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ABSTRACT 

Infrastructure innovation in the power system industry encourages more partakers to participate in the 
electricity market which improvises the load utilization level. So, the maintenance of   power system’s agility with 
respect to any dynamic update in terms of load level is necessary. Precise prediction of maximum allowable loading 
point helps to enhance the power system agility and also improvises the total allowable power transfer capability 
which in turn helps to supply continuous eminent power supply at the minimal cost to the customers by means of 
encouraging more contracts. Considering the above potential benefits, in this papear by using individual incremental 
loading factor (IILF) the precise prediction of total loadability limit (TLL) of the system is manipulated with the help 
of newly evolved meta-heuristic optimization algorithm such as Grey Wolf (GRW) optimizer and Flower Pollination 
Algorithm (FPA). The allowable single line contingency scenario is considering along with base case scenario to 
extract the more realistic TLL which helps to maintain the power system balance with respect to the dynamic nature 
of the load. The proposed maximum loading point extraction manipulation solution problem is tested with the help of 
three standard IEEE systems such as 30 Bus, 57 Bus and 118 bus systems. The extracted test results show that the 
predicted maximum   allowable loading point enhances the load utilization level without affecting the system 
securities. The statistical performance measures of GRW and FPA confirmed the better balance of exploration and 
exploitation in extracting the optimal results. 

Keywords: Individual Incremental Loading Factor (IILF); Total Loadability Limit (TLL); Grey Wolf 
(GRW) Optimizer; Flower Pollination Algorithm (FPA); Reapeted Power Flow (RPF) 

 

1. INTRODUCTION 

The healthiness of any power system is to a large extent dependent on the balanced power supply with respect 
to any dynamic load utilization and with the  restoration rate  level in case of any contingency. So, the essential roles 
of any power system operation and control is to pre-determine the maximum allowable demand at each existing load 
bus as well as in pre-categorizing the critical load buses and transmission lines in a power system.  The function of 
determining maximum allowable demand of each load bus in a power system helps to extract the maximum allowable 
Total Loadability Limit (TLL) of a power system. TLL extraction process not  only resolves the operation-based 
problems, but also provides constructive information for  the distribution expansion planning, distributed generation 
sizing, tie-line capacity, FACTS device placements, etc., [1–5]. According to power system operational stance, the 
allowable TLL is the maximum load limit that a power system can serve the customers without violating any security 
constraints. Maximum loadability limit (MLL) based analysis is one of the best approach to appraise a power system 
in a steady state and also pre-determine the practical intellect of a security margin [6]. In the restructuring based 
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deregulated electricity environments, power systems are often heavily traffic with high load utilization which may 
results in higher affinity toward instability. So, the prediction of MLL helps to provide reliable electric supply to the 
consumer without any contract violation and also at the optimal cost. Different mathematical models and optimization 
techniques, like classical, heuristic, and hybrid methods have been proposed to estimate MLL [7-11].  

The progressive increase in the electric power demands until convergence methodology of conventional 
power flow has been followed at the initial stage in extracting the MLL [12]. In modern years, in order to find the 
appropriate MLL,  OPF  and Security Constrained Optimal Power Flow (SCOPF) based models have been widely 
used which plays an important role in power system operation, decision making, and market driven based problems 
[13-15]. OPF-based model has been presented in [16], as an extension of the power flow-based model in [17]. Even 
though finding the MLL using conventional power flow tools is well established problem but the conventional 
methodology needs lot of pre-analysis and also need lot of manual arbitration in knowing MLL [18,19]. Another 
complexity in the area of MLL research is that the enrichments to power flow-based approaches cannot be correctly 
applied which consider more practical network constraints [20]. Also, the usage of conventional optimization 
algorithm increases the mathematical stress and difficulty in handling the mixed data types such as integer, float and 
binary as a group control parameters.  

