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ABSTRACT 

The prediction is one of the most influential factors in management and efficient utilization in various 

sciences as well as economic planning. Since there is a direct relationship between the accuracy of predictions and 

the quality of the decisions made, today, despite the numerous prediction methods and the achievement of accurate 

predictions, most researchers still try to combine different methods in order to obtain more accurate results. In order 

to improve the accuracy of predictions, the present study introduces a new parallel hybrid methodology based on 

trend-residual data preprocessing to time series predict. In the proposed model, different patterns and structures of 

trend and residual as well as linear and nonlinear, are simultaneously modeled. In the first stage of the proposed 

method, the data is analyzed by the Kalman filter (KF) method and divided into two groups of trend and residual 

patterns. Then, the trend patterns from the previous step, with the original data, are simultaneously considered as input 

of the autoregressive integrated moving average with explanatory variable (ARIMAX) and multilayer perceptron 

(MLP), as linear and nonlinear forecasting models, respectively. Then, this step is repeated for residual patterns. In 

this way, the proposed model can model four types of patterns, including linear-trend, linear-residual, nonlinear-trend, 

and nonlinear-residual. Finally, the results of these patterns, along with the Kalman trend, are combined together in a 

parallel hybridization process, and final forecasts of the proposed model are obtained. Numerical results of 2 wind 

power and speed benchmarks indicate that the proposed model can approximately improve 41.73% and 42.14% the 

performance of its single linear and nonlinear components, respectively. Furthermore, the proposed model can yield 

more accurate results than traditional series-based components combination hybrid models, parallel-based 

components combination hybrid models,  

Pre-processing-based linear models, and preprocessing-based nonlinear models by the same components. 

The proposed method can roughly improve 16.35%, 24.39%, 36.09%, and 14.98% the performance of these hybrid 

models, respectively. Therefore, the proposed model may be a suitable alternative for single as well as hybrid models 

for wind power forecasting, especially when more accurate results and/or more quality decisions are required. 

Keywords: Hybrid structures, Trend-residual preprocessing, Parallel hybridization, Autoregressive 

Integrated Moving Average with Explanatory Variable (ARIMAX), Multi-Layer Perceptrons (MLPs), Kalman filter. 

INTRODUCTION 

In recent years, the idea of using a mathematical model to describe the behavior of physical phenomena has 

been very much considered. Specifically, a definitive model, based on physical laws, enables researchers to calculate 

the number of time dependencies precisely at any moment in time. However, in the real world, we often face time-

dependent phenomena with many unknown or unavailable factors (Lindley, 2010; Roulston et al., 2003). In this case, 

when it is not possible to achieve a definite model, the prediction methods are wide-used, especially when the past 
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observations of a variable and primary relationships between specific observations are available. Forecasting methods 

that are used in different fields of science can be categorized based on various aspects. For example, the prediction 

methods used in the field of wind energy can be divided into four categories of 1) ultra short term (several seconds to 

four hours), 2) short term (4 to 24 hours), 3) medium-term (1 to 7 days), and 4) long term (more than 7 days) (Zack, 

2003; Soman et al., 2010). Also, the structure of forecasting methods can be divided into two types of 1) single 

methods and 2) hybrid methods. Each of these categories can also be subdivided into smaller subgroups. 

For example, single methods can be divided into three subclasses of 1) physical methods, 2) statistical 

methods, and 3) intelligent methods; and hybrid methods can be divided into four subcategories of 1) data 

preprocessing based approaches, 2) parameter optimization-based approaches, 3) postprocessing based approaches, 

and 4) component-based in series or parallel approaches. The physical methods are based on the numerical weather 

prediction models and using some data such as surface roughness, orography, obstacles, pressure, and temperature to 

estimate the local wind power, speed, and direction (Lange et al., 2008). The physical approaches use more accurate 

physical descriptions for modeling in comparison to statistical approaches (Kariniotakis et al., 2004; Lange et al., 

2006). Marjanovic et al. (Marjanovic et al. 2014) have introduced a weather research and forecasting (WRF) model 

for 48h-ahead wind power forecasting. The simulation results show a significant improvement. Traditional statistical 

methods such as quantile regression models (Wang et al., 2019; Nathaniel et al., 2018; Wang et al., 2018; Lahouar et 

al., 2017; Zhang et al., 2015; Bessa et al., 2012), time series models (Jakob et al., 2018; Robles–Rodriguez & Dochain, 

2018; T. Filik & U. Filik, 2017; Ziel et al., 2016; Lydia et al., 2016; Guo et al., 2014), grey models (Kou et al., 2014; 

Kou et al., 2013; Ramirez–Rosado et al., 2009), stochastic differential equations models (Xydas et al., 2017; Iversen 

et al., 2016), and Markov regime-switching models (Carpinone et al., 2015; Song et al., 2014; D’Amicoa et al., 2014) 

are among the most important and more popular methods, which extensively used to wind power and speed 

forecasting.  

