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ABSTRACT 

Automatic image quality assessment similar to human vision perception is an essential process for real-

time image processing applications to perform perceptual image assessments for effectively achieving their goals. 

As no-reference image quality assessment (NR-IQA) schemes perform perceptual assessments of images without 

any information about their original version, these algorithms suit real-time computer vision techniques because 

of the non-availability of reference images. Contrast and colorfulness play important roles in determining the 

quality of color images. By combining many IQA metrics, a number of combined metrics had been devised.  This 

study provides an insight into major NR-IQA methods and their effectiveness in assessing contrast, colorfulness, 

and overall quality of contrast-degraded images with technical analysis.  The effectiveness of top-ranking NR-

IQA methods is experimentally assessed with benchmark assessment methods on images from benchmarked 

databases. The study provides insight into open research challenges in the area of NR-IQA for developing new 

promising methods by clearly demarcating the difficulties of top-ranking NR-IQA methods.  

Keywords: IQA, NR-IQA; Features Extraction; Image Distortion; Machine Learning; Quality 

Prediction.   

INTRODUCTION 

Digital image processing plays a vital role in the key vision-based applications including robotics, medical 

imaging, agricultural development, industrial automation, surveillance and military, autonomous vehicles, tactile 

feedback, etc. (Gonzalez & Woods, 2006; Mittal et al., 2019). Image quality in computer vision denotes the relative 

correctness of images in terms of perceptual assessments by which the imaging systems acquire, digitize, archive, 

compress, transmit and display images (Mohammadi et al., 2014; Gonzalez & Woods, 2006). Automatic Image 

Quality Assessment (IQA) similar to the biological human vision analysis is an essential process for image 

processing systems to perform perceptual assessments for effectively performing its subsequent tasks such as 

segmentation, representation, classification, recognition, and other decision-making processes (Navas & 

Sasikumar, 2011). The image quality assessment schemes perform perceptual assessments of the image in terms 

of its contrast, luminance, sharpness, dynamic range, color, chromatic deviations, vignetting, tone reproduction, 

and noise in the similar way humans perform the subjective evaluation. 

In reference to the accessibility of the reference image, the three ways to perform objective image quality 

assessment are Full Reference Image Quality Assessment (FR-IQA), Reduced Reference Image Quality 

Assessment (RR-IQA), and No Reference Image Quality Assessment (NR-IQA). FR-IQA algorithms decide the 

quality of the input image by comparing the input image with the reference images while RR-IQA algorithms use 

some limited characteristics of the original image (Ma et al., 2017; Ding et al., 2021). NR-IQA schemes determine 

the image quality without using any prior knowledge about pristine images. In most of the real-world applications, 

there is the absence of reference image to compare the quality of its degraded images and hence NR-IQA metrics 

have prime importance in the case of real-time image processing applications. Some of the NR-IQAs can be used 

for general-purpose and some are designed for specific degradations. This study evaluates the performances of 
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top-ranking NR-IQA schemes in assessing the contrast, colorfulness, and overall quality of the distorted color 

images in a general perspective. 

Many NR-IQA schemes focused only on specific characteristics of image quality like entropy (Krotkov 

& Martin, 1986; Xie & Wang, 2010), brightness (Bezryadin et al., 2007), colorfulness (Yendrikhovski et al., 1998; 

Fu & Shih, 2006; Hasler & Suesstrunk, 2003; Panetta et al., 2013), sharpness (Fu & Shih, 2006; Santos et al., 

1997; Eskicioglu & Fisher, 1995; Pech-Pacheco et al., 2000) and contrast (Xie & Wang, 2010; Panetta et al., 2013; 

Santos et al., 1997; Firestone et al., 1991; Agaian et al., 2000; Wharton et al., 2006; Agaian et al., 2007; Panetta et 

al., 2008; Panetta et al., 2011; Wu et al., 2013). As the first NR-IQA, Fu and Shih (2006) formulated a generic 

Quality Index (QI) for color images by using colorfulness, sharpness, and contrast metrics. To combine these 

metrics, the calibration procedure is employed on subjective data. In the same direction, Panetta et al. (2013) 

presented Color Quality Enhancement (CQE) measure and Gao et al. (2014) suggested Color Quality Measure 

(CQM). Later, Xie and Wang (2010) introduced Color image Assessment Factor (CAF) by using a multiplicative 

model to present the quality model based on contrast, entropy, and Normalized Neighbourhood Function (NNF). 