The application of meta-heuristics based evolutionary optimization algorithm such as Genetic algorithm 
(GA), Particle Swarm Optimization algorithm (PSO) etc., provides the breakthrough for handling the mixed data types 
in all the complex power system problems. Due to its parameter handling capability with respect to any number of 
dimensions, the optimal maximum loadability limit is determined using Hybrid PSO by considering the voltage limits 
as security constraints in each load buses. The voltage stability limit is the nose point of the PV curve after which the 
voltage collapse occurs. In the same paper, the load is uniformly incremented at all the load buses until bus voltages 
are violating [21]. In practical, the loadability level at each load bus will differ with respect to the congestion level of 
the bus. Hence, the dynamic incremental variation at all the load buses is necessary to predict the allowable MLL of 
any power system [24].  In literature [25], the Hybrid DEPSO algorithm was proposed to determine the maximum 
loading point by incrementing each load bus with variable loading factor under static condition. Due to the inherent 
nature of the power system such as overloading, transmission line disturbances and protection device failures, there is 
a high possibility of the contingency occurrence. Hence, the study of contingency based TLL extraction at each load 
buses is very much essential in the highly stressed power system to prevent any kind of uncertainties. Very Few 
literatures are available to determine the MLL of the power system by considering the contingency analysis. Analyzing 
the above difficulties, in this paper TLL of a power system is predicted by optimally extracting the individual 
incremental loading factor (IILF) for each load at the base case scenario   and also at the single transmission line 
outages scenario. The Severity of the line contingency depends upon the least TLL differs from the base case scenario. 
In this proposed research work, newly evolved nature inspired highly balanced search based Grey Wolf (GRW) 
Optimizer algorithm [26 - 28] and Flower pollination algorithm (FPA) [29] are applied to extract the optimal loading 
factor of each load bus by satisfying the equality and inequality security constraints such as bus voltage limits, 
transmission line limits and power balance constraints with and without line outages. To test the effectiveness of the 
proposed approach and the robustness of the applied optimization algorithms, three different standard test systems 
such as IEEE 30, 57 and 118 are utilized and their test results are compared.  
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2. Individual Incremental Loading Factor (IILF) based problem formulation 

Individual Incremental Loading Factor (IILF) method helps to predict the maximum load that can be added 
at each existing load bus. The pre-determination of each load demand helps to identify the stress level of the power 
system in the existing loading condition and also helps to improve the loadability utilizing level which in turn enhances 
the possibility of the economic contractual plan in any competitive electricity market. Therefore, the individual 
incremental loading factor method helps to determine the optimal allowable total loadability limit of the system which 
has been described in the following sections 

 

2.1 Optimal mathematical Total Loadability Limit (TLL) objective Formulation at base      

case scenario 

The main objective of the proposed problem is to extract the maximum secured Total Loadability Limit 
(TLL) in a power system via IILF determination at each load. To extract the proposed objective results, the following 
mathematical equation (1) has been modeled as follows 

 F" = 	Max(TLL)= Max 1 + λ/ *P1/234
/5"                      (1)  

Where TLL= Total loadability limit of the system  

λ/ = Individual Incremental loading factor at each load bus  

NLB is the Number of Load Buses  

Subject to 

Constraints1: Power balance equations 

 P6/-	(P1/ + λ/)- V/ V9Y/9 cos(θ/9 + δ9-δ/) = 0       (2)  

 (Q6/-Q1/)- V/ V9Y/9 sin(θ/9 + δ9-δ/) = 0       (3)  

Constraints2: Voltage profile constraint 

 V/C/D ≤ V/ ≤ V/CFG          (4)  

Constraints3: Real and reactive generation power constraints 

													P/C/D ≤ P/ ≤ P/CFG             (5) 

														Q/C/D ≤ Q/ ≤ Q/CFG         (6) 
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2.2 Optimal mathematical TLL objective formulation considering contingency scenario 

Due to the sudden technical inconsistency such as overloading in load buses, power conversion device failure, 
unbalanced system faults etc., will impose high probability of transmission line outage from the power system. 
Therefore, there should be high concern in considering the transmission line outage while extracting the maximum 
loadability of the system. Highly sensitive transmission line outages are also possible i.e. the line outage which will 
not even allow increment a MW of the power demand in the base case system level. These highly sensitive 
transmission lines are not considered for extracting the maximum loadability. The inclusion of line outage in extracting 
the maximum loadability of the power system will newly define the objective function (7) as provided below  

[FI,index] = 	Min Max TLL = 	 Min
NO9O23P

Max 1 + λ/ *P1/234
/5"                  (7) 

Where index is the line outage corresponding to min of max TLL which identifies the weakest line outage 
leads to no further additional loading 

 

3. Optimization Algorithm Structure 

The established positive efficiency of meta-heuristic Optimization  such as Genetic Algorithm (GA),  Particle 
Swarm Optimization (PSO), Differential Evolution(DE), FireFly  algorithm (FFA) and  Simulated Annealing (SA) in 
solving complex non-convex, multi-dimensional and multi variable power system increases the involvement of  
evolutionary, swarm based intelligence and  nature inspired algorithms in obtaining  various power system problem 
solutions in the last decade. The improved application of the meta-heuristics algorithm in modern power system 
engineering application paves the way for the evolution of many new nature inspired algorithm with quick search 
capability and with the better balance search technique.  Grey Wolf (GRW) Optimizer and Flower pollination 
algorithm (FPA) are best among the recently evolved highly balanced search meta-heuristics algorithms. 

