the shaft made ita dynamically and statically flexible
one. The high degree of static radial flexibility made it a fairly simple and accurate
component to apply a controlled radial static load on its mid-span oil-film journal
bearing. Both components are shown in Figure 6 and are labeled “load support™ (6).
They were actually very narrow (1.6 mm) 180° partial-arc oil-film journal bearings,
with relatively large radial clearance. Table 1 outlines the journal bearing parameters.
They were used to transmit the controlled radial static load to the statically flexible
shaft. These two load-support applicator bearings were dimensioned to operate on
extremely thin oil films. Therefore, the effective radial stiffness of them was at least
an order-of-magnitude higher than that of any other flexible member.

The nominal bore diameter of the oil-film journal bearing was the same as the
shaft and had a nominal radial clearance of 0.008 inches (0.20 mm).

Table 1. Oil-film journal bearing parameters

Bearing active length

Bearing bore diameter
Radial clearance

Static radial load range
Oil dynamic viscosity

8.25 mm (0.325 inches)

16.5 mm (0.65 inches)

0.20 mm (0.008 inches)
22-178N (0.5-4.01b.)
550 centipoise (80 micro-reyn)
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EXPERIMENTAL PROCEDURE

The entire rotating assembly was first balanced as precisely as possible, using the
two Baladyne rotor-based balancers. The remaining residual measured rotor vibration
signals were electronically stored for subsequent real-time digital subtraction from
their respective rotor total vibration signals. These signals occurred when known
additional unbalances were added by operating the Baladyne rotor-mounted balancers
in their manual control mode. The rotor speed was then increased incrementally and
the amplitude and phase angle for each balancer were recorded at each speed. All
control signals and unbalance position data were fed through a magnetic coupler to a
local controller driven by a PC. The net rotor vibration signals were then used in direct
comparisons with their counterparts obtained from computational simulations under
the same running conditions.

RESULTS AND DISCUSSIONS

The test apparatus was mathematically modeled using two different rotor-bearing
systems. In the first one, the rotor-bearing mathematical model without the
identification technique (defined as the Original Model) was used. In the second
model, the unknown parameters of damping and stiffness coefficients were estimated
with the pattern search technique and added to the model (defined as the Enhanced
Model). The following sections discuss all the numerical findings with the simulation
and the parameter estimation techniques.

Errors in the Rotor-bearing Coefficients

Any theoretical determination of the journal bearing stiffness and damping coefficients
is subjected to considerable uncertainty because of the inherent imperfection in any
actual bearing’s geometry, misalignment, non-uniform viscosity, etc., as compared
to the assumed computational inputs. All these imperfections resulted in inaccurate
values of the stiffness and damping coefficients of the journal bearing. Therefore,
these coefficients calculated from the Sommerfeld number (Figures 7 and 8) added
large errors in simulating the rotor-bearing system. Figures 7 and 8 are a graphic
representation of the estimated coefficients; based on the Sommerfeld number; as
a function of load and speed. From these figures, these coefficients have a smooth
relation with load and speed with no noise in them. Both Figures show the minimum
and the maximum values of the estimated coefficients. Figure 9 shows these large
simulated errors for the rotor vibration response of disk 2 as a function of the input
speed. These errors are amplified in the speed range from 500 to 1100 rpm and in the
unstable region from 2000 to 3000 rpm. Figures 7 and 8 show that if load is increased,
then the stiffness and damping coefficients of the journal bearing are increased in an
approximately linear pattern.
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Therefore, one of the techniques to enhance the mathematical model is to find
these coefficients using the proposed system identification technique. The procedure
for system identification assumes that these coefficients of the journal bearing,

which are XJ=[c_f__f), c_‘(j),cg) , e @ @ @ k(Z)], are both speed and load

yy7 xx *xy t™May o
dependent. This means that at each given load and running speed, the coefficients in

X, are estimated by solving the inverse problem in Equation (12). The next section
dlscusses the procedure for the solution process.
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Fig. 7. Journal bearing stiffness coefficients as a function of load and speed obtained
from the Sommerfeld number and RSM.,
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Fig. 9. Rotor vibration synchronous response of disk 2 (displacement) with input load = 10.3 N (2.316
1b) for (==f=f==) Simulation with system coefticients based on Sommerfeld number. (ssegfass }
Simulation with system coefficients based on parameter estimation. ( w={G-==) Experimental.