With the advancement in machine learning techniques, many NR-IQA metrics were being introduced in the 

literature by using various variations of Support Vector Machine (SVM) (Mittal et al., 2011; Yan et al., 2019; Fang 

et al., 2014; Chen et al., 2019), Artificial Neural Network (ANN) (Bouzerdoum et al., 2004; Li et al., 2011; Talebi 

& Milanfar, 2018) and Convolution Neural Networks (CNN) (Bosse et al., 2016; Gu et al., 2017; Liu et al., 2017). 

These metrics are classified based on the awareness of distortion types and subjective opinion of distorted 

images at the time of training. The Distortion-Aware (DA) models are modelled by performing training on specific 

distortions (Mittal et al., 2012). Opinion-Aware metrics use images labelled by subjective quality scores for 

training. Since the majority of NR image quality schemes were designed to measure specific distortions for specific 

applications, these methods may produce unsatisfactory performance in the case of other distortions/applications. 

Most of the general-purpose IQA schemes developed in the literature were tested on compression, noise, 

and blurring based distortions. It is seen that very few algorithms consider contrast distortion. George and 

Prabavathy (2014) reviewed six NR algorithms while Manap and Shao (2015) and Krishnendu et al. (2021) 

surveyed a small number of NR algorithms and considered the images with many types of distortions but failed to 

consider contrast distortions. Kamble and Bhurchandi (2015) surveyed a large number of metrics for different 

types of distortions but did not assess the performance of IQA algorithms on images with contrast distortion. Xu 

et al. (2017) reviewed the development factors of eight NR-IQA algorithms and compared their performance on 

three databases with limited image distortions. Ahmed et al. (2017) reviewed and compared only two algorithms 

suitable for assessing contrast distorted images in different transform domains.  Zhai and Min (2020) studied 

numerous IQA algorithms on many databases but they also ignored the metrics designed specifically for contrast 

distortion. Varga (2021) conducted the study on numerous NR-IQA methods but only on LIVE In the Wild and 

KonIQ-10k databases. Wang (2021) summarizes deep learning-based NR-IQA approaches but didn’t review 

approaches designed for contrast distortion. Unlike these studies on NR-IQA, this study is unique in reviewing 

and experimentally comparing a large number of metrics based on different features of the images under numerous 

contrast-distorted and illuminating conditions. All these reviews and comparisons are made by considering the 

whole database as one entity while the images may be distorted with different functions. 

Artificially generated databases such as CSIQ, TID2013, and CCID2014 consist of images distorted with 

certain levels of specific distortions and hence the IQA schemes need to rank images with respect to the affecting 

distortion levels. Further, for ranking IQA schemes with respect to their performance, additional benchmarking 

parameters are required. Hence, these technical reviews in the literature though assess some specific goals of IQA 

measures but did not adequately analyse all goals of IQA methods such as effective testing on larger sets of images 

from numerous databases, contrast/colorfulness assessments in different illumination situations, and benchmarked 

ranking of IQA schemes. 

By focussing on the limitations of existing technical reviews in the literature, this paper makes an 

extensive discussion and experimental analysis of top-ranking NR-IQA schemes in the literature for assessing the 

contrast, colorfulness, and overall quality of images. Unlike other studies in the literature, the paper extends its 

study on comparing and evaluating the performances of numerous IQA algorithms on numerous contrast distorted 

images. As NR-IQAs are used by the researchers to quantify the image quality in the image enhancement methods, 

different image enhancement techniques used many metrics to assess the colorfulness and contrast of enhanced 

images. This study is specifically carried out on analyzing popular and effective general-purpose no-reference 

metrics used to quantify the colorfulness and contrast of the enhanced images. The study analyses the effectiveness 

of using different IQA algorithms in the case of different distortions under various imaging conditions. Further, 

the study uses Average Spearman Rank Order Correlation Coefficient (ASROCC) and Average Kendall Rank 
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Order Correlation Coefficient (AKROCC) as the benchmark parameters to assess the performance of the existing 

NR-IQAs.  

The paper is organized into six sections. Prominent IQA methods in the literature are presented in Section 

2. Section 3 presents the image databases used in this study, the details of experiments, and the evaluation criteria 

of different algorithms. Section 4 demarcates the results of this study. The conclusions are presented in Section 5. 

Finally, Section 6 provides the future scope of the research.  

