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ABSTRACT 

An analysis is made of the steady one dimensional flow and heat transfer of an incompressible viscoelastic 
electrically conducting fluid (PTT model) in a channel embedded in a saturated porous medium. The pressure 
driven flow is subjected to a transverse magnetic field of constant magnetic induction (field strength). The heat 
transfer accounts for the viscous dissipation. The governing equation (a nonlinear ordinary differential equation) is 
solved analytically (Homotopy Perturbation Method) and numerically (Runge-Kutta method with shooting 
technique) providing the consistency of the result. The role of Deborah number substantiates both Newtonian and 
non-Newtonian aspects of the flow model. The inclusion of two body forces affects rheological property of the flow 
model considered. Temperature distribution in the boundary layer is shown when the channel surfaces are held at 
constant temperatures. A novel result of the analysis is that the contribution of viscous dissipation is found to be 
negligible as the variation of temperature is almost linear across the flow field in the present PTT fluid model 
indicating preservation of thermal energy loss. 
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Nomenclature 

 Magnetic flux     De Deborah number,   

 constant flux density      electric current density   

D/Dt , material time derivative    I identity tensor    

Kp  porosity parameter    p pressure     

L   characteristic length    Cauchy stress tensor 

M  magnetic parameter     velocity vector 
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Greek Symbol: 

 extra stress tensor     fluid density 

 relaxation time    elongation parameter  

 constant viscosity coefficient   gradient operator 

 electrical conductivity  

 

INTRODUCTION 

Many industrial or common fluids with complex structure such as polymeric fluids like molten plastics, paint, 
blood, egg whites, foams, and granular media  display unusual behavior other than simply interplay of inertial and 
viscous forces as in case of Newtonian fluid. The present study mainly applied to flows of polymeric fluid due to 
presence of long chain molecules. The study of such fluids falls in the field of viscoelasticity, due to display of both 
viscous and elastic behaviors. The linear affine Phan-Thien-Tanner (PTT) model is to be used out of many 
mathematical models of viscoelastic fluid like PTT model and can be applied to flows of polymer melts. The flow 
of  2.5% polyisobutylene solutions, fitting the PTT model well with the model parameter =0.8 and a typical value 

=0.25, is suggested for high density polyethylene melts. 
 
For the PTT model parameter , values lie in the range [0,1], with the values approaching 1 being 

unrealistically large. One of the best known applications in this area was the disposal of red mud (the waste product 
of the bauxite alumina). The result of the work was carried out by Nguyen and Boger implemented by ALCOS of 
Australia to reduce environmental impact of their waste disposal system (Nguyen & Boger, 1998). Boger also 
applied this result to oil industry to maintain the fluidity of high wax content crude oil. Further, the techniques have 
been used to pipeline transportation, inkjet printing, and delivery of agricultural chemical. The constitutive 
equations proposed by researchers (Phan-Thien and Tanner, 1977, Tanner, 2000&Oliveira and Pinho, 1999) 
derived the analytical expression for velocity field and stress components of the fully developed flow of PTT fluids 
through channel and pipe. 

 
The following recent contributions are noteworthy also. Stability analysis of constitutive equations for 

polymer melts in viscoelastic flows was studied by Grillet et al. (Grillet et al., 2002). For the PTT model equations, 
the instabilities are predicted for both plane coquette and Poiseuille flows using transient finite element 
calculations. They have observed that ballooning of the continuous spectrum, which can cause spurious instability, 
is significantly stabilized for PTT or upper convected Maxwell model constitutive equations. Moreover, Grillet et 
al. here discussed the stability analysis of constitutive equations of polymer melts, representative of PTT 
viscoelastic model in viscometric flows. Numerical study of slip effects on PTT fluids in duct flow have been 
reported by Oveisi and Abdollahzadeh (Oveisi & Abdollahzadeh, 2016). Shah et al. (Shah et al., 2017) have 
presented the exact solution for PTT fluid on a vertical moving belt for lift with slip condition. The interesting 
finding is that the velocity of PTT fluid increased with the incorporation of slip condition on vertical belt. Further, 
Ferras et al. (Ferras et al., 2020) have addressed the problem of Newtonian and viscoelastic fluid (PTT) fluid flows 
through an abrupt 1:4 expansion with slip boundary conditions.  Another interesting problem is shear thinning and 
elasticity in flow around a sphere in a cylindrical tube. Their work considers purely viscous and viscoelasticity type 
and is of practical interest (Song et al., 2010). To investigate the effect of shear thinning and elasticity, four 
representative constitutive equations are considered, that is, Newtonian, Carreau, Oldroyd B, and PTT models. It 
was found that both shear thinning and elasticity lead to a decrease in the drag coefficient. 
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Jamalbadi and Oveisi (Jamalabadi & Oveisi, 2016) have considered PTT fluid model of viscoelastic fluid flow 
around a cylinder in a duct. Numerical solutions are obtained for the 2D viscoelastic flow. Finite element scheme is 
implemented. Recently Hussain et al. (Hussain et al. 2019) have studied peristaltic flow of PTT fluid in a flexible 
cylindrical tube. The core layer (inner) layer fluid satisfies the constitutive equations of PTT fluid model, and 
peripheral (outer) layer is known as a Newtonian fluid.  