Parameter Estimation of the Unknown Coefficients

As stated before, the estimated parameters are classified in the vector (X)), which
represents the unknown stiffness and damping parameters of the journal bearing. The
initial guess for the unknown parameters of group X is setto be X ... which is the
stiffness and damping coefficients from the Sommerfeld number (Figures 7 and 8).
For experimental computations, these values of the Sommerfeld number provide good
initial guesses for solving the parameter estimation problem for the X, variables. On the
other hand, the unknown parameters for group X, is set to zero, which represents the
case when the disk air-gap model is assumed to have a very small effect on the system
dynamics. This was confirmed after several computational experimentations in which
it was observed that these air gap parameters have a negligible effect on the model
response. Therefore, the air gap parameters are assumed zero. The upper and lower
bounds for the X, parameters are set to £30% of X ( Kostrzewsky et al., 1997).

Sommerfeld

At this point, all the required elements to solve the inverse problem of Equation
(12) are completed. At each load in /¥, and Q speed, a set of eight unknown parameters
will be estimated. Sample iteration for the patterns search method is shown in Figure
10. This figure represents the variation of the objective function versus the iteration
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number. Fig. 10b shows the change in grid mesh size as a function of the iteration.
Fig. 10c demonstrates the fluctuation of the function evaluation per interval between
7 and 10 evaluations at each iteration. Finally, the optimal solutions, i.e. solution for
the unknown parameters in Equation (12), are shown in Fig. 10d.
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Fig. 10. The variations of (a) function values, {b) mesh size. (¢) function evaluations
per interval and (d) the final best point in Pattern search method.
Figures a- ¢ are a function of iteration number.

After completing the parameter estimation process for all the static loads in w
with the entire range of speeds 2, the next step was to visualize these results in
a three-dimensional plot (Figure 11 and 12). Figure 11 shows the variation of the
stiffness coefficient of the journal bearing with respect to static load and speed.
Several important observations can be made regarding the data in Figure 11. First,
the journal bearing has a lower stiffness in the y-direction (k ‘) than that in the
x-direction (k( ))due to the applied static load in the opposne y- dllE‘C[lOﬂ {upward).
Second, the identified results of the cross stiffness k‘ ) k (“) are of the same order
of magnitude as those of the theoretical stiffness measured from non-dimensional
stifthess (Figure 7). Third, it is clear that the stiffness coefficient k( " is increased by
increasing the static load, whereas the other coupling stiffness coefh(:lent k‘ " does
not vary by the applied static load. Unstable regions between 1500 to 2500 rpm are
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observed due to threshold instability, which approximately occurs at about half of the
natural frequency.
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Fig. 11. Estimated journal bearing stiffhess coefficients as a function of load and speed based on the
Neural Network Model (Metamodel of the theoretical model).

The peaks on the 3D plot of the journal bearing stiffness coefficient may occur due
to the errors in the experimental measurements of the rotor responses, which forced
the coefficients to accommodate for these errors (Figure 11 and 12). Another reason
for these peaks in the unstable region is the existence of many local minimums for the
unknown estimated parameters. To minimize the appearance of these peaks, a solution
method for global optimal parameter estimation, such as the pattern search algorithm
(PS). should be used (Lia ef al., 2014). Other methods for local minimum and fast
convergence rate, such as the Sequential Quadratic Programming method (SQP)
failed during the solution process. They caused the solver of the ordinary differential
equation of the dynamic system to crash. This was the main reason the SQP method

was replaced by the PS method.

Another observation from Figure 11 is the appearance of an unstable region that
occurs in the range of 1500 to 3000 rpm for all load conditions. The unstable region
has a great influence on the estimated damping coefficients in X. For example, the

values of k Jf ) vary severely in this region. Whereas, before and after this unstable
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region, the values of k)(j) have a unified pattern. These estimated damping coefficients
also increase in the unstable region to their maximum limit. On the other hand, they
converge to their minimum lower bounds outside the unstable range (region), because
the rotor-bearing system is under the effect of the threshold instability. The estimated
parameters in Figure 12 for the journal bearing damping coefficients show the same
trend as that from the Sommerfeld number of Figure 8. However, small variations in
the values of {crff_’, c_fi),c}f), c)(f)} occur in the range of 2000 to 2800 rpm due to

threshold instability in the system.
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Fig. 12. Estimated journal bearing damping coefficients as a function of load and speed based on the

Neural Network Model (Metamodel of the theoretical model).

Comparison between Experimental and Analytical Results

The system response with the estimated parameters (enhanced model) was compared
with the original one, and the results are shownfor an input load of 2.316 1b (10.3 N).
This load condition was used for estimating the system parameters. Figure 9 represents
the relation between the input speed € versus the displacement (in y-direction) for
rotors B (outboard drive). The enhanced model predicted the rotor bearing system
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response better than the original model. Two important remarks can be obtained from
Figure 9:

1) The peak vibration amplitude of 0.75 mils for the original model increased to
match the experimental values of 1.3 mils; and,

2) The peak vibration which occurs at Q = 1650 rpm for the original model shifted
closer to the experimental actual values of € = 1410 rpm (defined as the 1st
critical speed). The first critical speed location here is based on the location of
the rotor vibration peak as a function of rotor speed and not on the associated
Eigenvalues.