 

3.1 Grey Wolf (GRW) Optimizer 

Grey Wolf (GRW) Optimization is a newly evolved optimization framework inspired by Canadian grey 
wolves developed by Mirjalili [27]. The solutions of the GRW algorithm in non-convex engineering optimization 
problems proven to attain better search results compared to well established DE, PSO and GA based optimization 
methods. The search space flow process of the GRW algorithm is directed by three wolves, namely alpha (α), beta (β) 
and delta (δ). Alpha (α) is the leader of the grey wolves these may be a male or female, whereas the beta is the second 
level dominant grey wolves which advices the alpha in terms of process execution and also shares the   instruction to 
the third level dominant delta wolves. All the process is implemented by omega (ω) wolves under the guidance of the 
delta wolves. So, the omega wolves’ positions are ordered according to the three dominant grey wolves’ positions. 
The three major phase of grey wolf hunting are tracking, encompassing and attacking the prey. These three dominant 
wolves will guide the omega wolves to identify the prey during hunting. Once the prey gets identified, the omega 
wolves will encircle and troublesome the prey until it stops moving. Based on the three phases of GRW hunting 
process ,  the solutions  are  designed in such a way that the global  best fitness value  are always extracted from the  
alpha (α ) solutions  consequently the  second and third best fitness ones  i.e. local best fitness values are extracted 
from the  beta ( β ) and delta (δ) solutions . The above three alpha, beta and delta solutions helps to narrow the search 
space criteria in identifying the best solutions which provides the exploration concepts in search methodology.  Later, 
the solutions are exploited in the newly identified search space to extract   better solutions.  As mentioned above, the 
mathematical modeling of prey encircling behavior are proposed as follows  

D = C. XU t -X(t)          (8) 

X t + 1 = X t -A. D          (9)    
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Where t indicates the current iteration, A and C is coefficient vectors, XU is the position vector of the prey, and X 

indicates the position vector of a grey wolf. 

The vectors A and C are calculated as follows: 

A = 2a	. r"-a         (10)    

C = 2	. rI         (11)    

Where components of a are linearly decreased from 2 to 0 over the course of iterations and r1, r2 are random 
vectors in the range of [0, 1]. The hunting knowledge of the three best wolves helps the omega wolves to identify the 
prey position. Based on the same, the mathematical model has been described as provided below   

DZ = C". XZ-X ,D[ = CI. X[-X ,D\ = C]. X\-X         (12)  

X" = 	XZ-A". (DZ),XI = 	X[-AI. (D[),X] = 	X\-A]. (D\)        (13) 

Finally with the help of the top three grey wolves prey position knowledge, the new position vector is 
calculated by taking the average of the sum of three prey positions is given in the following equation  

X t + 1 = 	 ^_`^a`^b
]

                                                                              (14) 

 Grey wolves typically search with the positions of alpha, beta, and delta wolves. Basically, the three wolves 
diverge with each other in searching the prey and then converge to attack the prey. The divergence property of the 
GRW is accentuated with the help of vector component  A  having the random value between -1 to 1 and with the help 
of C vector contains random values in [0, 2]  to search the solutions globally. The convergence property of the GRW 
is accelerated with the component a by decrementing the value from 2 to 0. The above convergence and divergence 
characteristics assist GRW to show random behavior in search, favoring better balance in maintaining the pre-mature 
avoidance and long convergence search avoidance.  The GRW algorithm for the extraction of maximum TLL is 
described below 

 

3.2 GRW algorithm 

Step 1: Initialize the objective function F"  mentioned in the section (2)  

Step 2: Initialize the grey wolf position vector X (X1, X2, …Xn) with the population size of ‘NF x N’. Where ‘NF’ is 
the number of search agent grey wolves as 30 and ‘N’ is the number of individual incremental  loading factor 
(IILF) pack size depends on the number of existing real power load connected in the test power system bus.  

Step 3: Initialize the vector components a, A, C and maximum number of iteration (ITERfFG) which has been used in 
the GRW algorithm  

Step 4: Calculate the fitness value using the objective function F1 for the each position vector of grey wolf and identify 
the top three position vectors of prey. The first best (XZ) prey position vector, the second best (X[) prey 
position vector and the third best  (X\)  prey position vector based on the fitness value. 

Step 5:  Using the top three prey position vector and with grey wolf position vector, update the positions of the top   

 three best hunt wolves’ position vectors such as X1, X2 and X3 using the equations (12) and (13) 
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Step 6:  Calculate the average of three position vector using the equation (14) and calculate its fitness value 

Step 7:  Compare the fitness value of current position vector of grey wolf with the newly created average position 
vector, if the fitness value is greater replace the current position vector for next iteration  

Step 8: Repeat the step 4 to step 6 until the maximum iteration reaches  

Step 9: Extract the optimal best IILF based on the fitness value of allowable TLL 

Step 10: Repeat the step 1 to 9 by creating outage at all the transmission lines and extract the allowable TLL for each 
outage condition  

Step 11:  As discussed in the section (2.2), the minimized allowed TLL (F2)  with respect to the transmission line 
outage will be considered as the maximum allowable loadability of the system. 