PROMINENT NR-IQA SCHEMES 
The NR-IQA algorithms attempt to provide computational methods for performing quality assessments 

of images with limited/no-priori information about illumination, image background, objects, textures, features, 

and possible distortions. The section briefly discusses the contrast, colorfulness, and combined metrics.  

Colorfulness Metrics 

 
Colorfulness refers to chromaticity and it is defined as the visual sensation of chromatic strength in 

accordance with the perceived color. The colorfulness of the image is proportional to luminance, except for bright 

images (Palus, 2006) and it denotes the strength of the hue component of the image. This subsection details various 

colorfulness-based IQA methods used in the literature. 

Yendrikhovski et al. (1998) proposed Colorfulness Index (CI) as the sum of the mean and standard 

deviation of saturation of the image in CIE LUV color space and found that the CI and human judgement have a 

correlation of 0.91.  

Hasler and Suesstrunk (2003) proposed the Colorfulness Index in the opponent color spaces rg & yb and 

found its correlation to 95.3%. Later, Fu and Shih (2006) normalized this colorfulness metric as 

QI_Colorfulness= (0.3*μ
rg,yb

+σrg,yb) 85.59⁄  (1) 

Where, μ
rg,yb

=√μ
rg
2 +μ

yb
2  and σrg,yb=√σrg

2 +σyb
2 ; and μ

rg
, μ

yb, σrg
2 , σyb

2  are the average and standard deviation 

of rg and yb channels.  

The concept of colorfulness was further explored by Panetta et al. (2013) and two extensions of 

colorfulness came into existence as 
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Gu et al. (2017) used Mean Saturation (MS) as a colorfulness measure. The given image for assessment 

is transformed into HSV color space from RGB color space and the mean of saturation channel is calculated. 

Contrast Metrics 

 
In visual perception, contrast plays a vital role in distinguishing objects and is evaluated by finding the 

dissimilarity in luminance of the object of interest from its background. Human perception is more responsive to 

contrast than luminance. Although many IQA methods identify contrast as the measure of luminance/intensity 

channels, very few metrics such as Average Color Contrast (ACC) and Color Root Mean Enhancement (CRME) 

measure contrast using color channels. Table 1 briefly describes the contrast metrics used in the study and the 

details can be found in their respective papers. 
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Contrast Metric Definition 

Range (Firestone et al., 1991) Max(G)-Min(G) 
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FuContrast (Fu & Shih, 2006) max (
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Where, G is the gray scale image of size M×N; G̅ is the mean of intensities of the image; LV̅̅ ̅̅  is the mean 

of local variance of all pixels; Gmax,b and Gmin,b are the highest and lowest value of intensities of b block 

respectively; Gcenter,b represents the pixel value corresponding to the centre pixel; Image is divided into B blocks 

of size b1×b2; α is a constant in the range [0, 1]; ⊕̃, ⊖̃, ⊗̃, and ∗ denote the logarithmic image processing (LIP) 

based operators (Jourlin & Pinoli, 1988). 

COMBINED METRICS 

Contrast, colorfulness, brightness, sharpness, etc. are the various factors used for assessing the quality of 

images. Combined metrics combine two or more individual IQA schemes to determine the overall quality of an 

image. This subsection details various combined metrics used in the literature. 

Fu and Shih (2006) proposed Quality Index (QI) for measuring the quality of color images by 

incorporating colorfulness, sharpness, and contrast of color images and modelled QI in terms of linear regression. 

Panetta et al. (2013) explored this technique and presented Color Quality Enhancement (CQE) by using linear 

relationship among colorfulness, contrast, and sharpness and trained the model using TID2008 database. 

Xie and Wang (2010) introduced Color image Assessment Factor (CAF) based on human-specific image 

quality parameters by incorporating Average Color Contrast (ACC), Average Information Entropy (AIE), and 

Normalized Neighborhood Function (NNF) using R, G, and B color channels. As CAF showed more consistency 

with human visual assessment of images, Sharma and Verma (2017) derived CAF1 by using only ACC and AIE. 

Moorthy and Bovik (2010) proposed Support Vector Machine (SVM) based Blind Image Quality Index 

(BIQI) by incorporating image statistics from distorted images in a two-stage strategy to find the image quality 

score. The first stage finds the likelihood of the distortion type and the second stage determines the quality score 

using statistics from distorted images. To find effective features, the given image is applied with wavelet transform 

on three scales and orientations.  