The SARIMA model for 24 hours of wind speed forecasting is provided (Bivona et al., 2011). In this study, 

wind speed time series in two regions of Italy are used to test the proposed model, whose numerical results show the 

efficiency of the SARIMA model. The Hammerstein Auto-Regressive model (HAR) for 1-24 hours wind speed 

forecasting is used (Maatallah et al., 2015). The proposed model is applied to real data from two different sites. The 

results show that the proposed HAR model is better than ARIMA and MLP models in terms of different indicators 

such as RMSE, MAE, and MAPE. Despite all the statistical model’s advantages, they have several disadvantages and 

limitations, such as the inability to model nonlinear, complex, and multiple structures. These limitations encourage 

researchers to develop intelligent methods to address the defects of statistical models. Many researchers have 

developed intelligent methods due to their unique features in modeling complex nonlinear patterns in underlying data. 

Intelligence approaches, such as artificial neural networks (Wang et al., 2018; Yu et al., 2018; Ahmed & Khalid, 

2018; He & Li, 2017; Wang et al., 2017) fuzzy sets and systems (Dong et al., 2017; Taslimi Renani et al., 2016), and 

support vector machines (Hu et al., 2014; Yang & Zhao, 2012), have been developed and frequently applied for wind 

power, speed, and direction forecasting.  

The LRNN model for short-term wind power and speed forecasting is used (Olaofe et al., 2014). Empirical 

results indicate that the proposed model can yield more accurate results than others. The NESN-P and NESN-MP 

models for medium-term wind speed and direction forecasting are used (Chitsazan et al., 2019). To demonstrate the 

efficiency of the proposed methods, they have compared with ESN and adaptive neuro-fuzzy inference system 

(ANFIS). Intelligent methods are a universal approximation to modeling and analyzing systems with appropriate 

accuracy to lifting the linear limitation of statistical approaches. However, many studies indicate that artificial neural 

networks may be incompatible and inaccurate in some specific situations (Khashei & Bijari, 2010). Generally, both 

statistical and intelligent single models, despite their unique features and specifications, have a critical limitation to 

modeling and providing accurate results.  

In other words, by using a single model, a specific part of the patterns and relationships in the raw data is 

modeled. Therefore, using a single model may increase the risk of using an inappropriate model for modeling (Khashei 

& Bijari, 2011). Recently, researchers have more focused on hybrid models in order to yield more comprehensiveness 

and consequently achieve more accuracy and low risk in time-series forecasting. In other words, the main idea of 

hybrid methods is to take advantage of single models simultaneously for more comprehensive, accurate, and less risk 

modeling. Hybrid methods can be categorized into different categories the 1) data preprocessing based hybrid models 

(DAH), 2) parameter optimization based hybrid models (PAH), 3) postprocessing based hybrid models (POH), and 

4) components combination based hybrid models (CCH). Data preprocessing-based hybrid models decompose wind 
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data into smooth and regular parts that are easily identifiable, and then each decomposed segment provides an 

appropriate prediction before combining with the predicted models. A new data preprocessing-based hybrid technique 

based on VMD, and MKRR model for 10 min, 30 min, and one-hour wind power and speed forecasting is used (Naik 

et al., 2018). In this paper, the original wind speed and power data have been decomposed by VMD decomposed 

model; then, decomposed patterns have been used as input for the MKRR model. Parameter optimization-based hybrid 

models, as well as postprocessing-based hybrid models, have a significant contribution in increasing the accuracy of 

wind forecasts.  