 
All the above works are only confined to flow without considering heat transfer in the flow domain. The 

following recent works take care of heat transfer phenomenon. Khan & Tlili (2020) studied the significance of 
activation of microorganisms. Al-Khaled & Khan (2020) have studied the thermal aspects of Cassonnano liquid. 
Ahmed et al. (2020) have reported novel micro structure features on a curved channel. In addition to the above 
works, the work of Khan et al. (2020) on thixotropic nano-liquid configured by Riga surface with gyrotactic 
microorganism and activation energy attracted the attention and interest in the field of biotechnology applications. 
Another work which includes heat and mass transfer characteristics in flow of bi-viscosity flow through a curved 
channel with contracting and expanding walls has been reported by Ahmed et al. (2020). 

 
The works discussed above are confined to electrically nonconducting flow without porous medium. Further, 

on careful stud, it is revealed that the combined effects of applied transverse magnetic field (a force-acting-at-
distance) and permeability of the saturated porous medium, an inbuilt body force of the medium, on PTT fluid 
model of viscoelastic fluids have not been discussed in any of the above reported works. Moreover, solution 
methods in most of the papers reflected above are numerical, but, in the present paper, both analytical (homotopy 
perturbation) and numerical methods (4th order Runge-Kutta method with shooting technique) have been applied to 
solve the governing equations with prescribed boundary conditions. The analysis presents a good agreement of the 
solutions by two methods which assert the accuracy of the results reported herein. 

 
The following assumptions are made during the course of the present analysis. Some are realistic and 

pertaining to polymeric processing and other industrial applications are oriented to act as a coolant/heating element. 
 

i. The flow is incompressible and has constant physical properties. 
ii. We assume that the magnetic Reynolds number is so small that the induced magnetic field can be neglected in 

comparison with the applied one.  
iii. The Joule heating has been neglected as the study is limited to low magnetic Reynolds number. 
iv. The Darcy dissipation is neglected because present study is not of extreme size or at low temperature or in high 

gravity field. 
v. It is also assumed that no applied and polarization voltage exist. This then corresponds to the case when no 

energy is added to or extracted from the fluid by the electric field. 
vi. Further, it is assumed that the porous medium is uniform and fully saturated. 

 

MATHEMATICAL FORMULATION 

The constitutive equation of an incompressible, PTT fluid (Phan-Thien and Tanner, 1977, &Tanner, 2000) is 
of the form  

 

,          (2.1)  

,            (2.2) 
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where is the first Rivlin-Ericksen tensor and  is Oldroyd upper convected derivative defined as  

=     ,  

.          (2.3)  

and  are defined in two dimension as follows: 
 

,  

In the present case 
 

and  

Two forms of the PTT models are in common use, where the function  is defined as follows: 
 

, linear form (Phan-Thien and Tanner, 1977)    (2.4) 

, exponential form (Tanner, 2000).      (2.5) 

When tends to be zero and the trace of the stress tensor is small, then (2.4) and (2.5) become upper 
convected Maxwell (UCM) model. 

 
The field equation of MHD flow becomes 
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where  , the extra stress tensor, and is the total stress tensor. 

The continuity equation is given by 
 

           (2.7) 

For the present problem, the stress tensor and velocity field turn into the form 
 

        (2.8) 

where  is the unit vectors and u(y) is the velocity in the x-direction, respectively.  
 