Blind/Referenceless Image Spatial Quality Evaluator (BRISQUE) (Mittal et al., 2011) used SVM based 

two-stage strategy similar to BIQI to find the quality score, but the algorithm works in the spatial domain and uses 

a total of 36 features to fit the SVM model.  

Natural Image Quality Evaluator (NIQE) (Mittal et al., 2012) is designed in the spatial domain using 

Natural Scene Statistics (NSS). The algorithm uses almost the same NSS features as used by BRISQUE but the 

NIQE algorithm is trained using the features extracted from natural images of Berkeley image segmentation 

database by excluding artificially distorted images. 

No-Reference Contrast Distorted Image Quality Assessment (NRCDIQA) (Fang et al., 2014) is designed 

using natural scene statistics and selected first four moment statistics and entropy features of the image to fit its 

model. The feature vector of NRCDIQA contains the probabilities for a natural image, the first four moment 

statistics, and entropy.  

137



A technical review of no-reference image quality assessment algorithms for contrast distorted images 

 

Table 2. Analysis of combined metrics 

IQA Sp

ecific  for 

Contrast 

dis

tortion 

Tr

aining 

Required 

Training Databases Testing 

databases 

Fu_

QI 

No No - - 

CAF No No - - 

CQE No Ye

s 

TID2008 TID2008 

CAF

1 

No No - - 

BIQI No Ye

s 

LIVE IQA LIVE IQA 

BIQ

ME 

No Ye

s 

Self-generated 9 databases 

BRIS

QUE 

No Ye

s 

LIVE IQA LIVE IQA 

CEI

Q 

Ye

s 

Ye

s 

CSIQ,  TID2013, 

CID2013, CCID2014 

CSIQ, 

TID2013, CID2013, 

CCID2014 

ENI

QA 

No Ye

s 

LIVE IQA LIVE IQA, 

TID2013 

NIQ

E 

No Ye

s 

Copyright-free Flicker 

data and Berkeley image 

segmentation  database 

LIVE IQA 

NIQ

MC 

Ye

s 

No - CID2013, 

CCID2014, CSIQ, 

TID2008, TID2013 

NRC

DIQA 

Ye

s 

Ye

s 

SUN2012 CID2013, 

TID2013, CSIQ 

No-Reference Image Quality Metric for Contrast-distorted (NIQMC) (Gu et al., 2016) utilises local and 

global details to determine the quality score. The maximum value of entropy of unpredicted regions is used to 

determine the local details. For the global details, Jensen-Shannon (J-S) divergence was calculated using the 

Kullback–Leibler divergence by processing image histogram and uniformly distributed histogram with maximum 

entropy value.  

Blind Image Quality Measure of Enhanced images (BIQME) (Gu et al., 2017) used 17 features related to 

contrast, colorfulness, brightness, sharpness, and naturalness of image to predict the quality score. The researchers 

created more than 100,000 images to train the model and the algorithm is also tested on images from other 9 

databases.  
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Contrast Enhancement based contrast-changed Image Quality (CEIQ) (Yan et al., 2019) method converts 

the color image into gray scale image and finds its histogram equalized version to determine SSIM, two entropies 

and two cross-entropy features to model the CEIQ metric.  

Entropy-based No-reference Image Quality Assessment (ENIQA) algorithm (Chen et al., 2019) extracts 

56 features that span mutual information of RGB channels, mean and skewness of gray scale and sub-band images 

using joint probability function and two-dimensional entropy by considering the mean value of 8×8 

neighbourhoods in spatial and frequency domain. The details of all approaches can be found in respective papers.  

Table 2 discusses databases used for training and testing by the combined metrics and whether they are specific to 

the contrast distortion. 

EXPERIMENTAL SETUP 
The empirical simulation analysis of the comparative methods is carried out on MATLAB R2017a 

software in an Intel i5 laptop with 2.50 GHz speed and 4GB RAM. To analyse the quantitative/visual outcomes of 

the comparative methods, the simulation analysis is conducted with a large set of synthetic and non-synthetic 

images with varying textural, brightness, and contrast complexities from different image databases. The 

performance of various IQA schemes is assessed with benchmarked parameters. This section details the image 

databases and the assessment criteria used in the comparative study. 