Table 2 outlines the comparisons between the measured and predicted first critical
speed values for different static radial load on the mid-span oil-film journal bearing.
In this table, the original model had large errors in predicting the correct critical speed
location. For all tested static loads, the predicted error of the original model was in the
range of 9% - 18%. On the other hand, the enhanced model has a prediction error from
0% - 4%, which is much obviously smaller than the original.

Table 2. Summary of the critical speed at each static load.

Experimental | Simulation without parameter ID. | Simulation with parameter ID.
Results (Original Model) (Enhanced Model)
it“ti; 1* Critical speed | 1% Critical Speed Difference | 1* Critical Speed Difference
0a
(b)) (rpm) (rpm) (%o) (rpm) (%)
0.823 1317 1450 9.150% 1317 = 0%
1.321 1371 1510 9.205% 1371 =~ 0%
1.817 1312 1570 16.43% 1320 0.61%
2.316 1355 1650 17.86% 1355 3.90%
3.808* 1420 1700 16.47% 1410 0.70%

*Used for model validation only. Not included in the RSM training.

A common trend in proving the generality of the estimated parameters, is testing
the model on untrained data at a different load. Figure 13 shows the original and
enhanced models compared to the experimental results for an input load equal to
3.808 Ib. The results demonstrate that the enhanced model is robust, and it gives
better simulation compared to the original. For example, the original model predicts
the 1 critical speed at 1700 rpm with a maximum peak response of 0.6 mils which
represents 16.47% of the experimental one. Meanwhile, the enhanced model predicts
this critical speed at a speed equal to 1410 rpm with a maximum peak value of 1.4
mils which represents only a 0.7% difference.
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Fig. 13. Rotor vibration synchronous response of disk 2 (displacement) with input load = 17.4 N (3.817
1b) for (—E—) Simulation with system coefTicients based on Sommerfeld number, (soebans )
Simulation with system coefficients based on parameter estimation, ( =—£3-— ) Experimental.

As a verification step to show the model improvement for the new system with
estimated parameters, the instability threshold speeds were extracted, and the results
were excellent. Table 3 shows the comparison of the instability threshold speeds of the
experiment, original simulation, and simulation results with estimated parameters. For
all tested static loads, the predicted error of the original model was 8.34% - 14.4%. On
the other hand, the enhanced model had a prediction error of 2.19% - 4.74%, which is
much smaller than the original model.
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Table 3. Summary of the instability threshold speed at each static load.

Experimental Si{:::‘:t:]o;:i: :;mlt Simulation with parameter ID.
Results (Original Model) (Enhanced Model)
it:;l: Instability }[n;:::;lt:;); Diffirence ;{:f:::::g Diffirence
(Ib.) Threshold (rpm) v (%) ) (%)
0.823 2838.37 2475 12.8% 2955 3.95%
1.321 2877.71 2480 13.8% 2965 2.94%
1.817 2805.32 2469 12.0% 2945 4.74%
2.316 2919.58 2500 14.4% 2985 2.19%
*3.808 3164.02 2900 8.34% 3100 2.02%

* Used for model validation only. Not included in the RSM training.

For higher static loads, there was still some difference in the result. This may be
due to experimental measurements, model assumptions, and/or from the optimization
assumption of the lower and upper band of stiffness and damping coefficients
measured from non-dimensional parameters.

CONCLUSIONS

In this study, the overall comparisons between experimental results and analytical
outputs for the original rotor-bearing model without parameter estimation were not
satisfactory. Consistently, the simulation predicted critical speed differed from the
experimental results. These consistent differences strongly suggest that the journal
bearing coefficients should be estimated as a function of speed and static load. In
addition, the journal bearing coefficients were also corrected using the parameter
estimation method. An optimization methodology using pattern search techniques was
implemented to determine the unknown parameters of the rotor-bearing system. The
design space was defined based on the estimated parameters using the Sommerfeld
number.

Finally, the enhanced model succeeded in predicting the actual responses of the
system with minor differences between the simulated and the actual responses at
different loading and speed conditions. This enhanced model creates a great interest
in developing smart systems for predictive maintenance and troubleshooting of high
performance turbo-machinery that benefit from advanced identification procedures.
Moreover, the model can be used for enhancing the performance of rotor bearing
systems via optimization methods. More studies could improve design of rotor-bearing
systems with minimum power loss, which show unbalance and stress reduction on
rotor shafts.
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