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ABSTRACT 

 

The discrete wavelet transform is commonly used as a denoising step for many applications, like 

biomedical applications which are usually suffering from low SNR of the recorded signal. 

However, the choice of appropriate threshold value for DWT coefficients plays significant role 

in reconstructing the denoised signal. This paper presents a design of real-time wavelet denoising 

architecture which is suitable for wide range of real-time denoising applications. In this design, 

an adaptive thresholding approach based on feedback control loop is proposed to make the 

architecture more applicable for real-time wavelet denoising. This thresholding method 

considers a noise level estimator module based on first detail coefficients level 𝑑1 to calculate 

the unknown standard deviation of background noise. The proposed architecture is developed 

using MATLAB to simulate the suggested denoising method. The performance of the proposed 

denoising method is studied in terms of integral gain 𝐺 of feedback control and window size 𝑀 

with respect to the improvement in SNR and settling time. The results imply that the proposed 

denoising architecture is suitable for real-time denoising applications with acceptable 

improvement in SNR approximately 8 dB.  
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INTRODUCTION 

The discrete wavelet transform (DWT) is denoted as one of the best methods for denoising non-

stationary signals. The concept of DWT is based on decomposing the signals into different 

frequency bands at different scales, due to these properties, the analysis of non-stationary signals 

become possible. Since most of biomedical signals are considered as non-stationary signals, 

therefore, the DWT is considered as a good tool for denoising biomedical signals (Samann & 

Schanze, 2019)(Wang, Zhu, Yan, & Yang, 2019). In practical, several researches have suggested 

that the DWT with lifting scheme has many benefits over the conventional DWT specially in 

term of realization of the lifting scheme for real-time applications (Daubechies & Sweldens, 

1998) (Acharya & Tsai, 2005)(Saleh & Al-Sulaifanie, 2017). In recent years, many researchers 

have been working on developing wavelet thresholding method to estimate a proper threshold 

for denoising biomedical signals due to the ability of DWT in providing appropriate basis for 

separating noise from noisy signal. A real-time VLSI based on DWT denoising method is 

developed by (Kasambe & Rathod, 2015) to eliminate the power-line interference from PPG 

signals. In (Bahoura & Ezzaidi, 2010), the authors present the implementation of real-time 

wavelet denoising method on FPGA, and this method is used to remove power-line noise from 

ECG signals. In the work (Saleh & Al-Sulaifanie, 2017), a VLSI integrated architecture for 

computing a 1-D IWT was proposed. The adaptive threshold is estimated by computing the 

median absolute deviation (MAD) through sorting successively samples of wavelet detail 

coefficients of the first level. The work in (Ballesteros & Moreno, 2013) introduces real -time 

wavelet denoising architecture with adaptive thresholding method. The adaptive thresholding 

method is developed for real-time sorting applications that based on an insertion algorithm to 

compute the median of the detail coefficients. The threshold is updated every 8 cycles.  
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In (Harrison, 2003), adaptive thresholding detector was developed to estimate the standard 

deviation of background noise by maintaining the duty-cycle at a required value of 15.9%. This 

method can be implemented by a low-power analog integrated circuit. The adaptive thresholding 

algorithm was developed based on the assumption of having spikes added to band-limited white 

gaussian noise as an input to the system. For a white gaussian noise signal, the probability of a 

sample having value above standard deviation is 0.159. A proportional feedback control loop is 

used to adapt the threshold of comparator until its output has a duty cycle of 15.9% (Watkins et 

al., 2004). Wavelet DWT and SWT (stationary wavelet transforms) have been applied to spike 

detection (Kim & Kim, 2003) (RJ et al., 2007). A new spike detector is presented by (Yang, 

Boling, Kamboh, & Mason, 2015) that use system-on-chip approach to implement adaptive 

threshold estimation for high accurate spike detection. In the work (Gagnon-Turcotte et al., 

2016), adaptive thresholding method based on a sigma-delta control was developed for resource 

optimized digital action potential detector. Most of the research in the literatures has worked on 

developing adaptive threshold estimation which was dedicated for biomedical signals such as 

action potential and ECG detector featuring.  