 

3.3Flower Pollination Algorithm (FPA)  

FPA based stochastic algorithm is exploited to resolve the optimization problem of extracting maximum 
allowable TLL  with the optimal increment of IILF and also not violating the  system security limits as given in the 
section 2.1. FPA is a nature inspired flower pollination behavior based optimization proposed by Xin-She Yang [29]. 
The core part of the FPA depends upon the two pollination methodology namely self-pollination and cross-pollination. 
Self-pollination is the process of one flower pollinates the same flower or other flowers of the same plant whereas the 
cross-pollination is the process of pollination between two different plants. Global pollination is instigated by the 
biotic pollinating agents such as bees, bats, birds and flies. Biotic pollination agent follows the Levy distribution. 
Summarizing the following pollination characteristics as four regulations 

 1. Cross pollination act as a Global pollination and it is performing the Levy flights  

 2. Self-pollination is an abiotic local pollination act 

 3. Reproduction probability is assigned to flower constancy and is proportional to similarity of two flowers  

    involved  

 4. The Probability has been tosses between 0 and 1 to control the cross pollination and self pollination. The  

     pollination and reproduction of the fittest is given as below 

v/h`" = v/h + L v/h-d*         (15) 

L~ µk(µ) l/D(mµ/I)
mm

"
l_oµ

   ( s>>so>0)        (16) 

Where v/h is the pollen ‘i’ or solution vector v/ at iteration t, and d* is the current best solution found among 
all solutions at the current generation/iteration. L is the strength of the pollination, which is a step size. Pollinators can 
move over a long distance with various distance steps, Levy flight distribution is used to mimic this characteristic 
efficiently.  Γ(µ)  is the standard gamma function, and this distribution is valid for large steps s > 0. The local 
pollination and flower constancy can be represented as 

v/h`" = v/h + ε v9h-vqh         (17) 
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Where v9h and vqh  are pollens from the different flowers of the same plant species. This essentially mimics the 
flower constancy in a limited neighborhood. Mathematically, if v9h and vqh  comes from the same species or selected 
from the same population, this become a local random walk if we draw ‘ε’ from a uniform distribution in [0, 1]. The 
FPA algorithm structure for the extraction of maximum TLL is described below 

Step 1: Initialize objective function f1 as mentioned in the section (2.1)  

Step 2: Initialize a flower pollen population of X ( X1, X2,…Xn ) with the population size of ‘NF x N’. Where ‘NF’ is 

the number of flowers as 30 and ‘N’ is the number of IILF based on the existing load point in a power system.   

Step 3: Extract the maximum fitness value in the initial population  

Step 4: Initialize the switch probability p between [0, 1] 

While (t <Maximum Iteration) 

 For i = 1:  NF 

If random value < p, 

Cross pollination has been processed via equation (15) via equation (16) 

    Else 

   Generate the ε from a uniform distribution in [0, 1] 

   Arbitrarily select the jth  and kth flower among all the solutions 

   Do self-pollination via equation (17) 

  End if 

Step 5:  Determine the new fitness value for the extracted flower pollen population size  

Step 6: If new fitness values is better than existing population fitness value, update them in the population 

 End for 

Step 7: Locate the best solution in the current population based on the objective fitness value (F1) 

End while 

Step 8: Repeat the step 1 to 7 by creating outage at all the transmission lines and extract the allowable TLL for each 

outage condition 

Step 9:  As discussed in the section(2.2), the minimized allowed TLL (F2) with respect to the transmission line outage 

will be considered as the maximum allowable loadability of the system. 
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4. RESULTS AND DISCUSSIONS 

The Proposed Maximum Allowable Total loadability limit (TLL) extraction methodology discussed in 
sections (2.2) and (2.3) has been tested using the three standard test systems such as IEEE 30, IEEE 57 and IEEE 118 
buses.  Newly evolved nature based inspired meta-heuristic algorithms such as Grey Wolf (GRW)  optimizer and 
Flower pollination algorithm (FPA) are applied to extract the better solutions as discussed in the sections (3.2) and 
(3.3) using the MATLAB R2014a programming language. The brief structured data of the three test system with the 
base case real power and reactive load demands, the evaluated line loss with the critical voltage and its bus using the 
Standard Newton’s Power Flow methodology are tabulated in the table -1.  The control parameters applied in the 
GRW and FPA are provided in the table -2.  