A new parameter optimization-based hybrid technique, HAP-ACO-PSO, for ultra-short-term wind power 

forecasting is used (Rahmani et al., 2013). The hourly wind power of the Binaloud wind farm has been collected and 

used to train and test the developed model. A postprocessing-based hybrid model with an error feedback scheme 

(IRBFNN-EF) for short-term wind power and speed forecasting is provided (Chang et al., 2017). In this study, a 

selected day in 2014 is used to test the proposed model and four other compared models. Another widely-used hybrid 

approaches are models that combine two or more single models or components in series or parallel structures to 

achieve higher accuracy in prediction (Khashei et al., 2013). A series-based hybrid model, based on integrating 

machine learning techniques and physical knowledge modeling (grey-box) for short-term wind speed forecasting is 

provided (Vaccaro et al., 2012). A parallel-based hybrid model, the KF-ANN model for daily wind speed forecasting 

is proposed (Shukur & Lee, 2015). In this study, daily wind speed data from Iraq and Malaysia is used. Some other 

hybrid methods for wind power and speed forecasting are stated in Table (1).  

As mentioned previously, hybrid structures can be categorized into different categories. The literature 

demonstrates that the data preprocessing-based hybrid models are the most popular and widely-used method among 

other hybrid models (Liu & Chen, 2019). Because after the preprocessing techniques, the high-frequency sub-signals 

are extracted in order to smooth the raw data, so the prediction accuracy increases. However, the difference of the 

preprocessing-based hybrid model in this article with other data preprocessing-based hybrid models in the literature 

is that both trend and residual patterns are simultaneously used. On the other hand, the main idea of the proposed 

hybrid model is that the residual data that has been considered as noise in other hybrid models and not used in the 

modeling is considered as input data. The reason is that it may enclose beneficial information and patterns for 

modeling; so, by eliminating this information, the accuracy of modeling may be reduced. 

Also, a parallel structure is a comprehensive modeling and can produce more accurate and low-risk 

forecasting models. The literature shows that the combination of components in the parallel form is generally more 

usual and more accurate than the combination in series (Hajirahimi & Khashei, 2019). Accordingly, the key goal of 

this paper is to propose a hybrid approach that can simultaneously cover linear/nonlinear, trend/residual, and different 

hybridization structures; and also can yield accurate forecasts. For this reason, in the proposed model, the underlying 

raw data sets are considered to be composed of trend and residual patterns that can be decomposed by the Kalman 

filter. 
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Table (1). Some recent proposed hybrid models for wind power and speed forecasting. 

 

[Ref.] 
Ye

ar 

Doma

in 

Time-

scale 

Applied 

Model(s) 

Technique

(s) 

Jiang 

et al. 

201

9 

Wind 

power 

Ultra 

short term 

PICP, 

LSSVM 
PAH 

Chen 

et al. 

201

9 

Wind 

speed 

Ultra 

short term 

QPSO, 

LSSVM 
PAH 

Zhang 

et al. 

201

9 

Wind 

speed 

Ultra 

short term 

OSO, 

RELM-C 
PAH 

Jiang 

et al. 

201

9 

Wind 

speed 

Ultra 

short term 

PSO, 

MODE-FTS 
PAH 

Jiang 

et al. 

201

8 

Wind 

speed 

Ultra 

short term 

CS, V-

SVM 
PAH 

Liu et 

al. 

201

8 

Wind 

speed 

Ultra 

short term 

GWO, 

RELM 
PAH 

Liu et 

al. 

201

8 

Wind 

speed 

Ultra 

short term 

WF, 

BFGS 
POH 

Wang 

et al. 

201

8 

Wind 

speed 

Ultra 

short term 

ARIMA, 

ELM 
POH 

Li et 

al. 

201

8 

Wind 

speed 

Ultra 

short term 

RELM, 

LSTM 
POH 

Jiang 

et al. 

201

8 

Wind 

speed 

Mediu

m-term 

NWP, 

GPR 
CCH 

Akçay 

& Filik 

201

8 

Wind 

speed 

Ultra 

short term 

LSSVM, 

GARCH 
CCH 

Liu et 

al. 

201

8 

Wind 

power 

Short 

term 

ARIMA

X, PR 
CCH 

Hu & 

Chen 

201

8 

Wind 

speed 

Ultra 

short term 

LSTM, 

ELM 
CCH 

Yu et 

al. 

201

8 

Wind 

speed 

Ultra 

short term 

LSTMD

E, HELM 
CCH 

Jiang 

& Li 

201

8 

Wind 

speed 

Ultra 

short term 

RNN, 

SVM, LSTM 
CCH 

374



Mehrnaz Ahmadi and Mehdi Khashei  

Sun et 

al. 

201

7 

Wind 

speed 

Short 

term 

KPCA, 

CVR, COR 
DAH 

Wang 

et al. 

201

7 

Wind 

speed 

Ultra 

short term 

CEEMD, 

ENN 

DAH 

Wang 

et al. 