The goal of this paper is to design a real-time wavelet denoising architecture that can be used in 

wide range applications. The proposed architecture is based on haar wavelet transform with 

lifting scheme. Besides, an adaptive threshold estimator based on feedback control loop is 

considered to make the design more suitable for real-time denoising. The proposed architecture 

is developed and simulated using MATLAB 2018b. The rest of the paper is organized as follows: 

In section 2, real-time denoising wavelet-based architecture and adaptive thresholding method 

are described in details. The results and performance of the proposed architecture are stated in 

section 3. At the end, the conclusion is given in section 4. 
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THE PROPOSED ARCHITECTURE 

The real-time wavelet-based denoising architecture embraces decomposition by DWT, delay 

alignments, adaptive thresholding and reconstruction by the inverse IDWT. The block diagram 

of the proposed wavelet-based denoising architecture is shown in figure 1. The design issues of 

the proposed architecture take into the account the following consideration. The error introduced 

by decomposition and reconstruction modules should be insignificant. A noise level estimator 

module will dynamically estimate the unknown standard deviation 𝑆𝐷𝑎 of the background noise 

from the first detail level 𝑑1 of DWT using a feedback control loop. An adaptive threshold 

estimator calculates the threshold level  𝑇𝐻 = 𝑆𝐷𝑎 × 𝐹, where 𝐹 is a constant factor, that to be 

fixed. The propagation delays between the signals should be alignment at different levels and 

dynamically compared to the online adaptive threshold using the soft threshold module. 
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Figure 1 The block diagram of the proposed real-time wavelet-based denoising architecture. 

LIFTING SCHEME OF HAAR WAVELET TRANSFORM 

Haar wavelet filter based on lifting scheme is considered in the proposed architecture. Since the 

lifting scheme approach requires a smaller number of adders, multipliers and shifters, and less 

computational time comparing with the conventional DWT (Saleh & Al-Sulaifanie, 2017),so it 
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is more suitable for real-time applications. The coefficients of Haar filter banks for the 

unnormalized analysis and synthesis are given in (Daubechies & Sweldens, 1998) as follows:  

Analysis low pass filter (LPF) 𝐻𝑎(𝑧) =
1

2
+

1

2
 𝑧−1 ,  

Analysis high pass filter (HPF) 𝐺𝑎(𝑧) = −1 + 𝑧−1 , 

Synthesis LPF 𝐻𝑠(𝑧) = 1 + 𝑧−1, and synthesis HPF 𝐺𝑠(𝑧) = −
1

2
+

1

2
𝑧−1.  

The forward wavelet transform of with Haar filters can be implemented in three steps using 

lifting scheme as:  

a. Splitting: the input signal x(n) at sampling rate fs is split into even xe(k) = x(2k) and 

odd xo(k) = x(2k − 1) sequences with half sampling rate fs 2⁄ .  

b. Prediction: the odd sample is predicted based on the even sample through a predicting 

operator P and the prediction detail signal is 

d1(k) = −xe(k) + xo(k)                                      (1) 

c. Updating: the detail signal d1(k) is update through an updating operator U, to get the 

approximation signal as 

 𝑎1(𝑘) = 𝑥𝑒(𝑘) + 0.5𝑑1(𝑘)                                   (2) 

The decomposition and reconstruction process of lifting scheme Haar wavelet transform is 

shown in figure 2. The reconstructed output of the lifting scheme is delayed with the input by 

one clock. 

 

 

 



Journal of Engg. Research, ICRIE Special Issue 

 
 

6 
 

 

+

+
+

+

+
+

2

2 2

2

Z-1

+

+ x (n) x (n)  xr (n-1) xr (n-1)
1/21/2

      

xo x1 x2 x3 x4

xo x1 x2 x30

xo x2 x4

x1 x30

xo x2 x4

x1 x30

xo 0 x2 0 x40

0 x1 0 x30 0
Z-1

xo x1 x2 x3 x40

0

 d1 (0)  d1 (1)  d1 (2)

 a1 (0)  a1 (1)  a1 (2)

 

Figure 2 Decomposition and Reconstruction process of lifting scheme Haar wavelet transform 

The reconstruction process is achieved by simply inverting the direction of data flow and 

operators in the original formula, then merging process is considered instead of splitting. The 

even sample can be computed as xe(k) = a(k) −
1

2
d(k) . While the odd samples are xo(k) =

d(k)+xe(k).  

In general, the filter of length L and for J level of DWT decomposition/reconstruction the delay 

between input and reconstructed output at decomposition level J can be computed according to 

following formula  

DFj = (L − 1)(2J−j − 1)                                      (3) 

For Haar filter banks, each filter length is L=2. For three levels of transformation J=3, the 

introduced delays DFj of the details coefficient outputs dj  are DF1 = 3  at first level, while 

DF2 = 1, and DF3 = 0 for levels two and three respectively . While the total delay between the 

reconstructed output and the input is  DF0 = 7. 