 

Table – 1 Base Case parameter of Implemented IEEE Test Systems 

Parameter IEEE 30 Bus IEEE 57 Bus IEEE 118 Bus 
Total No of Existing Load connected Bus  20 40 99 

Total No of  Generator Bus 6 7 54 
Total Transmission Line 41 80 184 

Existing Total Real  power demand in Per 
unit( Pr/) 

1.892 12.25 42.42 

Existing Total Reactive  power demand in 
Per unit ( Qr/) 

1.072 3.364 14.38 

Total Real power line loss in Per 
unit( P3/) 

Total Reactive power line loss in Per 
unit( Pr/) 

0.0244 
 

0.0899      

0.2786 
 

1.2167 

1.32863 
 

7.8379 

Critical Voltage Magnitude  in Per unit 0.961 0.936 0.943 
Critical Voltage Bus 8 31 76 

Minimum Voltage Magnitude in Per unit 0.95 0.93 0.94 
Maximum Voltage Magnitude in Per unit 1.05 1.06 1.06 
 

Table – 2Applied Optimization Algorithm’s Control Parameters 

Algorithm Control Parameters FPA 
Flower population Size 

Step Size 
Gamma function parameter (µ) 

Termination 

30 
2.5 
1.5 
500 

 
 

Wolves population Size 
Termination 

Vectors r1 and r2 
a  component  

GRW 
 

30 
500 

Random value between 0 and 1 
Linearly decreased from 2 to 0 

The implemented test results are detailed in the below sections as follow 
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4.1.  Maximum allowable TLL extraction in Base case scenario 

GRW and FPA based determination of Maximum allowable TLL by extracting the Optimal incremental 
loading factor in each load bus without affecting the system’s security constraints are tested in the IEEE 30, 57,118 
bus systems and its newly predicted real power demand for each loaded bus at the base case scenario   with its 
individual incremental loading factor (IILF) are updated in the tables 3, 4 and 5 respectively.  

 

 Table – 3 Optimal Base case IILF and real power demand of each load in IEEE 30 Bus system 

  

Table – 4Optimal Base case IILF and real power demand of each load in IEEE 57 Bus system 

Bus 
Number 

GRW FPA GRW FPA Bus 
Number 

GRW FPA GRW FPA 
Total Real power 

load in p.u 
IILF Factor (λ) Total Real power 

load in p.u 
IILF Factor(λ) 

1 1.09969
5 

1.088195 0.9994 0.9785 29 0.17658
7 

0.177955 0.0387 0.0468 

2 0.03842 0.036154 0.2807 0.2051 30 0.03603
2 

0.036048 0.0009 0.0013 

3 0.81938
8 

0.807246 0.9985 0.9689 31 0.05805
2 

0.058106 0.0009 0.0018 

5 0.22911
5 

0.236032 0.7624 0.8156 32 0.01602
9 

0.016004 0.0018 0.0002 

6 0.79556
7 

0.803429 0.0608 0.0712 33 0.03803
6 

0.038002 0.0009 0.0001 

8 2.02099
9 

2.043847 0.3473 0.3626 35 0.06009
8 

0.060301 0.0016 0.005 

9 1.21710
9 

1.250144 0.0059 0.0332 38 0.14094
7 

0.140547 0.0068 0.0039 

10 0.05665
6 

0.05617 0.1331 0.1234 41 0.06404
1 

0.064572 0.0165 0.025 

12 5.34329
4 

5.0613 0.4173 0.3425 42 0.07191
2 

0.071672 0.0128 0.0095 

13 0.18273
5 

0.186999 0.0152 0.0389 43 0.02261
2 

0.023941 0.1306 0.197 

14 0.11099
3 

0.119924 0.0571 0.1421 44 0.12090
2 

0.121518 0.0075 0.0127 

15 0.22573
8 

0.231918 0.0261 0.0542 47 0.29958
5 

0.302832 0.0087 0.0196 

Bus 
Number  

GRW FPA GRW FPA Bus 
Number  

GRW FPA GRW FPA 
Total Real power 

load in p.u  
IILF Factor(λ) Total Real power 

load in p.u  
IILF Factor(λ) 

2 0.433282 0.433977 0.9967 0.9999 17 0.092173 0.101521 0.0241 0.128 
3 0.047977 0.038546 0.999 0.6061 18 0.041532 0.039762 0.2979 0.2426 
4 0.15184 0.150864 0.9979 0.9851 19 0.107982 0.112253 0.1367 0.1816 
7 0.433293 0.450904 0.9004 0.9776 20 0.027608 0.026363 0.2549 0.1983 
8 0.300562 0.300748 0.0019 0.0025 21 0.306348 0.215256 0.7506 0.23 

10 0.059645 0.069808 0.0284 0.2036 23 0.061536 0.060661 0.923 0.8957 
12 0.196697 0.195712 0.7562 0.7474 24 0.158948 0.170408 0.827 0.9587 
14 0.114549 0.093991 0.8476 0.516 26 0.041072 0.044636 0.1735 0.2753 
15 0.088757 0.124373 0.0824 0.5167 29 0.028308 0.030417 0.1795 0.2674 
16 0.036596 0.061004 0.0456 0.743 30 0.138717 0.139522 0.3087 0.3162 
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16 0.85681
4 