IMAGE DATABASES 

For comparing the experimental effectiveness of image quality assessment methods in measuring contrast 

degradations, this study conducted experiments by using contrast-distorted images from CSIQ, TID2013, 

CCID2014, and PHOS databases.  The Computational and Subjective Image Quality (CSIQ) database (Larson & 

Chandler, 2010) includes 30 pristine and 116 contrast-distorted images. The image quality ratings are recorded in 

the form of Difference Mean Opinion Score (DMOS) in the interval [0-1]. The Tempered Image Database 2013 

(TID2013) (Ponomarenko et al., 2015) contains 125 images with contrast changes which are selected in this study 

for evaluating the quality score. The subjective ratings are recorded using the Mean Opinion Score (MOS) in the 

interval [0-9]. 

  The CCID2014 database (Gu et al., 2015) includes 655 contrast-degraded images from 15 natural scenes. 

The subjective ratings are recorded in terms of MOS (1-5). The images of CCID2014 are distorted with five types 

of functions. This study uses images distorted with Gamma transfer, cubic & logistic, and mean shift functions 

from CCID2014 database. The PHOS database (Vonikakis et al., 2013) includes 225 color images from 15 scenes 

of varying illuminations. This database is used in this study to monitor the capability of IQA algorithms to rank 

the images captured under different illumination conditions.  

EVALUATION CRITERIA 

The effectiveness of IQA models is assessed in accordance with their correctness in prediction and 

prediction monotonicity (Video Quality Experts Group, 2003). As various NR-IQA schemes provide dissimilar 

quality scores, common benchmarking frameworks are required to assess the effectiveness of various NR-IQA 

schemes. The previous studies used Pearson Linear Correlation Coefficient (PLCC), Spearman Rank Order 

Correlation Coefficient (SROCC), Kendall Rank Order Correlation Coefficient (KROCC), Root Mean Squared 

Error (RMSE), and Average Processing/Computation Time (CT) in seconds as benchmarking parameters to assess 

the effectiveness of various NR-IQA methods.  

  PLCC and RMSE are utilised for measuring the correctness of the prediction of the IQA model. SROCC 

and KROCC are used for predicting the monotonicity of the model. KROCC performs better than SROCC in the 

case where there is no tied value in the data (Puth et al., 2015). In order to compare IQA models, the study uses 

the Average Spearman’s Rank Order Correlation Coefficient (ASROCC) and Average Kendall’s Rank Order 

Correlation Coefficient (AKROCC) to predict the monotonicity of the model. If N, D, and L respectively denote 

the number of reference images, degradation types, and distortion levels, the ASROCC and AKROCC are 

respectively defined as  
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ASROCC=
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D
∑ abs (
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∑ SROCC(Q
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 (1)  

AKROCC=
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D
∑ abs (

1
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∑ KROCC(Q

ij
,Sij)

N

j=1

)

D

i=1

 (2)  

Where, Sij and Q
ij
 are vectors of length L respectively showing the quality scores provided by the IQA 

scheme and the distortion levels corresponding to the given set of distorted images of j-th source image with i-th 

functions used to generate the distorted images. Though AKROCC values are also analysed, these values are not 

presented in the paper due to the want of space.  

EXPERIMENTAL RESULTS AND ANALYSIS 
To analyse IQA metrics, the fidelity of the image is considered so that future applications can choose the 

correct metric while using these metrics to check the performance of the contrast enhancement schemes. This 

section discusses the empirical results of colorfulness, contrast, and combined metrics corresponding to various 

distorted images and makes the comparative analysis of these methods in terms of their performance with actual 

results.  

ANALYSIS FOR COLORFULNESS METRICS 

To measure the colorfulness of color images, the study compares five metrics. The average processing 

time (APT) of all five colorfulness-based algorithms are measured from 116 contrast-distorted images with size 

512x512x3 of CSIQ database and tabulated in Table 3. Mean_Saturation and CQE_Colorfulness1 are the best two 

algorithms in terms of average runtime. From Fig. 1(a), it is visible that the average processing time of 

CQE_Colorfulness1 and QI_Colorfulness are almost the same. It is noted that the Colorfulness Index requires more 

time for converting RGB images to CIELUV color space.  