ADAPTIVE NOISE LEVEL ESTIMATOR MODULE 

The noise level from unknown signal is estimated by computing the median absolute deviation 

(MAD) from the first level detail coefficients 𝑑1(𝑛) to compute the standard deviation as follows 

(Donoho & Johnstone, 1995). 
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σ = MAD 0.6745⁄                            (4) 

where MAD = median(|d1(n)|) is the median absolute deviation of the wavelet coefficients, 

estimated on level one (J=1). Then, the universal threshold TH is computed using the formula 

TH = σ√2 ln (N)                           (5) 

where N is the length of the d1(n). This method is generally used for off-line processing. Since 

it is post-processes of the whole signal to detect local events, therefore it is not suitable for real -

time applications. Furthermore, in case of the standard deviation of the noise is not being 

stationary, it requires repetition of the measurements or considering adaptive threshold scheme 

which is cable of tracking the level of the noise and set the threshold accordingly. A block 

diagram of the real time noise standard deviation estimator module capable of tracking the noise 

level is presented in figure 3. The detail input d1(n) has frequency rate  fs 2⁄  with sampling 

period 2Ts. The module estimates adaptively the standard deviation value SDa, of the noise using 

a feedback control loop. A divided by M target counter is free running counter with input clock 

frequency fs 2⁄  , where M is the number of samples within a window size period of TM = 2MTs. 

This counter periodically counts from 0 to M − 1, within period  TM  . During the period TM, the 

input  d1(n)  is compared to the previous estimated feedback noise level SDa  by a loop 

comparator. At any time, the output of the loop comparator is LC(n) = 1, when d1(n) is greater 

than SDa, otherwise LC(n) = 0. The LC(n) output is gated through logic AND operation with 

the input clock. The AND gated output clocks are counted by an event counter. The final count 

of the event counter at the end of the period TM is denoted as NE. The instant error signal e 

between the count of the two counters is given by:  

e(n) = ECO(n) −  0.159 TCO(n)               (6) 
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Where ECO(n) and TCO(n)  are the corresponding instant counting of the Event and Target 

counter respectively.  At the end of each period TM, the target counter count M samples, and the 

event counter count the number of the detail samples NE , that are greater than  SDa . A 

synchronized carry ripple out Cr(n) from the target counter is activated whenever its count is 

M − 1. The output Cr(n) is used to capture and store the ending values of the error signal  e(n) 

at each period TM  in a register. This mean that a multi-rate foundation with down sampling 

fs M ⁄ is achieved. Then the output of the register can be expressed as: 

e(Mn) = ECO(Mn) − 0.159 TCO(Mn) = NE − 0.159 M   (7) 

It is known from the Gaussian distribution theory that the probability of the level of the Gaussian 

noise signal exceeds its standard deviation σ is 15.9 %. Therefore, at the steady-state condition 

of the error signal e(Mn) will approach zero, whenever the event count NE is close to  0.159M. 

A feedback control digital integral C(z) is used to integrate the signal  e(Mn), and the output of 

the C(z)  represent the estimated adaptive standard deviation SDa. Under stable conditions, the 

e(Mn) will vary slightly up and down around zero value, and the count NE maintained close to 

M*0.159, when  SDa ≈ σ . The noise estimator module computes and continually updates SDa 

values at end of each period TM of the time, registering its result when M samples have elapsed. 

The output of the register e(Mn) is integrated every TM cycle. The transfer function of the digital 

integrator is   

C(z) = G
1

(1− z−1)
                         (8) 

where G is the gain of the integrator. The timing diagram of the standard deviation estimator are 

presented in figure 4 for Ts = 1, σ =2, M=64, G=1/16.  
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Figure 3 The block diagram of the standard deviation estimator. 

 

Figure 4 The timing diagram of the standard deviation estimator module. 
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THRESHOLD ESTIMATOR MODULE 

The estimation of threshold value plays significant role in the performance of wavelet-based 

denoising approach. Therefore, several methods of threshold value estimation have been 

proposed. Among these existing methods, the most popular one is universal threshold. This is 

because the probability of noise amplitude being just below the universal threshold TH is very 

high. The universal threshold is proposed by (Donoho and Johnstone, 1995) which depends on 

the estimated noise level and the length of the samples in the window size. In the proposed 

scheme, the threshold is calculated adaptively as follows: 

𝑇𝐻 = 𝑆𝐷𝑎 × 𝐹 = 𝑆𝐷𝑎 √2 𝑙𝑛(𝑀)                     (9) 

Where 𝑆𝐷𝑎 is the updated real time estimated standard deviation of the noise within each 

window size of 𝑀 samples sequentially from the detail input 𝑑1(𝑛). The multiplier factor by 

𝑆𝐷𝑎 in (9) is defined as 𝐹 = √2  𝑙𝑛(𝑀) , which can be predetermined as function of 𝑀 as shown 

in table 1. For a white Gaussian noise, most of the maximum and minimum samples are lies 

between − 3𝜎  and  3𝜎 (about 99.73%). So, setting the threshold above and below this two 

ranges, ensures the cancellation of the almost noisy coefficients of  𝑑𝑗 (𝑛). 