201

7 

Wind 

speed 

Ultra 

short term 

VMD, 

GAWNN 

DAH 

Ma et 

al. 

201

7 

Wind 

speed 

Ultra 

short term 

SSA, 

GDFNN 

DAH 

Chang 

et al. 

201

7 

Wind 

Power 

short 

term 

EF, 

IRBFNN 
POH 

Cassol

a & Burlando  

201

7 

Wind 

speed 

short 

term 

ARMA, 

KF 
CCH 

Aghaja

ni et al. 

201

6 

Wind 

power 

Short 

term 

WT, 

HNN 

DAH 

Azimi 

et al. 

201

6 

Wind 

power 

short 

term 

DWT, 

HANTS, MLPNN 

DAH 

Shao 

& Deng 

201

6 

Wind 

power 

Ultra 

short term 

MADF, 

LLE 

DAH 

Lynch 

et al. 

201

4 

Wind 

Speed 

Ultra 

short term 

KF,YR.

NO NWP 

POH 

Zhao 

et al. 

201

2 

Wind 

speed 

Long 

term 

NWP, 

KF 
CCH 

 

THE PROPOSED PARALLEL TREND-RESIDUAL (PTR) HYBRID MODEL 

The prediction of time series based on combined modeling has been one of the most important research areas 

in recent years. Hybrid models have been used to improve forecasting accuracy by combining the benefits of 

individual forecasting models, as well as omitting their disadvantages in forecasting. Combined models in the subject 

literature, basically, include the combination of different prediction models under series or parallel structures and can 

also be the combination of various prediction models with preprocessing and/or postprocessing techniques. The data 

preprocessing method is the widely-used approach in modeling. The reason for the extensive applications of the 

preprocessing methods is that the raw data is analyzed for irrelevant and redundant information, noisy and unreliable 

data, outlier data, etc., before entering into the forecasting process. Because of this, the use of preprocessing 

techniques can increase the accuracy of predictions. But in the subject literature, residual data in the preprocessing 

processes is completely excluded and is considered as noise in the modeling and forecasting procedure. Consequently, 

the main idea of our proposed hybrid model is to use 1) the residual data in the proposed model, 2) different 

hybridization structures, 3) linear and nonlinear modeling in order to increase the comprehensiveness of modeling 

and prediction accuracy. In general, the difference between our proposed model and the subject literature can be 

summarized as follows: 

1. In classical structures based on the data preprocessing technique, only the trend data from the data 

preprocessing process is entered into the prediction model. However, in the proposed method, trend data and 

residual data are simultaneously considered as input variables in the prediction procedure. Accordingly, if 
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the data obtained from the studied system involves dynamic multiple-trend structures, the proposed model 

can better model them. 

2. In the classical structures in the subject literature, raw data, or the only data from the data preprocessing 

process, is used in the prediction model. However, in the proposed method, the raw data, trend data, and 

residual data and their lags are simultaneously entered into the prediction model. Accordingly, if the 

preprocessed data of the studied system still contains specific modelable patterns, the proposed model can 

model more patterns. 

3. In the classical structures based on the data preprocessing, the preprocessed data do not enter the final model 

separately. However, in the proposed method, the preprocessed data are also used as input of the prediction 

model. 

4. In the classical hybrid approaches, only the parallel combination of different forecasting models with the 

same inputs, in general, are used. However, in the proposed method, in addition to using three different 

components, including the Kalman filter, the multilayer perceptron, and autoregressive integrated moving 

average with explanatory variable models, the similar models with different inputs are also combined in the 

parallel form. By doing so, more emphasis can be placed on the fundamental patterns and relationships in 

the modeling process. 

In this way, considering the autoregressive integrated moving average with explanatory variable, the 

multilayer perceptron as prediction models, and the Kalman filter as a data preprocessing method, the overall structure 

of the proposed method is presented in Fig. (1). The steps of the proposed method can be summarized as follows: 

Stage I: Data Preprocessing technique: In the first stage of the proposed method, the raw data is decomposed 

by the Kalman filter technique. The Kalman filter could be described as an approach consisting of two decomposing 

stages. The decomposing patterns are given by Eq. (1). 

(1) 
T R

t t tY Y Y  

where, tY  is the output of the Kalman filter, T

tY  is the decomposing trend patterns, and R

tY  is the residual 

decomposing patterns. 