Suppose that external electric field is negligible and the magnetic Reynolds number is very small. Therefore, 

the MHD body force can be considered as 
 

          (2.9) 

The continuity equation is satisfied by the assumptions in (2.8). 
 
The equation of motion (2.6) gives the following equations: 
 

       (2.10) 

         (2.11) 

          (2.12) 

Substituting (2.8) in (2.1) and (2.2), we get 
 

,       (2.13) 

,       (2.14) 

÷÷
ø

ö
çç
è

æ
=

yyyx

xyxx

tt
tt

t! *T

01 =trA

,ˆ)(,ˆ)( iyiyuV tt ==

î
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.                (2.15) 

Applying the linear form of f, we get 
 

,  .            (2.16) 

Substituting the following nondimensional variables and parameters 
 

          (2.17) 

in (2.10), we  get (after dropping the asterisks) 
 

, where           (2.18) 

  Now, putting (2.16) in (2.4), we have 
 

.             (2.19) 

Since , from (2.18) and (2.19), we get 
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For brevity, we introduce  
 

and we get 
 

         (2.22) 

,         (2.23) 

where′  denotes derivative with respect to y.  
    
The equation (2.22) presents a nonlinear oscillatory system. 
 
(i) When N<0 and <0, equation represents a hard spring system, and the motion of a mass is 

oscillatory. 
(ii) When N<0 and >0, it represents a soft spring system, and the motion of a mass appears to be non-

oscillatory. However, the qualitative analysis is required for complete analysis (Dennis, 2009). 
 
However, in case of Equation (2.22), both cases do not arise as the model is related to a fluid flow, and here N 

and as defined are always positive. 
 

SOLUTION OF THE PROBLEM 

We set (2.22) into following form by introducing ‘q’ as the homotopy perturbation parameter (He, 2005), and 
we get 
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(ii)  ,                                                          (3.5) 

 .                                                 (3.6) 

Solving (3.3) and (3.5) with the boundary conditions (3.4) and (3.6), respectively, we get 
 

         (3.7) 

  (3.8) 

The HPM iterative process is considered up to first order. Hence, 
 

         (3.9) 

The constant of coefficients can be calculated using boundary conditions. 
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HEAT TRANSFER ANALYSIS 
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magnetic Reynolds number. Further, we have not considered Darcy dissipation term because our present flow field 
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        (4.2)
  

Introducing the following nondimensional parameters in Equation (4.1) 
 

 

we get (after dropping asterisk), 
 

       (4.3) 

         (4.4) 

Substituting the values of and u from (3.9) and integrating twice, we get the expression for . 
 

RESULTS AND DISCUSSION 

The following discussion on temperature distribution reveals the effects of Deborah number and Eckert 
number which accounts for both momentum energy and thermal energy transport and resulting heating/cooling of 
the bounding surface besides other parameters on temperature field. However, the contribution of volumetric heat 
source has not been considered while computing to avoid the lengthy and complex calculations. 

 
Figures 1-5 depict the effects of pertinent parameters on temperature distribution.  The temperature 

distribution exhibits monotonically the increasing behavior across the flow domain. The effects of important 
parameters are as follows. The effect of the increase in magnetic parameter is to increase the temperature 
throughout the flow domain, but reverse effect is observed for all other parameters such as Deborah number De, 
porosity parameter Kp, Prandtl number Pr, and Eckert number Ec. 

 
In the absence of viscous dissipation in the flow (Ec=0), the temperature distribution is linear which is evident 

from energy Equation (4.3). The reason of the decrease in temperature with the increase in Pr is corroborative to the 
material property as Pr signifies the ratio of momentum diffusivity to thermal diffusivity. 
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Figure 1. Temperature profiles for  De.  

 

 

 
Figure 2. Temperature profiles for  Kp 
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parameters are as follows. The effect of the increase in magnetic parameter is to increase the temperature 
throughout the flow domain, but reverse effect is observed for all other parameters such as Deborah number De, 
porosity parameter Kp, Prandtl number Pr, and Eckert number Ec. 

 
In the absence of viscous dissipation in the flow (Ec=0), the temperature distribution is linear which is evident 

from energy Equation (4.3). The reason of the decrease in temperature with the increase in Pr is corroborative to the 
material property as Pr signifies the ratio of momentum diffusivity to thermal diffusivity. 
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Figure 3. Temperature profiles for Pr 
 

 

Figure 4. Temperature profiles for Ec 
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Figure 5. Temperature profiles for M.                               
 