Table 1 Multiplier factor 𝐹 as function of 𝑀 

𝑴 8 16 32 64 128 256 1024 

𝑭 2.0393 2.3548 2.6328 2.8841 3.1151 3.3302 3.7233 

For the three levels of decomposition (𝐽=3), the estimated TH is used to threshold the detail 

signals 𝑑1 , 𝑑2 , and  𝑑3 . However, due to multi-rate behavior of the signals  𝑑1 , 𝑑2 , and  𝑑3 the 

threshold level 𝑇𝐻 should be down sampled by 2 and 4 for the detail signals, 𝑑2 , and  𝑑3  
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respectively, in order to maintain the same sampling rate at different levels of wavelet 

decomposition. 

SOFT THRESHOLD MODULE 

After calculating the threshold, the detail coefficients 𝑑𝑗 (𝑛) are replaced with zero when they 

are not exceeding the threshold value regarding to the following soft threshold rule (ZHANG, 

LU, & LIU, 2019): 

𝑑𝑗𝑇(n) = {

 𝑑𝑗 (𝑛) − 𝑇𝐻       𝑖𝑓 𝑑𝑗 (𝑛) > 𝑇𝐻    

𝑑𝑗 (𝑛) + 𝑇𝐻              𝑖𝑓 𝑑𝑗 (𝑛) < −𝑇𝐻

0                        𝑖𝑓 |𝑑𝑗 (𝑛)| ≤ 𝑇𝐻  

     (10) 

Where 𝑑𝑗𝑇(n) is the thresholded detail coefficients.  

The complete block diagram outline of the proposed real-time wavelet-based denoising 

architecture is shown in figure 5.  
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Figure 5 Block diagram of the proposed real-time denoising wavelet-based architecture 
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RESULTS AND DISCUSSION 

The performance of the proposed real-time wavelet denoising method is evaluated by denoising 

the corrupted rectangular pulse signal 𝑦𝑖 (𝑛). The corrupted signals of different input SNR levels 

(-5dB, 0dB, 5dB and 10dB) are generated by adding simulated gaussian white noise 𝑤𝑖 (𝑛) to 

the original signal 𝑥𝑖 (𝑛)  as shown in figure 6. The following specifications of 𝑥𝑖 (𝑛)  are 

considered fundamental frequency 𝑓𝑜 = 0.001 𝐻𝑧 and the normalized sampling frequency 𝑓𝑠 =

1 𝐻𝑧, and amplitude equal to 5 volts. The denoised output signal  𝑦𝑜(𝑘) is reconstructed after 

three levels of wavelet decomposition/reconstruction using adaptive soft thresholding method.  

The measurement criteria signal-to-noise 𝑆𝑁𝑅  and mean square error 𝑀𝑆𝐸  parameters are 

considered to evaluate the performance. The criteria measurement input 𝑆𝑁𝑅𝐼 and output 𝑆𝑁𝑅𝑜 

are calculated as follow: 

𝑆𝑁𝑅𝐼 = 10 𝑙𝑜𝑔10 (
𝜎𝑥𝑖

2

𝑀𝑆𝐸𝑖
)      𝑑𝐵                       (11) 

Where is 𝜎𝑥𝑖
2   is the variance or AC power of the original input signal 𝑥𝑖(𝑘), The mean-square-

error 𝑀𝑆𝐸𝑖  is denoted as follow. 

𝑀𝑆𝐸𝑖 = 𝜎2 =
1

𝑁
∑ (𝑥𝑖(𝑘) − 𝑦𝑖 (𝑘))2𝑁−1

𝑘=0              (12) 

Where N is the length of input the signal. The quality of the output denoised signal  𝑦𝑜(𝑘) is 

measured by the output 𝑆𝑁𝑅𝑂 and 𝑀𝑆𝐸𝑜as:  

𝑆𝑁𝑅𝑜 = 10 𝑙𝑜𝑔10 (
𝜎𝑥𝑖

2

𝑀𝑆𝐸𝑜
)    𝑑𝐵                      (13) 

𝑀𝑆𝐸𝑜 =
1

𝑁
∑ (𝑥𝑖 (𝑘) − 𝑦𝑜(𝑘))2𝑁−1

𝑘=0              (14) 
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Figure 6 The rectangular pulse waveform 𝑥𝑖 (𝑛) and the noisy signal 