Stage II: Linear Trend/Residual Modeling: In the second stage of the proposed model, at first, the raw data and 

decomposed trend patterns from the previous stage are included in the autoregressive integrated moving average with 

explanatory variable (ARIMAX) model in order to model the linear trend correlation structures in the underlying data 

sets. Then, the raw data and decomposed residual data are used in the ARIMAX model in order to model the remained 

modelable linear correlation structures in the underlying data that are left as noise in the residuals. 
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Fig 1. The overall structure of the proposed model. 

The ARIMAX model is similar to a multivariate regression model but also allows us to take advantage of 

autocorrelation that may be present in residuals of the regression to improve the accuracy of a forecast. Or, as another 

viewpoint, The ARIMAX model is an Auto-Regressive Integrated Moving Average (ARIMA) model that also 

consists of the exogenous entrance, besides its autoregressive (AR) and moving average (MA) parameters. In this 

way, the ARIMAX model can be explained as the combination of the Autoregressive ( AR( p )) , Integrated (d) , 

Moving Average ( MA( q ))  , and Exogenous X(r)  variables, which is often represented by ARIMAX(p,d,Q,r) . A 

simplified form to represent this model is described in Eq. (2). 

(2) 
p q m

t i t i j t j j j t

i 1 j 1 j 1

Z z       

  

       

where 
tZ  is a dependent variable at the time t ,   is a constant; 

t 1Z 
 is a dependent variable (lagged by 

the time steps, i ; i  is a coefficient of 
t 1Z 

; p  is the maximum number of time intervals; 
j  represents the 

exogenous variables (in this case, trend data, wind power data); 
j  represents the coefficients of the exogenous 

variables; q  is the maximum number of exogenous variables; 
j  is the coefficient of the term 

t j 
, which 

represents the error in the time t  lagged from j . Finally, t  is the error component of the model with 2

t N( 0, ) 

The coefficients of the models are estimated by regression (Khashei et al., 2009). 

Stage III: Nonlinear Trend/Residual Modeling: Since the ARIMAX  model cannot model the nonlinear correlation 

structures, in the next stage of the proposed model, a multilayer perceptron ( MLP ) is used in order to model the 

nonlinear, trend and residual correlation structures in the underlying data sets as follows (Zendehboudi, 2016): 

(3)  
qP

i ,t j kj i ,t k t

j 0 k 0

Y W g W Y i 1,2,...,N , t 1,2,...,T

 

 
     

 
  

where, jw  and kjw are connection weights, q  is the number of input nodes and p  is the number of hidden nodes. 

1W  
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u
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Stage IV: Parallel combination: In the last step of the proposed model, the final prediction of the proposed model is 

calculated from the results of all components and their weights in the parallel structure by Eq. (4). 

1 2 3 4 5Total TMLP TARIMAX KF RARIMAX RMLPy W y (t) W y (t) W y (t) W y (t) W y (t)      
(4) 

where, 
TMLPy (t)  and 

TARIMAXy (t)  are the prediction of the MLP  and ARIMAX  models for trend data at the 

time t , respectively. In the similar, the 
RARIMAXy (t)  and 

RMLPy (t)  are the forecasting of the ARIMAX  and MLP  

models for residual data at the time t , respectively. The 
KFy (t)  is the Kalman filter model output value at the time 

t  and iw (i 1,2,...,5 )  are the weights of components. In this paper, these weights are estimated by the ordinary 

least squares method (Chahkoutahi & Khashei, 2017). 

APPLYING THE PROPOSED METHOD TO PREDICT WIND POWER 

DATA SETS 

In this section, in order to evaluate the accuracy of the proposed model and calculate its performance against 

other methods, 2 wind power and speed data sets are used. The first data set is hourly wind power data from a wind 

power plant located in Spain has been used. This hourly data set consists of 168 points that show in Fig. (2). The 85% 

of data (e.g., 144 observations) is applied as the training sample, and 15% of the remaining data (e.g., 24 observations) 

is used as the test sample in order to evaluate the performance of different models. The second data set is the wind 

speed data set, which is gathered every 5 min in the Colorado State on 09/02/2012 from 00:00 to 14:00, and totally 

consists of 169 points. Approximately, the first 80% of data (e.g. 133 observations) is applied as the training sample, 

and 20% of the remaining data (e.g., 36 observations) is used as the test sample. These data sets are among the most 

widely used benchmark data sets in the field of wind forecasting, which has been frequently used in the literature 

(Azimi et al. 2016). 

 

Fig 2. The wind power data sets. 