0.819954 0.9926 0.9069 49 0.18333
8 

0.182763 0.0185 0.0153 

17 0.83834
9 

0.83406 0.9961 0.9859 50 0.21350
3 

0.215846 0.0167 0.0278 

18 0.27846
9 

0.279994 0.0238 0.0294 51 0.25982
8 

0.285577 0.4435 0.5865 

19 0.03355
1 

0.034374 0.0167 0.0416 52 0.05554
2 

0.054041 0.1335 0.1029 

20 0.02330
8 

0.023602 0.0134 0.0262 53 0.20660
8 

0.210145 0.033 0.0507 

23 0.06344
4 

0.063721 0.007 0.0114 54 0.04901
8 

0.046072 0.1956 0.1237 

25 0.06309 0.063172 0.0014 0.0027 55 0.07287 0.094907 0.0716 0.3957 
27 0.09316

7 
0.093556 0.0018 0.006 56 0.07616

9 
0.077011 0.0022 0.0133 

28 0.0466 0.046787 0.013 0.0171 57 0.06793
3 

0.068345 0.0139 0.0201 

 

 

Table – 5 Optimal Base case IILF and real power demand of each load in IEEE 118 Bus system 

Bus 
Number  

GRW FPA GRW FPA Bus 
Number  

GRW FPA GRW FPA 
Total Real power 

load in p.u  
IILF Factor(λ) Total Real power load 

in p.u  
IILF Factor(λ) 

1 0.821904 0.80006 0.6116 0.5687 59 5.534329 5.538662 0.998 0.9995 
2 0.293678 0.291941 0.4684 0.4597 60 1.503009 1.55064 0.9269 0.988 
3 0.482425 0.503857 0.237 0.2919 62 1.508317 1.532296 0.9589 0.99 
4 0.427469 0.418715 0.0961 0.0736 66 0.773426 0.777897 0.9831 0.9946 
6 0.683728 0.681984 0.3149 0.3115 67 0.513867 0.514672 0.8352 0.8381 
7 0.253922 0.253265 0.3364 0.333 70 1.138176 1.137176 0.7245 0.723 
8 0.493001 0.458246 0.7607 0.6366 72 0.143314 0.14171 0.1943 0.1809 

11 0.753219 0.759095 0.076 0.0844 73 0.068122 0.066885 0.1354 0.1148 
12 0.550342 0.545269 0.1709 0.1601 74 0.928876 0.928103 0.366 0.3649 
13 0.54755 0.546472 0.6104 0.6073 75 0.483609 0.475694 0.029 0.0121 
14 0.180065 0.178024 0.2862 0.2716 76 0.724669 0.704692 0.0657 0.0363 
15 1.065323 1.064572 0.1837 0.1829 77 1.035391 1.030705 0.6974 0.6897 
16 0.265704 0.266758 0.0628 0.067 78 1.149132 1.145119 0.6185 0.6128 
17 0.125971 0.122291 0.1452 0.1117 79 0.69983 0.68824 0.7944 0.7647 
18 0.692428 0.708218 0.154 0.1804 80 2.425935 2.556005 0.8661 0.9662 
19 0.725789 0.696901 0.6129 0.5487 82 0.785303 0.798818 0.4543 0.4793 
20 0.268527 0.263733 0.4918 0.4652 83 0.204848 0.216375 0.0242 0.0819 
21 0.160424 0.156712 0.1459 0.1194 84 0.185019 0.184694 0.682 0.679 
22 0.134895 0.130368 0.3489 0.3037 85 0.35647 0.332518 0.4853 0.3855 
23 0.071152 0.072392 0.0165 0.0342 86 0.395239 0.377004 0.8821 0.7953 
24 0.216468 0.215608 0.6651 0.6585 88 0.608279 0.627124 0.2672 0.3065 
27 0.819682 0.808425 0.1545 0.1386 90 2.276467 2.219436 0.3966 0.3616 
28 0.252992 0.255721 0.4882 0.5042 91 0.118063 0.118913 0.1806 0.1891 
29 0.339799 0.335735 0.4158 0.3989 92 1.165975 1.139526 0.7938 0.7531 
31 0.435797 0.43955 0.0135 0.0222 93 0.214998 0.220307 0.7917 0.8359 
32 0.638462 0.635879 0.0821 0.0778 94 0.499032 0.497875 0.6634 0.6596 
33 0.273483 0.269623 0.1891 0.1723 95 0.650441 0.68437 0.5487 0.6295 
34 0.64692 0.653036 0.0965 0.1068 96 0.423682 0.41655 0.115 0.0962 
35 0.396695 0.391181 0.2021 0.1854 97 0.196286 0.195583 0.3086 0.3039 
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It is inferred from the table-3; table- 4 and table-5 that the FPA and GRW   based optimal IILF are more or 
less equal with slight variation which helps to confirm the correctness of the applied algorithmic solutions with respect 
to any number of search parameter variations.  To check the effectiveness of the proposed  IILF based maximum 
loading point determination,  the  system’s maximum loading capacity extracted from the optimal variable IILF based 
method using FPA and GRW  are compared with the optimal constant incremental loading factor based methods  via 
PSO, HPSO, MAPSO, MAHPSO, DE, DEPSO  and its results are tabulated  in the table-6. 