𝑦𝑖 (𝑛) and reconstructed denoised signal 𝑦𝑜(𝑘) at (upper left) 

𝑆𝑁𝑅𝐼 = −5 dB  (upper right) 𝑆𝑁𝑅𝐼 = 0 dB (lower left) 𝑆𝑁𝑅𝐼 =

5 dB (lower right) 𝑆𝑁𝑅𝐼 = 10 dB. The gain 𝐺 and window size 

𝑀 are chosen to be 𝐺=1/64 and 𝑀=64 based on a study  

The performance of the proposed denoising method is studied in terms of integral gain 𝐺 of 

feedback control and window size 𝑀 with respect to the improvement in SNR and settling time. 

To select the best values of 𝐺 and 𝑀, the performance of the proposed method is investigated by 

varying gain 𝐺 and kept the window size 𝑀 fixed for different cases of 𝑀 as shown in figure 7 

and 8. In general, the results show that small values of window size 𝑀 (𝑀=16 & 𝑀=64) always 

has better improvement in term of SNR especially in case of large values of 𝐺 (like 𝐺=1/16 and 

𝐺=1/64) (see figure 7). However, the large 𝑀 gives more accurate estimation of the 𝑆𝐷𝑎 noise 

at the cost of longer settling time (see figure 8). Moreover, it is clearly seen in figure 8 that small 

values of 𝐺 (like 𝐺=1/256 and 𝐺=1/1024) require longer time to reach the final response of 

𝑆𝐷𝑎 noise. Since the estimated 𝑆𝐷𝑎 is directly linked to the thresholding method (see Equation 

9), this delay in estimation causes degradation in denoising the signal in term of SNR but more 
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accurate and stable estimation of 𝑆𝐷𝑎 as shown clearly in figure 9. Besides, in real-time 

applications, it is better to have smaller window size 𝑀 and smaller settling time. In this design, 

the value of 𝑀 and 𝐺 are chosen to be 64 and 1/64 respectively by considering the trade-off 

between the improvement of SNR and settling time. In figure 6, It can be clearly observed that 

a significant amount of noise has been removed. In case of 𝑆𝑁𝑅𝐼 = 0 dB, a massive noise is 

suppressed, and the outlook frame of the original signal is recovered with maximum 

improvement of 8.6424 dB. When the 𝑆𝑁𝑅𝐼  equal to 10 dB, the original signal is entirely 

recovered with minor distortion. However, in case of 𝑆𝑁𝑅𝐼 = 10 dB, the mount of improvement 

in term of signal-to-noise ratio is only 6.9362 dB.   

 

 

 

 

 

 

 

 

 

Figure 7 The performance of the proposed denoising method in term of 

improved signal-to-noise ratio when the window size of 𝑀 is 

fixed, and the gain 𝐺 is varied. 
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Figure 8 The performance of the proposed denoising method in term of 

setline time for different levels of noise sigma when the window 

size of 𝑀 is fixed, and the gain 𝐺 is varied. 

 

 

 

 

 

 

 

 

Figure 9 The setting time required to reach the final value (steady state) 

of the estimated 𝑆𝐷𝑎 for 𝐺=1/1024 and 𝐺=1/64 with 𝑀=64 
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CONCLUSIONS 

Adaptive real-time wavelet denoising architecture based on feedback control loop is developed 

in this paper. Three levels of DWT with harr lifting scheme is considered. In real-time denoising, 

estimating the threshold value for wavelet coefficients plays essential role in denoising the 

signal. In this architecture, adaptive thresholding method is developed using a noise level 

estimator module based on first detail coefficients level 𝑑1 with integral feedback control system 

to estimate the unknown standard deviation 𝑆𝐷𝑎of background noise. The performance of 

feedback control system in estimating the 𝑆𝐷𝑎  is investigated in term of settling time and 

improved SNR. The results show that the selection of gain 𝐺  and window size 𝑀 has a 

significant impact on the convergence time (settling time) and the accuracy in estimating 𝑆𝐷𝑎 of 

the noise. The trade-off between the accuracy and settling time in estimating 𝑆𝐷𝑎 should be made 

regarding to the requirements of the application. Regardless of the fluctuation and inaccuracy in 

the estimated 𝑆𝐷𝑎 considering 𝑀=64 and 𝐺=1/64, the average improvement in term of SNR is 

interestingly high approximately 8 dB (see figure 6). Besides, the time required for estimating 

the noise standard deviation level is suitable for real-time application to calculate the adaptive 

threshold. In the future, the proposed denoising architecture will be tested on real biomedical 

signals and implemented on FPGA configurable digital integrated circuit for online applications.   
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