PERFORMANCE EVALUATION CRITERIA 

The results presented in this paper are based on some evaluation criteria related to the outputs of 1) Kalman 

filter model, 2) trend ARIMAX model, 3) trend MLP model, 4) residual ARIMAX model, 5) residual MLP model, 6) 

and the proposed hybrid model. In this paper, different indicators such as MAE (Mean Absolute Error) and RMSE 

(Root Mean Squared Error) are used, which are calculated as follows: 

0.00E+00

2.00E+05

4.00E+05

6.00E+05

8.00E+05

1.00E+06

1.20E+06

1.40E+06

1.60E+06

1

1
1

2
1

3
1

4
1

5
1

6
1

7
1

8
1

9
1

1
0
1

1
1
1

1
2
1

1
3
1

1
4
1

1
5
1

1
6
1

Training sample 

378



Mehrnaz Ahmadi and Mehdi Khashei  

(5) 
N

t

t 1

1
MAE e

N 

 
 

(6)  
N

2

t

t 1

1
RMSE e

N 

 
 

where, te  and 
tA ( t 1,2,...,m )  are forecast error and forecasted value at time t, respectively, and N  is 

the number of total underlying data. 

RESULTS OF THE PROPOSED MODEL 

In this section, the first wind power data set is used to design different models as well as the proposed model. 

After designing each model using training data, the performance of the models is calculated using the criteria 

mentioned above based on the test data, and ultimately a comprehensive assessment of the methods’ performance 

compared with each other in the training and the test data has been made.  

RESULTS OF THE DATA PREPROCESSING TECHNIQUE 

Stage I: Kalman Filter  

Following the process of the proposed method, the Kalman filter model is first used for preprocessing input 

data. The trend and residual pattern obtained from the Kalman filter are shown in contrast to the actual data in Fig. 

(3). 

 

Fig 3. Trend and residual pattern in contrast to the actual data. 

RESULTS OF THE TREND/RESIDUAL LINEAR MODELING 

Stage II: Trend/Residual and Autoregressive Integrated Moving Average with Explanatory Variable models 

i) The trend patterns in the data and the relevant lags, along with the raw data, are entered into the 

autoregressive integrated moving average with explanatory variable (TARIMAX) model. The results of this model 

are obtained using the Eviews package software. The estimation of the TARIMAX model using evaluation 

characteristics (absolute error (AE) and squared error (SE)) are illustrated in Fig. (4). The performance of the 

TARIMAX model is extensively presented in Table (2).  
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Fig 4. The performance of the TARIMAX  for test data. 

 

Table 2. The performance of the TARIMAX model results in the test day. 
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Results of Table (2) indicate that the TARIMAX model can achieve 1.10×105 and 1.31×105 in the MAE and 

RMSE in the whole test day, respectively. The errors of the TARIMA model for training and test data sets are also 

shown in Fig. (5).  

 

Fig 5. The errors of the TARIMAX model for training and test data sets. 

ii) In the next stage of step 2, the residual patterns in the data and the relevant lags, along with the raw data, 

are entered into the Autoregressive Integrated Moving Average with the Explanatory Variable (RARIMAX) model. 

The performance indicators of the designed RARIMAX model are shown in Fig. (6). The performance of the 

RARIMAX model is extensively presented in Table (3). 
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Fig 6. The performance of the RARIMAX model for test data. 

Table 3. The performance of the RARIMAX model results in the test day. 
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Results of Table (3) indicate that the RARIMAX model can achieve 1.17×105 and 1.45×105 in MAE, and 

RMSE in the whole test day, respectively. The errors of the RARIMAX model for training and test data sets are also 

shown in Fig. (7).  

Fig 7. The errors of the RARIMAX model for training and test data sets. 
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i) The MLP is the nonlinear model that is sketched in the proposed model. Similar to the previous stage, the 

trend pattern in the data and the relevant lags, along with the raw data, are entered into the Multilayer Perceptron 

model. The results of this model are obtained using the Matlab package software. The estimation of the TMLP model 

is presented in Fig. (8). The results of the TMLP model are expansively reported in Table (4).  
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Fig 8. The performance of the TMLP model for test data. 

Table 4. The performance of the TMLP results in the test day. 
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Results of Table (4) indicate that the TMLP model can achieve 8.27×104 and 9.79×104 in MAE, and RMSE 

in the whole test day, respectively. The errors of the TMLP model for training and test data sets are also shown in Fig. 