Table – 6 Comparison of Maximum allowable TLL of the Test Systems 

Algorithms Maximum Total loadability limit of the Test 
System  in p.u 

Percentage Increase of Maximum 
Demand from the existing loadability 

condition 
IEEE 30 Bus 

System 
IEEE 57 

Bus System 
IEEE 118 

Bus System 
IEEE 30 

Bus system 
IEEE 57 

Bus System 
IEEE 118 

Bus system 
  PSO 2.6010 14.039 56.443 37.4736 12.312 33.057 
HPSO 2.6035 14.062 56.445 37.6057 12.496 33.062 

MAPSO 2.6080 NA 56.449 37.8488 NA 33.071 
MAHPSO 2.6081 NA 56.45 37.8478 NA 33.074 

DE 2.6709 NA 56.6212 41.1681 NA 33.477 
DEPSO 2.6974 NA 57.016 42.5687 NA 34.408 

FPA 2.8607 16.52 65.19 49.9471 32.16       53.677 
GRWO 2.8674 16.72 65.43 51.3742 33.76 54.240 

RPF 2.6 14.2 56.4 38.02 15.92 32.96 
The comparison results will be the evidence for the enhancement of system loadability limit to the great 

extent from the base case condition in variable loading demand based TLL extraction. The above evidence is illustrated 
with the help of comparison based on the percentage increase of maximum loadability from the existing loading 
condition of the system.  

36 0.403586 0.419105 0.3019 0.352 98 0.446257 0.45083 0.3125 0.326 
39 0.519448 0.50558 0.9239 0.8725 99 0.602975 0.598288 0.4357 0.4245 
40 1.139372 1.173934 0.7263 0.7787 100 0.462554 0.472405 0.2501 0.2768 
41 0.713564 0.729947 0.9286 0.9728 101 0.252062 0.245284 0.1457 0.1149 
42 1.303333 1.323012 0.3576 0.3781 102 0.074542 0.076717 0.4908 0.5343 
43 0.218329 0.222343 0.2129 0.2352 103 0.277003 0.277419 0.2044 0.2062 
44 0.177175 0.170152 0.1073 0.0634 104 0.618434 0.584841 0.6275 0.5391 
45 0.988033 1.058952 0.8642 0.998 105 0.480056 0.497041 0.5486 0.6034 
46 0.555694 0.551585 0.9846 0.9699 106 0.509245 0.501277 0.1843 0.1658 
47 0.595614 0.586843 0.7518 0.726 107 0.786805 0.76989 0.5736 0.5398 
48 0.290236 0.295842 0.4512 0.4792 108 0.022528 0.022647 0.1264 0.1324 
49 1.718026 1.734802 0.9747 0.994 109 0.122198 0.124062 0.5275 0.5508 
50 0.215207 0.219273 0.2659 0.2898 110 0.484102 0.49351 0.2413 0.2654 
51 0.251715 0.245866 0.4807 0.4463 112 0.719564 0.737387 0.0582 0.0844 
52 0.205871 0.208209 0.1437 0.1567 113 0.065533 0.062551 0.0922 0.0425 
53 0.23734 0.236013 0.0319 0.0261 114 0.114601 0.114173 0.4325 0.4272 
54 2.227206 2.258996 0.971 0.9991 115 0.304804 0.29891 0.3855 0.3587 
55 1.217879 1.228732 0.9331 0.9504 116 3.673752 3.67823 0.9966 0.999 
56 1.628714 1.673129 0.9389 0.9918 117 0.229224 0.225434 0.1461 0.1272 
57 0.148261 0.144672 0.2355 0.2056 118 0.336364 0.33326 0.0193 0.0099 
58 0.130577 0.136889 0.0881 0.1407      
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 The convergence result graph of the GRW and FPA has depicted in the Figures from 1 to 3 for the IEEE 30, 
57 and 118 bus systems respectively.  

 

 
 
 
 
 
 
Fig.1 Base case convergence graph                 Fig.2Base case convergence graph           Fig.3 Base case 
convergence  graph  
         of IEEE 30 Bus test system               of IEEE 57 Bus test system                         of  IEEE 118 Bus 
test system 

 
The inference of the convergence graph shows that the GRW has better solution and also better balance in 

the exploration and exploitation search than FPA while extracting the maximum loadability of the system with respect 
to the number of IILF variations based on the structure of the power system.  The voltage profile of the IEEE 30, 57 
and 118 bus systems at the FPA and GRW based optimal loading point condition are depicted in the figure 4, 5 and 6 
respectively. It is inferred from the voltage profile that the extraction of the maximum loading point is done at the 
critical margin of the system voltage level without violating the system voltage limits. 