Table 3. APT of colorfulness metrics on 116 images of CSIQ database 

Metric 

Code 

Colorfulness Metric APT (in Sec.) Rank 

C1 Colorfulness Index 0.0630 5 

C2 QI_Colorfulness 0.0123 3 

C3 CQE_Colorfulness1 0.0122 2 

C4 CQE_Colorfulness2 0.0145 4 

C5 Mean_Saturation 0.0046 1 

 

Table 4 shows the ASROCC values of different colorfulness metrics corresponding to distorted images 

from different databases. From Table 4, Fig. 1(b), and Fig. 1(c), it can be easily assessed that the 

CQE_Colorfulness2 shows the least performance as its ASROCC is the lowest when compared to other metrics. 
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(a) 

 

(b) 

 

(c) 

Figure 1. Results of colorfulness metrics (a) Average processing time of colorfulness metrics (b) 

ASROCC direct average values of colorfulness metrics (c) Database size-weighted average values of ASROCC 

of colorfulness metric 

The databases used in this comparative study provide contrast distorted images generated using different 

functions and hence the effects of all metrics on these different functions are measured separately. CSIQ and 

TID2013 databases have used only one function to generate the distorted images with contrast change. In both 

cases, all metrics except CQE_Colorfulness2 follow the distortion level and visual ranking as shown in Table 4. 
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Table 4. ASROCC values of colorfulness metric 
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Natural images are usually prone to uneven illumination and hence it is advisable to use Mean_Saturation 

and CQE_Colorfulness1 as their ASROCC values in non-uniformly illuminated images from the PHOS database 

are higher than other algorithms. The ASROCC of Mean_Saturation and Colorfulness Index is 1 in uniformly 

bright images for the PHOS database so it is advisable to use Mean_Saturation while working with bright images.  

In the case of dark images, CQE_Colorfulness1 and QI_Colorfulness are showing better results than other 

schemes. By analysing various IQA metrics under different image conditions through Table 3-4 and Fig. 1(a, b, 

c), it is observed that CQE_Colorfulness1, QI_Colorfulness, and Mean_Saturation are the best methods for 

measuring the colorfulness of the given image under different situations.  
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ANALYSIS FOR CONTRAST METRICS 

The study performs the experimental comparison of 17 algorithms to demarcate their performance in 

measuring the contrast of images in different situations. The gray scale metrics Range, variance, RMSC, and color 

image metrics- ACC recorded the lowest average processing time as shown in Fig. 2(a) and Table 5. 

Table 5. Average processing time (APT) of contrast metrics on 116 images of CSIQ database 
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From Fig. 2 and Table 6, it is identified that though most of the metrics show good performance in specific 

situations, very few algorithms are stable in their performance in all situations.  As it is seen from Table 6, AME 

and AMEE are good in all situations except for images degraded with uniform increased brightness.  LogAME 

and LogAMEE are good only for contrast changes, gamma transfer, and non-uniform images. SDME is good only 

for images degraded with contrast change and gamma transfer functions. RME is not suitable for gamma transfer 

and uniform-dark images while LocalContrast is not good for uniform-bright images. Range is highly influenced 

by the outliers and hence it can’t be a good measure. 
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(a) 

 

(b) 

 

(c) 

Figure 2. Results of contrast metrics (a) Rank of average processing time of contrast metrics on 116 

images of CSIQ database (b) ASROCC direct average values of contrast metrics (c) Database size-weighted 

average values of ASROCC of contrast metrics 

In Fig. 3, there are six images of uneven illumination from the PHOS database. It is seen that the 

brightness of images is monotonically decreasing with the last image as the darkest. Though it is expected from 

the metrics that these algorithms should follow the same order either in positive (ascending order) or in negative 

(descending order) direction, LogAMEE, SDME, RME, RMSC, GlobalVar, and CRME are not following the same 

order as shown in Table 7.  
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Table 6. ASROCC values of contrast metrics 
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Overall EME, EMEE, Variance, RMSC, and ACC are good measures of contrast variations as their 

ASROCC direct average value is better than other measures as can be visualised from Fig. 2(b). The weighted 

average ASROCC values of EME among gray scale metrics and of ACC from color image metrics are the best 

ones as shown in Fig. 2(c).  

 

(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 

 

(f) 

Figure 3. Non-uniform illuminated images from scene 1 of the PHOS database. 

Table 7. Contrast metrics’ values for the images shown in Fig. 3. 
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ANALYSIS FOR COMBINED METRICS 

This section analyses the performance of 12 combined metrics including 9 general-purpose and 3 contrast 

distortion specific IQA schemes. From Table 8 and Fig. 4(a), it is observed that the average processing time of 

CEIQ, CAF1, CAF, and NRCDIQA are the lowest when compared to other combined measures used in the 

comparative study. 