(9). These results indicate that the MLP model can achieve more accurate and more reliable results than ARIMAX. It 

demonstrates that the underlying data set consists of the linear patterns and structures, in addition to nonlinear ones. 

Thus, the classic ARIMAX model is inadequate for modeling and cannot comprehensively and appropriately model 

all existing patterns and structures in the data.  

 

Fig 9. The errors of the TMLP model for training and test data sets. 

ii) In a similar process, the residual patterns in the data and the relevant lags, along with the raw data, are 

entered into the MLP model. The performance indicators of the designed TMLP model are shown in Fig. (10). The 

performance of the TMLP model is extensively presented in Table (5). 

  

Fig 10. The performance of the RMLP model for test data 
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Table 5. The performance of the RMLP results in the test day. 

Ti

me (h) 

 Statistical Characteristics  
Tim

e (h) 

 Statistical Characteristics 

 AE SE  AE SE 

1:0

0 

 1.03×

105 

1.07×1

010 
 13:0

0 

 6.00×

103 

5.38×1

09 

2:0

0 

 1.82×

105 

3.33×1

010 
 14:0

0 

 3.90×

104 

1.54×1

09 

3:0

0 

 9.60×

104 

9.34×1

09 
 15:0

0 

 9.30×

104 

8.79×1

09 

4:0

0 

 4.00×

104 

1.66×1

09 
 16:0

0 

 2.80×

104 

7.90×1

08 

5:0

0 

 1.56×

105 

2.64×1

010 
 17:0

0 

 8.90×

104 

8.10×1

09 

6:0

0 

 5.20×

104 

2.74×1

09 
 18:0

0 

 6.00×

103 

4.10×1

07 

7:0

0 

 2.35×

105 

5.45×1

010 
 19:0

0 

 5.20×

104 

2.76×1

09 

8:0

0 

 6.10×

104 

3.74×1

09 
 20:0

0 

 1.15×

105 

1.33×1

010 

9:0

0 

 3.80×

104 

1.52×1

09 
 21:0

0 

 4.00×

103 

1.60×1

07 

10:

00 

 3.20×

104 

1.06×1

09 
 22:0

0 

 6.70×

104 

4.62×1

09 

11:

00 

 2.33×

105 

5.44×1

010 
 23:0

0 

 3.20×

104 

1.04×1

09 

12:

00 

 1.23×

105 

1.52×1

010 
 24:0

0 

 1.55×

105 

2.41×1

010 

M

AE 

 
8.81×104 

 RM

SE 

 
1.09×105 

 

Results of Table (5) show that the RMLP model can achieve 8.81×104 and 1.09×105 in MAE, and RMSE in 

the whole test day, respectively. The errors of the RMLP model for training and test data sets are also shown in Fig. 

(11).  
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Fig 11. The errors of the RMLP model for training and test data sets. 

RESULTS OF THE COMBINING 

Stage IV 

According to the process of the proposed model and after modeling components, the weight of each 

component, i.e., trend ARIMA, residual ARIMA, trend MLP, residual MLP, and the Kalman filter, is calculated. 

After that, final forecasts of the proposed model are calculated by Eq. (11). These forecasting results using absolute 

and squared error values are presented in Fig. (12). The actual and fitted values of the proposed model for train and 

test day are shown in Fig. (13). Also, the evaluation metrics for the proposed model for test day are reported in Table 

(6).  

  

Fig 12. The performance of the proposed model 
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Fig 13. Actual and fitted values of the proposed model for train and test data sets. 

Table 6. Results of the proposed model on a test day. 
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Results of Table (6) show that the proposed model can achieve 4.59×104, and 5.36×104 in MAE, and RMSE 

in the whole test day, respectively. The error values of the proposed model for the train and test data sets are also 

shown in Fig. (14).  

 

Fig 14. The errors of the proposed model for train and test data sets. 

COMPARISON WITH OTHER THOSE HYBRID AND INDIVIDUAL MODELS 

In this section, the performance of the proposed model is compared with some other individual and hybrid 

models using the 2 wind power and speed data sets. Evaluation criteria, e.g., MAE, and RMSE of the models in 

training and test data sets, are summarized in Table (7). Besides, the improvement percentage of the proposed model 

in comparison with those models is given in Table (8). In addition, Table (9) summarizes the improvement percentage 

of the proposed model against other classes of models as follows: 