 

 

 

 

 

	

 

Fig.4. Optimal loadability based Voltage graph               Fig.5. Optimal loadability based Voltage graph  
          in IEEE 30 Bus test system                                                  in IEEE 57 Bus test system 
 
 

 

 

Fig.6. Optimal loadability based Voltage graph in IEEE 118 Bus test system 

Statistical measures such as mean, best, worst, standard deviation and convergence iteration helps to evaluate 
the performance of the optimization algorithm. The performance of GRW and FPA based optimization of maximum 
loading point extraction are evaluated by conducting 20 different trails and its parametric measures are updated in the 
table – 7. The inference of the performance table clearly indicates that both the FPA and GRW are exceptionally good 
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in extracting the best objective solutions but in terms of standard deviation GRW helps to provide better search 
solution with respect to any number of iteration and also the convergence rate is better compared to the FPA.   

Table – 7 Statistical measures of GRW and FPA 

Test 
System 

Algorith
m 

Worst Mean Best Standard 
Deviation 

No of 
Iteration for 
convergence 

30 Bus FPA 2.8351 2.845 2.860 0.0083 320 
GRW 2.8521 2.859 2.867 0.0043 125 

57 Bus FPA 15.286 15.672 16.52 0.2279 280 
GRW 16.584 16.669 16.72 0.0508 300 

118 Bus FPA 63.578 64.137 65.19 0.4885 210 
GRW 64.526 64.964 65.43 0.3302 220 

 

 

4.2 Maximum allowable TLL extraction in line contingency scenario 

Total loadability limits (TLL) for all the allowable single line outages from the transmission line are 
manipulated using FPA and GRW based optimization algorithm. Based on the severity of the line contingency, the 
TLL will be decreased from the base case value. So, the manipulated results are sorted in descending order and the 
top five ranking line outages along with base case scenario were taken out.  The extracted results are tabulated in the 
table – 8 for all the three test system.  

Table – 8 Allowable Contingency Severity ranking of different bus systems 

 

Allowable Contingency 
Severity ranking Severe Line Outage FPA TLL  

in Per unit 
GRW TLL 
In Per Unit 

                                                    IEEE 30 Bus System 
1 5 - 7 2.1254 2.1694 
2 2 - 6 2.1492 2.1881 
3 2 - 5 2.275 2.2782 
4 2 - 4 2.4456 2.4587 
5 1 - 3 2.4692 2.4835 
 Base Case 2.8607 2.8674 

                                                    IEEE 57  Bus System 
1 12 - 13 14.1328 14.2568 
2 12- 16 14.3645 14.3758 
3 23 - 24 16.0953 16.118 
4 11 - 43 16.2051 16.2107 
5 7 - 8 16.2937 16.3921 
 Base Case 16.5267 16.7261 

                                                       IEEE 118  Bus System 
1 69-70 57.1418 58.0465 
2 69 - 77 59.8238 60.2258 
3 26 - 30 60.0502 60.3762 
4 64 - 65 60.9535 61.1771 
5 30 - 38 61.2438 61.5451 
 Base Case 65.1957 65.42925 
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Both the FPA and GRW help to provide the same ranking results in terms of line outage.   The transmission 
line outage from bus 5 and bus 7, the line outage from the bus 12 and bus 13, the line outage from the bus 69 and bus 
70 will be considered as the allowable severe line contingencies for the IEEE 30, 57 and 118 bus systems respectively. 
The GRW TLL results of severe line outages are better compared to FPA and also the GRW based results shows better 
convergence and searching balance which is evident from the convergence graphs. These graphs are given in figure 
7, 8 and 9 for the 30, 57 and 118 bus systems respectively.  So, the GRW based minimized severe line outage TLL 
are predicted as the Maximum allowable total loadability limit of the system.   

 

 

 

 

 

 

 

 
 
Fig.7Contingency Cases convergence graph of                    Fig.8 Contingency Cases convergence graph of 
IEEE 57       
         BusIEEE 30 Bus Test system                                                  Test system 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.9 Contingency Cases convergence graph of IEEE 118 Bus Test system 
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CONCLUSION 

The proposed approach of predicting maximum allowable total loadability limit through optimal 
determination of IILF helps to augment the load utilization level which in turn improvises the agility of the power 
system in sustaining system’s power balance with respect to any additional load inclusion and also at any unbalanced 
scenarios. The forecasting of allowable incremental loading capacity in each loading point helps the producer or power 
supplier to choose the better bus position for the injection of power supply and also helps the customer to extract the 
load from the better load bus. Since both the producers and consumers are benefited, the proposed approach paves the 
path for achieving the socio-economic benefits.  The statistical results of the optimization algorithm  confirms that the 
application of modern meta-heuristics optimization such as GRW and FPA helps to extract   better solutions by 
maintaining the balanced intensification and diversification search process with respect to any number of search 
parameter variations.  
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