Table 8. Average processing time (APT) of combined metrics on 116 images of CSIQ database 
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From Table 9, it is clear that most of the general-purpose algorithms including CAF, BRISQUE, BIQI, 

NIQE, and ENIQA are not working effectively in the case of contrast-distorted images as their ASROCC direct 

average values are less than 0.8.  Only Fu_QI and BIQME produce ASROCC direct average values in the range 

of 0.8 to 0.9. Further, it is clear from the experimental analysis that CAF1 and CQE among general-purpose 

algorithms produce ASROCC direct average value greater than 0.9. CAF1 is the best since CQE requires more 

processing time than CAF1.  

 

(a) 

 

(b) 

 

(c) 

Figure 4. Results of combined metrics (a) Rank in ascending order of processing time of combined 

metrics (b) Direct average of ASROCC values of different combined metrics (c) Database size-weighted average 

of ASROCC values of different combined metrics 
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From Fig. 4(b), it is further seen that NIQMC and NRCDIQA among contrast-distorted metrics produce 

better results as their respective ASROCC direct average values are above 0.9. NIQMC requires almost 16 times 

the processing time of NRCDIQA to process an image. From Fig. 4(c), it is assessed that CQE outperforms all 

other combined metrics as its database size-weighted average ASROCC values are higher.  

149



A technical review of no-reference image quality assessment algorithms for contrast distorted images 

 

Data

base 

Typ

e of 

Distortion 

Combined Metrics 

F

u_QI 

C

AF 

C

QE 

C

AF1 

C

EIQ 

N

RCD 

IQ

A 

CSI

Q 

Co

ntrast 

Change-

ASROCC 

1

.00 

0

.76 

1.

00 

1

.00 

0

.99 

0.

95 

PH

OS 

No

n Uniform 

0

.35 

0

.52 

0.

83 

0

.90 

0

.94 

1.

00 

Uni

form-Dark 

0

.51 

0

.38 

0.

89 

0

.99 

0

.27 

0.

99 

Uni

form-Bright 

0

.92 

1

.00 

1.

00 

1

.00 

0

.61 

1.

00 

AS

ROCC 
0

.59 

0

.63 

0.

91 

0

.97 

0

.61 

1.

00 

TID

2013 

Co

ntrast 

Change-

ASROCC 

1

.00 

0

.55 

0.

94 

0

.84 

0

.91 

0.

79 

CCI

D2014 

Ga

mma 

Transfer 

0

.80 

1

.00 

0.

90 

1

.00 

1

.00 

0.

96 

Cu

bic and 

Logistic 

Function 

0

.65 

0

.74 

0.

95 

0

.57 

0

.50 

0.

65 

Me

an Shift 

0

.70 

1

.00 

0.

97 

1

.00 

1

.00 

0.

99 

AS

ROCC 
0

.72 

0

.91 

0.

94 

0

.86 

0

.83 

0.

87 

ASROCC Direct 

Average 

0

.83 

0

.71 

0.

95 

0

.91 

0

.84 

0.

90 

Database size-

weighted average 

0

.75 

0

.80 

0.

94 

0

.89 

0

.81 

0.

89 

Data

base 

Typ

e of 

Distortion 

B

RIS 

Q

UE 

B

IQI 

NI

QMC 

N

IQE 

E

NI 

Q

A 

BI

QME 

150



Preeti Mittal, Rajesh Kumar Saini, Justin Varghese and Neeraj Kumar Jain 

CSI

Q 

Co

ntrast 

Change-

ASROCC 

0

.17 

0

.83 

1.

00 

0

.69 

0

.67 

0.

94 

PH

OS 

No

n Uniform 

0

.96 

0

.25 

0.

62 

0

.10 

0

.43 

0.

77 

Uni

form-Dark 

0

.61 

0

.79 

1.

00 

0

.77 

0

.96 

0.

71 

Uni

form-Bright 

0

.99 

0

.55 

1.

00 

0

.93 

0

.28 

0.

83 

AS

ROCC 
0

.85 

0

.53 

0.

87 

0

.60 

0

.56 

0.

77 

TID

2013 

Co

ntrast 

Change-

ASROCC 

0

.46 

0

.53 

0.

97 

0

.40 

0

.33 

0.