 

    
 
 

Figure 6. Velocity profiles for M. 
 

 

Figure 3. Temperature profiles for Pr 
 

 

Figure 4. Temperature profiles for Ec 
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Fluid with higher Pr will possess low conductivity, and hence temperature decreases as Pr increases. On the 
other hand, increase in magnetic force density parameter M generates force, which is proportional to negative of the 
velocity of the moving medium and acts as a viscous breaking force [12] and hence resists the motion and generates 
heat energy. Further, the effect of Deborah number which characterises both Newtonian (De<1) and non-Newtonian 
elastic fluids (De>1) is to decrease the temperature in the present study for both low and moderate values of De. 
This may be attributed to elastic property of the fluid for which some strain energy is stored up in the fluid mass, 
decreasing the temperature in the flow domain. 

 
Fig. 6 illustrates the impact of electromagnetic force, a resistive electromagnetic force created due to 

interaction of transverse magnetic field with the conducting-flowing PTT fluid. Due to resistive force generated and 
acted upon in the main direction of flow, the velocity decreases. On careful observation, it is revealed that for low 
magnetic number vis-à-vis for low intensity of the applied magnetic field, the significant increase in velocity is 
marked. Therefore, during clinical/ mechanical necessity to control the flow of biological or industrial fluid flow, 
one can regulate the intensity of the external magnetic field to obtain the desired flow rate. 

 
 

 

 
Figure 7. Velocity profiles for De 



73B.K. Swain, M.Das and G.C. Dash

 

 Figure 8 (a). Velocity profiles for M=1, Kp=1, and De=2 
 

 

 

Figure 8(b). Velocity profiles for De=3 

Fluid with higher Pr will possess low conductivity, and hence temperature decreases as Pr increases. On the 
other hand, increase in magnetic force density parameter M generates force, which is proportional to negative of the 
velocity of the moving medium and acts as a viscous breaking force [12] and hence resists the motion and generates 
heat energy. Further, the effect of Deborah number which characterises both Newtonian (De<1) and non-Newtonian 
elastic fluids (De>1) is to decrease the temperature in the present study for both low and moderate values of De. 
This may be attributed to elastic property of the fluid for which some strain energy is stored up in the fluid mass, 
decreasing the temperature in the flow domain. 

 
Fig. 6 illustrates the impact of electromagnetic force, a resistive electromagnetic force created due to 

interaction of transverse magnetic field with the conducting-flowing PTT fluid. Due to resistive force generated and 
acted upon in the main direction of flow, the velocity decreases. On careful observation, it is revealed that for low 
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marked. Therefore, during clinical/ mechanical necessity to control the flow of biological or industrial fluid flow, 
one can regulate the intensity of the external magnetic field to obtain the desired flow rate. 
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 Figure 8(c). Velocity profiles for Kp=0.5 
 
 

 

Figure 8(d). Velocity profiles for  M=3 
 

Figures 8(a)-8(d) are drawn to show the compatibility of two methods, that is, Runge-Kutta method and HPM 
in respect with different values of parameters M, Kp, and De. It is observed that both methods are in good 
agreement with each other except 8(b) for different values of De where a slight difference is marked. The reason of 
difference may be attributed to the higher power of De, that is, De2 in Equation (2.20). For brevity, Figures 8(c) and 
8(d) are omitted which correspond to different values of M and Kp. 
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CONCLUSION 

The above discussion presents a flexible mean to simulate the heat transfer parameters to make use of P.T.T 
fluid as coolant or otherwise. 

 
• Deborah number acts as a discriminating parameter between viscous and viscoelastic fluids in decelerating or 

accelerating the fluid velocity, respectively. 
• Fluid with higher Pr possesses low conductivity, and hence temperature decreases. 
• The temperature is decreased for both low and moderate values of Deborah number. 
• Increase in magnetic force intensity parameter leads to increase in temperature and decrease in velocity. 
• Temperature decreases for increasing values of both Eckert number and porosity parameter. Thus, higher 

porosity of the medium may act as a coolant. 
• The almost linear variation of temperature distribution is the significant revelation of heat transfer for property 

of PTT flow ignoring thermal energy loss due to viscous dissipation (Equation. 4.3). 
• Increase in magnetic force intensity increases the fluid temperature which may result in cooling of the 

bounding surface. 
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