1) SLM: Single linear model(s) (e.g., ARIMA), 

2) SNM: Single nonlinear model(s) (e.g., MLP), 

3) STM: Single trend model(s) (e.g., TARIMAX, and TMLP), 

4) SRM: Single residual model(s) (e.g., RARIMAX, and RMLP), 

5) PLM: Preprocessing-based linear model(s) (e.g., KARIMAX), 

6) PNM: Preprocessing-based nonlinear model(s) (e.g., KMLP), 

7) SCM: Series-based components combination hybrid model(s) (e.g., ARIMA-MLP), 

8) PCM: Parallel-based components combination hybrid model(s) (e.g., ARIMA/MLP). 
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Numerical results show that the proposed model in overall can improve averagely, 37.34 and 27.00 

percentages in MAE, and 34.18 and 29.81 percentages in RMSE the performance of other individual and hybrid 

models in train and test data sets, respectively. The biggest value of these improvements is related to the ARIMA 

model that only can model the linear patterns and uses none of the trend and residual patterns of the preprocessing. 

The proposed model can achieve 46.73% in MAE and 46.37 % in RMSE improvement than the ARIMA. 

Table 7. Forecasting performance of different models in train and test data sets. 

Model  

D
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S
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The second and third places are also related to the ARIMA model with the use of the preprocessed residual 

and trend data, respectively. The proposed model can reach 43.36% in MAE and 41.96% in RMSE improvement than 

the RARIMAX. It demonstrates that the idea of using residual patterns instead of ignoring them can be a more efficient 

strategy. The proposed model can also obtain 40.08% in MAE and 37.95% in RMSE improvement than the 

TARIMAX. It clearly proves the reason for using trend patterns instead of residual patterns in the literature. The use 

of the trend patterns instead of residual patterns averagely improves 11.72% and 11.40% in MAE and RMSE the 

performance of the ARIMA model.  

Table 8. Improvement percentages of the proposed model against other models. 
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81 

 

The results of the MLP model also indicate almost the same conclusions; while using the MLP model and 

modeling nonlinear patterns, performances are improved. The use of the MLP instead of the ARIMA model alone 

can averagely improve the obtained results by more than 33% in both criteria. 

Table 9. Improvement percentages of the proposed model against other classes of models. 
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Roughly, these results are also repeated for its preprocessed versions (e.g., the TMLP instead of the 

TARIMAX and RMLP instead of the RARIMAX model). At the same time, the proposed model averagely can reach 

29.78% in MAE and 30.97% in RMSE improvement than the TMLP and RMLP. It can be concluded from these 

results that at first, the use of the nonlinear modeling approach can be a better solution than linear ones for improving 

the forecasting accuracy. Second, the proposed idea of using residual as well as trend patterns in both linear and 

nonlinear environments can be an appropriate way to yield more accurate results by a more comprehensiveness 

modeling process. Furthermore, the proposed model outperforms both series and parallel component combination 

based hybrid models in both MAE and RMSE criteria in train and test data sets. The proposed model can reach 25.81% 

and 13.46% in MAE and 16.51% and 16.19% in RMSE improvement than the series combination based hybrid model 

in train and test data sets, respectively. The proposed model can obtain 34.34% and 16.45% in MAE and 31.09% and 

17.68% in RMSE improvement than the parallel combination based hybrid model in train and test data sets, 

respectively. 

CONCLUSION 

Advanced modeling to predict time series has become a leading subject in much recent research in the 

literature. On the other hand, improving the accuracy of predictions, especially in complex environments and 

nonlinear systems, has become one of the most challenging and the hardest issues for researchers. Hybridization is 

one of the most common ways of improving forecasting accuracy as well as reducing the risk of using inappropriate 

single models that have extensively and successfully been used in recent investigations. Wind energy is one of the 

most important clean energy and suitable alternative for fossil fuels. Due to the importance of wind power forecasting 

for planning purposes, several methods have been developed and used to predict this energy source more precisely. 

However, increasing the accuracy of wind power and speed forecasting models is a crucial challenge for researchers, 

due to specific characteristics, as well as the existence of sophisticated linear and nonlinear patterns in the data. In 

this paper,  a new filter-based hybrid model is proposed in which these different structures and patterns can 

simultaneously be modeled. The main idea of the proposed model, which differs from other existing hybrid models, 

is that in the proposed model, the residual patterns are not set aside and are not considered as noise, due to the fact 

that there is no logical evidence supporting it. Empirical results indicate that the proposed model, due to 

simultaneously using linear/nonlinear, trend/residual, models can model more different patterns and structures in 

underlying data, can achieve more accurate results.  
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