97 

CCI

D2014 

Ga

mma 

Transfer 

0

.18 

0

.38 

0.

99 

0

.69 

0

.71 

1.

00 

Cu

bic and 

Logistic 

Function 

0

.65 

0

.28 

0.

72 

0

.63 

0

.54 

0.

74 

Me

an Shift 

0

.76 

0

.38 

1.

00 

0

.67 

0

.29 

0.

99 

AS

ROCC 
0

.53 

0

.35 

0.

90 

0

.66 

0

.51 

0.

91 

ASROCC Direct 

Average 

0

.50 

0

.56 

0.

94 

0

.59 

0

.52 

0.

90 

Database size-

weighted average 

0

.55 

0

.45 

0.

92 

0

.62 

0

.52 

0.

89 

Table 9. Asrocc values of combined metrics 

 

Conclusion 
 

This study provided an insight into major general-purpose NR-IQA methods and their effectiveness in 

assessing contrast, colorfulness, and overall quality of contrast-degraded images with technical analysis.  The 

paper analysed the effectiveness of top-ranking NR-IQA methods with benchmark assessment methods on images 

from standard image databases. The study finds that under different situations, different IQA schemes are good to 

assess image quality. From the experimental analysis conducted with numerous contrast distorted images from 

various databases, the study identifies that QI_Colorfulness and CQE_colorfulness1 are better to measure 

colorfulness while ACC and EME are good for measuring contrast. Further, the study finds that the CQE and 

CAF1 among general-purpose metrics and NIQMC and NRCDIQA among contrast distorted metrics are good to 

assess the overall image quality.  
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FUTURE DIRECTIONS 
NR-IQA faces huge challenges because of the technical problems associated with quality-aware feature 

extraction and thereby effectively designing models that produce quality scores in accordance with the human 

subjective analysis. Although there is significant progress in the field of NR- IQA, there is scope for improvements. 

COMPUTATIONAL INEFFICIENCY AND ERRONEOUS FEATURES 

NR-IQA usually works in feature extraction and quality score generation phases. Most of the NR-IQAs 

such as BRISQUE, BIQI, NIQE, and ENIQA take substantial computation time in extracting features but didn’t 

work well in case of contrast distorted images. NIQMC uses a linear combination of features with a constant 

weight. The ASROCC of NIQMC is good in terms of its results but its performance can be improved in the future 

if the weights are made adaptive. CAF1 is designed based on contrast and entropy features but the colorfulness 

feature is excluded. NRCDIQA used NSS with respect to the moment and entropy characteristics of the input 

image.  

The metrics work either directly on R, G, B channels or on other color channels such as the Y channel in 

YCbCr, and the V channel in HSV color space. These channels also influence the performance of algorithms 

(Bezryadin et al., 2007). So in the future, the algorithms can try selecting effective features of contrast distorted 

images by performing dimensionality reduction to reduce computational cost.  

RELIANCE ON SUBJECTIVE SCORE 

Most of the NR-IQAs are opinion aware metrics that are trained and tested using the subjective score of 

images. The subjective score reflects the perceived quality of the image and it depends on the stimuli used while 

recording the score by the individual subject. It is harder for individuals to provide accurate scores that suit the 

visual quality of images under consideration. Further, the subjective scores do not be exact with respect to the 

visual quality of images. It can be seen from Fig. 5 that the MOS outputs of images are not correlating with the 

distortion levels and it leads to non-reliability of estimation models. The human judgements are ambiguous in 

nature and hence the subjective score in the future can look to record subjective scores with fuzzy scale values 

rather than with crisp values.  

 

(a) MOS= 3.2324, 

Rank=1 

 

(b) MOS=2.8898, Rank=2 

 

(c)MOS=2.9140, Rank=3 

Figure 5. Three images distorted using the logistic function from CCID2014 database with ranks and 

MOS Values 

RELIANCE ON DATABASE 

It is seen from the tabulated values of Table 2 and Table 9 that the competing schemes provide effective 

results if the training and testing images are performed on similar distortions such as in the case of NRCDIQA. 

From general-purpose algorithms, CQE provides better performance since it is trained and tested with contrast 

change images. But it is observed that BRISQUE, BIQI, ENIQA, NIQE, and ENIQA fail in providing correct 

assessment due to the absence of training with contrast distorted images. This indicates the need for competing 

NR-IQA algorithms to be altered and trained for adapting their performance to new distortions.  
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